1
|
Maza-Lopez J, Jiménez-Jacinto V, Bermúdez-Morales VH, Alonso-Morales RA, Reyes-Guerrero DE, Higuera-Piedrahita RI, Camas-Pereyra R, López-Arellano ME. Molecular study of the transcription factor SKN-1 and its putative relationship with genes that encode GST and antioxidant enzymes in Haemonchus contortus. Vet Parasitol 2024; 331:110255. [PMID: 39084102 DOI: 10.1016/j.vetpar.2024.110255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024]
Abstract
Haemonchus contortus is a parasitic nematode of ruminants. Once inside its host, it is exposed to reactive oxidative species and responds by synthesising antioxidant enzymes as a defence. In Caenorhabditis elegans, antioxidant genes are regulated by the transcription factor skinhead-1 (Cel-SKN-1). However, there is little information about the function of SKN-1 in H. contortus (Hco-SKN-1). Therefore, we performed a molecular investigation to characterise Hco-SKN-1 and its putative relationship with genes encode antioxidant enzymes, namely glutathione S-transferases (Hco-GSTs, n = 3), superoxide dismutase (Hco-SOD) and catalase (Hco-CAT), which are involved in haematophagy and defence against the host. We used in silico sequence analysis of Hco-SKN-1 and Hco-GSTs to design and perform relative expression assays involving H. contortus eggs, infective larvae (L3) and adults. Furthermore, we exposed H. contortus transitional infective larvae (xL3) to erythrocytes or hydrogen peroxide (H2O2) and evaluated the relative expression of antioxidant genes at 24 or 48 h. Gene Ontology (GO) analysis revealed 31 functions associated with Hco-SKN-1 and Hco-GSTs, including stress resistance, larval development and the active immune response. Hco-GST-5957 and Hco-SOD showed the highest expression in adults, indicating a relationship with specific functions at this mature stage. xL3 exposed to erythrocytes or H2O2 showed significant upregulation of Hco-SKN-1, but it occurred after upregulation of the antioxidant genes, indicating that these genes are not regulated by Hco-SKN-1 during the blood-feeding stage. Additional investigation is necessary to understand the putative regulation of antioxidant genes by Hco-SKN-1 during the blood-feeding stage.
Collapse
Affiliation(s)
- Jocelyn Maza-Lopez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Verónica Jiménez-Jacinto
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Víctor H Bermúdez-Morales
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad ♯655, Col. Santa María Ahuacatitlán, Cuernavaca, Morelos 62100, Mexico
| | - Rogelio A Alonso-Morales
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - David E Reyes-Guerrero
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Carr. Fed. Cuernavaca-Cuautla 8534, Jiutepec, Morelos 62574, Mexico
| | - Rosa I Higuera-Piedrahita
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Rene Camas-Pereyra
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Carr. Fed. Cuernavaca-Cuautla 8534, Jiutepec, Morelos 62574, Mexico
| | - Maria Eugenia López-Arellano
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Carr. Fed. Cuernavaca-Cuautla 8534, Jiutepec, Morelos 62574, Mexico.
