1
|
Niu L, Gao M, Li Y, Wang C, Zhang C, Duan H, Li H, Wang F, Ge J. Effects of the stress hormone norepinephrine on the probiotic properties of Levilactobacillus: antibacterial colonization, anti-inflammation, and antioxidation. Front Microbiol 2025; 16:1526362. [PMID: 39996081 PMCID: PMC11849050 DOI: 10.3389/fmicb.2025.1526362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/16/2025] [Indexed: 02/26/2025] Open
Abstract
Probiotics as antibiotic alternatives are unstable for use under stress in clinical applications. To explore the influence of catecholamine hormones on probiotic bacterial inhibition and antimicrobial activity, we tested the effects of norepinephrine (NE) on Levilactobacillus in vitro and in a mouse model. The in vitro results showed that in the presence of NE, 80% of Levilactobacillus strains showed increased growth rate and more than 80% of the strains indicated lower antimicrobial activity at 22 h. Furthermore, in the mouse model, NE weakens the protective effect of L. brevis 23,017 on Escherichia coli infection, which is shown by the decreased ability of antibacterial colonization, antioxidation, and anti-inflammation, and downregulating the expression of antioxidant genes and intestinal mucosal barrier-related genes. At the same time, the addition of NE modulates the bacterial microbiota richness and diversity in the intestine, disrupting the balance of intestinal probiotics. These findings provide evidence that NE reduces the probiotic ability of Levilactobacillus and illustrates the plasticity of the probiotics in response to the intestinal microenvironment under stress.
Collapse
Affiliation(s)
- Lingdi Niu
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Mingchun Gao
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yifan Li
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chaonan Wang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chuankun Zhang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Haoyuan Duan
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hai Li
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Fang Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Junwei Ge
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
2
|
Ma Z, Zuo T, Frey N, Rangrez AY. A systematic framework for understanding the microbiome in human health and disease: from basic principles to clinical translation. Signal Transduct Target Ther 2024; 9:237. [PMID: 39307902 PMCID: PMC11418828 DOI: 10.1038/s41392-024-01946-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/03/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024] Open
Abstract
The human microbiome is a complex and dynamic system that plays important roles in human health and disease. However, there remain limitations and theoretical gaps in our current understanding of the intricate relationship between microbes and humans. In this narrative review, we integrate the knowledge and insights from various fields, including anatomy, physiology, immunology, histology, genetics, and evolution, to propose a systematic framework. It introduces key concepts such as the 'innate and adaptive genomes', which enhance genetic and evolutionary comprehension of the human genome. The 'germ-free syndrome' challenges the traditional 'microbes as pathogens' view, advocating for the necessity of microbes for health. The 'slave tissue' concept underscores the symbiotic intricacies between human tissues and their microbial counterparts, highlighting the dynamic health implications of microbial interactions. 'Acquired microbial immunity' positions the microbiome as an adjunct to human immune systems, providing a rationale for probiotic therapies and prudent antibiotic use. The 'homeostatic reprogramming hypothesis' integrates the microbiome into the internal environment theory, potentially explaining the change in homeostatic indicators post-industrialization. The 'cell-microbe co-ecology model' elucidates the symbiotic regulation affecting cellular balance, while the 'meta-host model' broadens the host definition to include symbiotic microbes. The 'health-illness conversion model' encapsulates the innate and adaptive genomes' interplay and dysbiosis patterns. The aim here is to provide a more focused and