| |
Collapse
|
2
|
Zeng W, Shen D, Wu W, Zhang S, Li Z, Zhang D. Involvement of a catalase gene in lignin catalysis and immune defense against pathogenic fungus in Coptotermes formosanus: a potential new target for termite control. PEST MANAGEMENT SCIENCE 2024; 80:3258-3268. [PMID: 38358092 DOI: 10.1002/ps.8029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Detoxifying enzymes are likely involved in lignin feeding and immune defense mechanisms within termites, rendering them potential targets for biological control. However, investigations into the dual functionality of termite detoxification enzymes in vivo have not been documented. RESULTS In this study, the complete cDNA of the catalase gene (Cfcat) derived from Coptotermes formosanus Shiraki was amplified. CFCAT comprises an open reading frame spanning 1527 bp, encoding a 508-amino acid sequence. The highest expression was observed in the epidermal tissues (including the fat body and hemolymph) followed by the foregut/salivary gland. Furthermore, we confirmed the catalase activity of the recombinant Cfcat protein. Using RNA interference (RNAi) technology, the importance of Cfcat in the lignin-feeding of C. formosanus was demonstrated, and the role of Cfcat in innate immunity was investigated. Survival assays showed that Cfcat RNAi significantly increased the susceptibility of C. formosanus to Metarhizium anisopliae. Irrespective of the infection status, Cfcat inhibition had a significant impact on multiple factors of humoral and intestinal immunity in C. formosanus. Notably, Cfcat RNAi exhibited a more pronounced immunosuppressive effect on humoral immunity than on intestinal immunity. CONCLUSION Cfcat plays an important role in the regulation of innate immunity and lignin feeding in C. formosanus. Cfcat RNAi can weaken the immune response of termites against M. anisopliae, which may aid the biocontrol efficiency of M. anisopliae against C. formosanus. This study provides a theoretical basis and technical reference for the development of a novel biocontrol strategy targeting detoxifying enzymes of termites. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenhui Zeng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Danni Shen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenjing Wu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shijun Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhiqiang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Dandan Zhang
- School of Ecology, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
3
|
Lanz-Mendoza H, Gálvez D, Contreras-Garduño J. The plasticity of immune memory in invertebrates. J Exp Biol 2024; 227:jeb246158. [PMID: 38449328 DOI: 10.1242/jeb.246158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Whether specific immune protection after initial pathogen exposure (immune memory) occurs in invertebrates has long been uncertain. The absence of antibodies, B-cells and T-cells, and the short lifespans of invertebrates led to the hypothesis that immune memory does not occur in these organisms. However, research in the past two decades has supported the existence of immune memory in several invertebrate groups, including Ctenophora, Cnidaria, Nematoda, Mollusca and Arthropoda. Interestingly, some studies have demonstrated immune memory that is specific to the parasite strain. Nonetheless, other work does not provide support for immune memory in invertebrates or offers only partial support. Moreover, the expected biphasic immune response, a characteristic of adaptive immune memory in vertebrates, varies within and between invertebrate species. This variation may be attributed to the influence of biotic or abiotic factors, particularly parasites, on the outcome of immune memory. Despite its critical importance for survival, the role of phenotypic plasticity in immune memory has not been systematically examined in the past two decades. Additionally, the features of immune responses occurring in diverse environments have yet to be fully characterized.
Collapse
Affiliation(s)
- Humberto Lanz-Mendoza
- Centro de Investigaciones sobre Enfermedades Infecciosas, INSP, 62100 Cuernavaca, Morelos, Mexico
| | - Dumas Gálvez
- Coiba Scientific Station, City of Knowledge, Calle Gustavo Lara, Boulevard 145B, Clayton 0843-01853, Panama
- Programa Centroamericano de Maestría en Entomología, Universidad de Panamá, Estafeta universitaria, Avenida Simón Bolívar, 0824, Panama
- Sistema Nacional de Investigación, Edificio 205, Ciudad del Saber, 0816-02852, Panama
| | - Jorge Contreras-Garduño
- Escuela Nacional de Estudios Superiores, Unidad Morelia, UNAM, 58190 Morelia, Mexico
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
| |
Collapse
|
4
|
Contreras-Garduño J, Torres-Enciso P, Ramirez-Romero R. The immune response of the whitefly Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) when parasitized by Eretmocerus eremicus (Hymenoptera: Aphelinidae). PLoS One 2023; 18:e0296157. [PMID: 38128052 PMCID: PMC10734938 DOI: 10.1371/journal.pone.0296157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
In insects, the innate immune system is subdivided into cellular and humoral defenses. When parasitoids attack insects, both reactions can be activated and notably, the phenoloxidase (PO) cascade and lytic activity are part of both cellular and humoral defenses. However, to our knowledge, no study has characterized any immune response of the whitefly Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) to the attack of Eretmocerus eremicus (Hymenoptera: Aphelinidae). Therefore, the first objective of the present study was to determine whether whitefly nymphs recently parasitized by E. eremicus exhibit any immune response. For this, we estimate the level of prophenoloxidase (proPO), phenoloxidase (PO), and lytic activity by colorimetric assays. A second objective was to assess whether the observed whitefly immune response could be related to a previously reported preference of the predator Geocoris punctipes (Hemiptera: Lygaeidae) for non-parasitized nymphs. We therefore offered non-parasitized and recently parasitized nymphs to the predator. Our results show that parasitism of whitefly nymphs by E. eremicus induced a highly estimated level of proPO and PO, and a lower level of lytic activity. In addition, we found that G. punctipes did not show a preference for non-parasitized over recently parasitized nymphs. The nymphs of T. vaporariorum activated the PO pathway against E. eremicus; however, the increase in proPO and PO levels was traded-off with decreased lytic activity. In addition, the previously reported preference for non-parasitized nymphs was not seen in our experiments, indicating that the induced immune response did not affect predator behavior by G. punctipes.
Collapse
Affiliation(s)
| | - Pedro Torres-Enciso
- Laboratorio de Control Biológico (Lab CB-AIFEN), Departamento de Producción Agrícola, CUCBA, Universidad de Guadalajara, Zapopan, Jalisco, México
| | - Ricardo Ramirez-Romero
- Laboratorio de Control Biológico (Lab CB-AIFEN), Departamento de Producción Agrícola, CUCBA, Universidad de Guadalajara, Zapopan, Jalisco, México
| |
Collapse
|
5
|
Burciaga RA, Ruiz-Guzmán G, Lanz-Mendoza H, Krams I, Contreras-Garduño J. The honey bees immune memory. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 138:104528. [PMID: 36067906 DOI: 10.1016/j.dci.2022.104528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 04/13/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Invertebrates' immune priming or innate immune memory is an analogous response to the vertebrates' adaptive memory. We investigated if honey bees have immune memory. We compared survival and immune response between bees that were: 1) manipulated (Naïve), 2) challenged twice with the same pathogen Escherichia coli (Memory), 3) challenged twice with different pathogens (Staphylococcus aureus versus E. coli, Micrococcus lysodeikticus versus E. coli), or 4) with PBS (the diluent of bacteria) versus E. coli (heterologous challenge; Control). Results indicate better survival in the Memory than the Control group, and the Memory group showed a similar survival than Naïve insects. The Memory group had higher lytic activity but lower prophenoloxidase, phenoloxidase activity, and hemocyte count than the Control and Naïve groups. No differences were found in relative expression of defensin-1. This first demonstration of immune memory opens the questions about its molecular mechanisms and whether, immune memory could be used against natural parasites that affect honey bees, hence, if they could be "vaccinated" against some natural parasites.
Collapse
Affiliation(s)
- Rodrigo Aarón Burciaga
- ENES, Unidad Morelia, UNAM. Antigua Carretera a Pátzcuaro, No.8701. Col. Ex-Hacienda San José de la Huerta Código, 58190, Morelia, Michoacán, Mexico
| | - Gloria Ruiz-Guzmán
- ENES, Unidad Morelia, UNAM. Antigua Carretera a Pátzcuaro, No.8701. Col. Ex-Hacienda San José de la Huerta Código, 58190, Morelia, Michoacán, Mexico
| | | | - Indrikis Krams
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia; Department of Biotechnology, Daugavpils University, Daugavpils, Latvia; Department of Zoology and Animal Ecology, University of Latvia, Riga, Latvia
| | - Jorge Contreras-Garduño
- ENES, Unidad Morelia, UNAM. Antigua Carretera a Pátzcuaro, No.8701. Col. Ex-Hacienda San José de la Huerta Código, 58190, Morelia, Michoacán, Mexico.
| |
Collapse
|
6
|
González-Acosta S, Baca-González V, Asensio-Calavia P, Otazo-Pérez A, López MR, Morales-delaNuez A, Pérez de la Lastra JM. Efficient Oral Priming of Tenebrio molitor Larvae Using Heat-Inactivated Microorganisms. Vaccines (Basel) 2022; 10:vaccines10081296. [PMID: 36016184 PMCID: PMC9415734 DOI: 10.3390/vaccines10081296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Microbial resistance is a global health problem that will increase over time. Advances in insect antimicrobial peptides (AMPs) offer a powerful new approach to combat antimicrobial resistance. Invertebrates represent a rich group of animals for the discovery of new antimicrobial agents due to their high diversity and the presence of adaptive immunity or “immune priming”. Here, we report a priming approach for Tenebrio molitor that simulates natural infection via the oral route. This oral administration has the advantage of minimizing the stress caused by conventional priming techniques and could be a viable method for mealworm immunity studies. When using inactivated microorganisms for oral priming, our results showed an increased survival of T. molitor larvae after exposure to various pathogens. This finding was consistent with the induction of antimicrobial activity in the hemolymph of primed larvae. Interestingly, the hemolymph of larvae orally primed with Escherichia coli showed constitutive activity against Staphylococcus aureus and heterologous activity for other Gram-negative bacteria, such as Salmonella enterica. The priming of T. molitor is generally performed via injection of the microorganism. To our knowledge, this is the first report describing the oral administration of heat-inactivated microorganisms for priming mealworms. This technique has the advantage of reducing the stress that occurs with the conventional methods for priming vertebrates.
Collapse
Affiliation(s)
- Sergio González-Acosta
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, (IPNA-CSIC), 38206 San Cristóbal de la Laguna, Spain
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna Avda, Astrofísico Francisco Sánchez, SN. Edificio Calabaza-Apdo, 456, 38200 San Cristóbal de La Laguna, Spain
| | - Victoria Baca-González
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, (IPNA-CSIC), 38206 San Cristóbal de la Laguna, Spain
| | - Patricia Asensio-Calavia
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, (IPNA-CSIC), 38206 San Cristóbal de la Laguna, Spain
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna Avda, Astrofísico Francisco Sánchez, SN. Edificio Calabaza-Apdo, 456, 38200 San Cristóbal de La Laguna, Spain
| | - Andrea Otazo-Pérez
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, (IPNA-CSIC), 38206 San Cristóbal de la Laguna, Spain
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna Avda, Astrofísico Francisco Sánchez, SN. Edificio Calabaza-Apdo, 456, 38200 San Cristóbal de La Laguna, Spain
| | - Manuel R. López
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, (IPNA-CSIC), 38206 San Cristóbal de la Laguna, Spain
| | - Antonio Morales-delaNuez
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, (IPNA-CSIC), 38206 San Cristóbal de la Laguna, Spain
| | - José Manuel Pérez de la Lastra
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, (IPNA-CSIC), 38206 San Cristóbal de la Laguna, Spain
- Correspondence: ; Tel.: +34-922-474334
| |
Collapse
|
7
|
Li Z, Jia L, Jiao Z, Guo G, Zhang Y, Xun H, Shang X, Huang L, Wu J. Immune priming with Candida albicans induces a shift in cellular immunity and gene expression of Musca domestica. Microb Pathog 2022; 168:105597. [DOI: 10.1016/j.micpath.2022.105597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/20/2022] [Accepted: 05/16/2022] [Indexed: 12/11/2022]
|
8
|
Rauf A, Wilkins RM. Malathion-resistant Tribolium castaneum has enhanced response to oxidative stress, immunity, and fitness. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105128. [PMID: 35715066 DOI: 10.1016/j.pestbp.2022.105128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 05/03/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Many cases of insecticide resistance in insect pests give resulting no-cost strains that retain the resistance genes even in the absence of the toxic stressor. Malathion (rac-diethyl 2-[(dimethoxyphosphorothioyl)sulfanyl]succinate) has been widely used against the red flour beetle, Tribolium castaneum Herbst. in stored products although no longer used. Malathion specific resistance in this pest is long lasting and widely distributed. A malathion resistant strain was challenged with a range of stressors including starvation, hyperoxia, malathion and a pathogen to determine the antioxidant responses and changes to some lifecycle parameters. Adult life span of the malathion-specific resistant strain of T. castaneum was significantly shorter than that of the susceptible. Starvation and/or high oxygen reduced adult life span of both strains. Starving, with and without 100% oxygen, gave longer lifespan for the resistant strain, but for oxygen alone there was a small extension. Under oxygen the proportional survival of the resistant strain to the adult stage was significantly higher, for both larvae and pupae, than the susceptible. The resistant strain when stressed with malathion and oxygen significantly increased catalase activity, but the susceptible did not. The resistant strain stressed with Paranosema whitei infection had significantly higher survival compared to the susceptible, and with low mortality. The malathion resistant strain of T. castaneum showed greater vigour than the susceptible in oxidative stress situations and especially where stressors were combined. The induction of the antioxidant enzyme catalase could have helped the resistant strain to withstand oxidative stresses, including insecticidal and importantly those from pathogens. These adaptations, in the absence of insecticide, seem to support the increased immunity of the insecticide resistant host to pathogens seen in other insect species, such as mosquitoes. By increasing the responses to a range of stressors the resistant strain could be considered as having enhanced fitness, compared to the susceptible.
Collapse
Affiliation(s)
| | - Richard M Wilkins
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| |
Collapse
|
9
|
Song J, Shi L, Wang S, Wang Y, Zhu Y, Jiang J, Li R. Acidic/Alkaline Stress Mediates Responses to Azole Drugs and Oxidative Stress in Aspergillus fumigatus. Microbiol Spectr 2022; 10:e0199921. [PMID: 35196814 PMCID: PMC8865478 DOI: 10.1128/spectrum.01999-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/19/2022] [Indexed: 11/20/2022] Open
Abstract
A human host exploits stresses such as acidic/alkaline pH, antifungal drugs, and reactive oxygen species to kill microbial pathogens such as the fungus Aspergillus fumigatus. However, A. fumigatus is resistant to these stresses in vitro. Therefore, what accounts for the potent antifungal activity of the human host? In this observation, we show that simultaneous exposure to acidic pH and oxidative stresses is much more potent than the individual stresses themselves and that this combinatorial stress kills A. fumigatus synergistically in vitro. Interestingly, A. fumigatus is resistant to the combination of alkaline pH and oxidative stress. Quantitative real-time PCR analyses showed that acidic/alkaline pH stress can mediate oxidative stress responses in A. fumigatus by regulating the expression of catalase-encoding genes. We further show that A. fumigatus is sensitive to the combination of acidic/alkaline stress and azole drug stress. Transcriptome analysis revealed that the sensitivity of A. fumigatus to azole drugs under acidic/alkaline conditions may be related to changes in genetic stability, sphingolipid metabolism, lipid metabolism, and amino acid metabolism. Collectively, our findings suggest that combinatorial stress represents a powerful fungicidal mechanism employed by hosts against pathogens, which suggests novel approaches to potentiate antifungal therapy. IMPORTANCE The human host combats fungal infections via phagocytic cells that recognize and kill fungal pathogens. Immune cells combat Aspergillus fumigatus infections with a potent mixture of chemicals, including reactive oxygen species, acidic/alkaline stress, and antifungal drugs. However, A. fumigatus is relatively resistant to these stresses in vitro. In this observation, we show that it is the combination of acidic/alkaline pH and oxidative or azole stress that kills A. fumigatus so effectively, and we define the molecular mechanisms that underlie this potency. Our findings suggest that combinatorial stress is a powerful fungicidal mechanism employed by hosts, which suggests novel approaches to potentiate antifungal therapy. This study provides a platform for future studies that will address the combinatorial impacts of various environmental stresses on A. fumigatus and other pathogenic microbes.
Collapse
Affiliation(s)
- Jinxing Song
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Landan Shi
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Sha Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou Central Hospital, Huzhou University, Huzhou, Zhejiang, China
| | - Yunqiu Wang
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Yi Zhu
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Jihong Jiang
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Rongpeng Li
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| |
Collapse
|
10
|
Lanz-Mendoza H, Contreras-Garduño J. Innate immune memory in invertebrates: Concept and potential mechanisms. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104285. [PMID: 34626688 DOI: 10.1016/j.dci.2021.104285] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/19/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Invertebrates are the protagonists of a recent paradigm shift because they now show that vertebrates are not the only group with immune memory. This review discusses the concept of immune priming, its characteristics, and differences with trained immunity and immune enhancement. We include an update of the current status of immune priming within generations in different groups of invertebrates which now include work in 5 Phyla: Ctenophora, Cnidaria, Mollusca, Nematoda, and Arthropoda. Clearly, few Phyla have been studied. We also resume and discuss the effector mechanism related to immune memory, including integrating viral elements into the genome, endoreplication, and epigenetics. The roles of other elements are incorporated, such as hemocytes, immune pathways, and metabolisms. We conclude that taking care of the experimental procedure will discern if results provide or do not support the invertebrates' immune memory and that regarding mechanisms, indeed, there are no studies on the immune memory mechanisms, this is how specificity is reached, and how and where the immune memory is stored and how is recall upon subsequent encounters. Finally, we discuss the possibility of having more than one mechanism working in different groups of invertebrates depending on the environmental conditions.
Collapse
Affiliation(s)
- Humberto Lanz-Mendoza
- Centro de Investigaciones sobre Enfermedades Infecciosas, INSP, Cuernavaca, Morelos, Mexico.
| | | |
Collapse
|
11
|
Ali Mohammadie Kojour M, Baliarsingh S, Jang HA, Yun K, Park KB, Lee JE, Han YS, Patnaik BB, Jo YH. Current knowledge of immune priming in invertebrates, emphasizing studies on Tenebrio molitor. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104284. [PMID: 34619174 DOI: 10.1016/j.dci.2021.104284] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/16/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Vertebrates rely on the most sophisticated adaptive immunity to defend themselves against various pathogens. This includes immunologic memory cells, which mount a stronger and more effective immune response against an antigen after its first encounter. Unlike vertebrates, invertebrates' defense completely depends on the innate immunity mechanisms including humoral and cell-mediated immunity. Furthermore, the invertebrate equivalent of the memory cells was discovered only recently. Since the discovery of transgenerational immune priming (TGIP) in crustaceans, numerous findings have proven the IP in invertebrate classes such as insects. TGIP can be induced through maternal priming pathways such as transcriptional regulation of antimicrobial peptides, and also paternal IP including the induction of proPO system activity. We appraise the diversity and specificity of IP agents to provide sustained immunologic memory in insects, particularly T. molitor in the review. An understanding of IP (more so TGIP) response in T. molitor will deepen our knowledge of invertebrate immunity, and boost the mass-rearing industry by reducing pathogen infection rates.
Collapse
Affiliation(s)
- Maryam Ali Mohammadie Kojour
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, South Korea
| | - Snigdha Baliarsingh
- PG Department of Biosciences and Biotechnology, Fakir Mohan University, Balasore, Odisha, 756089, India
| | - Ho Am Jang
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, South Korea
| | - Keunho Yun
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, South Korea
| | - Ki Beom Park
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, South Korea
| | - Jong Eun Lee
- Department of Biological Science and Biotechnology, Andong National University, Andong, 36729, South Korea
| | - Yeon Soo Han
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, South Korea
| | - Bharat Bhusan Patnaik
- PG Department of Biosciences and Biotechnology, Fakir Mohan University, Balasore, Odisha, 756089, India.
| | - Yong Hun Jo
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
12
|
Abd-Alsalam A, Zainal IG, Taqa GA. Estimation of protein oxidation parameters in patients with diabetic nephropathy. 1ST SAMARRA INTERNATIONAL CONFERENCE FOR PURE AND APPLIED SCIENCES (SICPS2021): SICPS2021 2022. [DOI: 10.1063/5.0121525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
13
|
Carmona-Peña S, Contreras-Garduño J, Castro D, Manjarrez J, Vázquez-Chagoyán J. The innate immune response of triatomines against Trypanosoma cruzi and Trypanosoma rangeli with an unresolved question: Do triatomines have immune memory? Acta Trop 2021; 224:106108. [PMID: 34450058 DOI: 10.1016/j.actatropica.2021.106108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/18/2022]
Abstract
The present work aimed to review the immune response from different triatomines against Trypanosoma cruzi and Trypanosoma rangeli and propose the study of immune memory in such insects. Trypanosoma use triatomines as vectors to reach and infect mammals. A key question to be answered about vector-parasite interaction is why the immune defense and resistance of the insect against the parasites vary. Up to date data shows that the defense of triatomines against parasites includes cellular (phagocytosis, nodulation and encapsulation) and humoral (antimicrobial peptides, phenoloxidase and reactive oxygen and nitrogen species) responses. The immune response varies depending on the triatomine species, the trypanosome strain and species, and the insect intestinal microbiota. Despite significant advances to understand parasite-insect interaction, it is still unknown if triatomines have immune memory against parasites and if this memory may derive from tolerance to parasites attack. Therefore, a closer study of such interaction could contribute and establish new proposals to control the parasite at the vector level to reduce parasite transmission to mammals, including men. For instance, if immune memory exists in the triatomines, it would be interesting to induce weak infections in insects to find out if subsequent infections are less intense and if the insects succeed in eliminating the parasites.
Collapse
|
14
|
The OxrA Protein of Aspergillus fumigatus Is Required for the Oxidative Stress Response and Fungal Pathogenesis. Appl Environ Microbiol 2021; 87:e0112021. [PMID: 34524893 DOI: 10.1128/aem.01120-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An efficient reactive oxygen species (ROS) detoxification system is vital for the survival of the pathogenic fungus Aspergillus fumigatus within the host high-ROS environment of the host. Therefore, identifying and targeting factors essential for oxidative stress response is one approach to developing novel treatments for fungal infections. The oxidation resistance 1 (Oxr1) protein is essential for protection against oxidative stress in mammals, but its functions in pathogenic fungi remain unknown. The present study aimed to characterize the role of an Oxr1 homolog in A. fumigatus. The results indicated that the OxrA protein plays an important role in oxidative stress resistance by regulating the catalase function in A. fumigatus, and overexpression of catalase can rescue the phenotype associated with OxrA deficiency. Importantly, the deficiency of oxrA decreased the virulence of A. fumigatus and altered the host immune response. Using the Aspergillus-induced lung infection model, we demonstrated that the ΔoxrA mutant strain induced less tissue damage along with decreased levels of lactate dehydrogenase (LDH) and albumin release. Additionally, the ΔoxrA mutant caused inflammation at a lower degree, along with a markedly reduced influx of neutrophils to the lungs and a decreased secretion of cytokine usually associated with recruitment of neutrophils in mice. These results characterize the role of OxrA in A. fumigatus as a core regulator of oxidative stress resistance and fungal pathogenesis. IMPORTANCE Knowledge of ROS detoxification in fungal pathogens is useful in the design of new antifungal drugs and could aid in the study of oxidative stress resistance mechanisms. In this study, we demonstrate that OxrA protein localizes to the mitochondria and functions to protect against oxidative damage. We demonstrate that OxrA contributes to oxidative stress resistance by regulating catalase function, and overexpression of catalase (CatA or CatB) can rescue the phenotype that is associated with OxrA deficiency. Remarkably, a loss of OxrA attenuated the fungal virulence in a mouse model of invasive pulmonary aspergillosis and altered the host immune response. Therefore, our finding indicates that inhibition of OxrA might be an effective approach for alleviating A. fumigatus infection. The present study is, to the best of our knowledge, a pioneer in reporting the vital role of Oxr1 protein in pathogenic fungi.
Collapse
|
15
|
Texca Tatevari ML, Jorge CG, Luis MC, Ricardo RR. Do entomopathogenic nematodes induce immune priming? Microb Pathog 2021; 154:104844. [PMID: 33691175 DOI: 10.1016/j.micpath.2021.104844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 11/16/2022]
Abstract
Although the study of immune priming in insects is a growing area of research, its occurrence in various biological models has not been evaluated, and its mechanisms are poorly understood. Whether entomopathogenic nematodes (EPNs) can induce immune priming and what role their virulence might play in it has not been assessed. Here, we tested for the first time: 1) whether a nematode is capable of eliciting immune priming, and 2) whether nematode virulence affects immune priming. Host larvae of Tenebrio molitor were first exposed to one of two EPN strains (low or high virulence). They were then exposed again to a challenge (high) dose of their respective strain, and their survival was recorded. Based on current literature, we expected that host larvae primed with a low-virulence strain would not show immune priming but that those exposed to a high-virulence strain would. Instead, we found that host larvae primed with either strain did not exhibit immune priming. Further, the survival of the hosts primed with the highly virulent strain was significantly reduced relative to the control group, and no measurable immune priming was found, as also indicated by resting metabolic rate (production of CO2). Future research is needed to determine whether virulence-associated bacteria underlie this lowered survival and/or whether another factor, such as immune evasion strategies, is related to these results.
Collapse
Affiliation(s)
- Méndez-López Texca Tatevari
- Posgrado en Ciencias Biológicas, UNAM, Universidad Nacional Autónoma de México, ENES Campus Morelia, Morelia, México; Laboratorio de Ecología Evolutiva, ENES, Unidad Morelia, UNAM, Antigua Carretera a Pátzcuaro, No.8701. Col. Ex-Hacienda San José de la Huerta Código Postal 58190, Morelia, Michoacán, México
| | - Contreras-Garduño Jorge
- Laboratorio de Ecología Evolutiva, ENES, Unidad Morelia, UNAM, Antigua Carretera a Pátzcuaro, No.8701. Col. Ex-Hacienda San José de la Huerta Código Postal 58190, Morelia, Michoacán, México
| | - Mendoza-Cuenca Luis
- Laboratorio de Ecología de la Conducta, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Ramirez-Romero Ricardo
- Laboratorio de Control Biológico, Departamento de Producción Agrícola, CUCBA, Universidad de Guadalajara, Zapopan, Jalisco, México.
| |
Collapse
|
16
|
Ruiz‐Guzmán G, Cordero‐Molina S, Krams I, Contreras‐Garduño J. Interactions between oxidative stress and attractiveness to mates and individual mate choice in the beetle
Tenebrio molitor. Ethology 2020. [DOI: 10.1111/eth.13108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gloria Ruiz‐Guzmán
- Laboratorio de Ecología Evolutiva Escuela Nacional de Estudios Superiores Universidad Nacional Autónoma de México Ciudad de México México
| | - Sagrario Cordero‐Molina
- Laboratorio de Ecología Evolutiva Escuela Nacional de Estudios Superiores Universidad Nacional Autónoma de México Ciudad de México México
| | - Indrikis Krams
- Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
- Department of Zoology and Animal Ecology Faculty of Biology University of Latvia Rīga Latvia
- Latvian Biomedical Research and Study Centre Rīga Latvia
| | - Jorge Contreras‐Garduño
- Laboratorio de Ecología Evolutiva Escuela Nacional de Estudios Superiores Universidad Nacional Autónoma de México Ciudad de México México
| |
Collapse
|
17
|
Animals have a Plan B: how insects deal with the dual challenge of predators and pathogens. J Comp Physiol B 2020; 190:381-390. [PMID: 32529590 DOI: 10.1007/s00360-020-01282-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/08/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022]
Abstract
When animals are faced with a life-threatening challenge, they mount an organism-wide response (i.e. Plan A). For example, both the stress response (i.e. fight-or-flight) and the immune response recruit molecular resources from other body tissues, and induce physiological changes that optimize the body for defense. However, pathogens and predators often co-occur. Animals that can optimize responses for a dual challenge, i.e. simultaneous predator and pathogen attacks, will have a selective advantage. Responses to a combined predator and pathogen attack have not been well studied, but this paper summarizes the existing literature in insects. The response to dual challenges (i.e. Plan B) results in a suite of physiological changes that are different from either the stress response or the immune response, and is not a simple summation of the two. It is also not a straight-forward trade-off of one response against the other. The response to a dual challenge (i.e. Plan B) appears to resolve physiological trade-offs between the stress and immune responses, and reconfigures both responses to provide the best overall defense. However, the dual response appears to be more costly than either response occurring singly, resulting in greater damage from oxidative stress, reduced growth rate, and increased mortality.
Collapse
|
18
|
Products Derived from Buchenavia tetraphylla Leaves Have In Vitro Antioxidant Activity and Protect Tenebrio molitor Larvae against Escherichia coli-Induced Injury. Pharmaceuticals (Basel) 2020; 13:ph13030046. [PMID: 32188166 PMCID: PMC7151707 DOI: 10.3390/ph13030046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/22/2020] [Accepted: 02/29/2020] [Indexed: 02/07/2023] Open
Abstract
The relevance of oxidative stress in the pathogenesis of several diseases (including inflammatory disorders) has traditionally led to the search for new sources of antioxidant compounds. In this work, we report the selection of fractions with high antioxidant action from B. tetraphylla (BT) leaf extracts. In vitro methods (DPPH and ABTS assays; determination of phenolic and flavonoid contents) were used to select products derived from B. tetraphylla with high antioxidant action. Then, the samples with the highest potentials were evaluated in a model of injury based on the inoculation of a lethal dose of heat-inactivated Escherichia coli in Tenebrio molitor larvae. Due to its higher antioxidant properties, the methanolic extract (BTME) was chosen to be fractionated using Sephadex LH-20 column-based chromatography. Two fractions from BTME (BTFC and BTFD) were the most active fractions. Pre-treatment with these fractions protected larvae of T. molitor from the stress induced by inoculation of heat-inactivated E. coli. Similarly, BTFC and BTFD increased the lifespan of larvae infected with a lethal dose of enteroaggregative E. coli 042. NMR data indicated the presence of aliphatic compounds (terpenes, fatty acids, carbohydrates) and aromatic compounds (phenolic compounds). These findings suggested that products derived from B. tetraphylla leaves are promising candidates for the development of antioxidant and anti-infective agents able to treat oxidative-related dysfunctions.
Collapse
|
19
|
The costs of the immune memory within generations. Naturwissenschaften 2019; 106:59. [DOI: 10.1007/s00114-019-1657-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 10/25/2022]
|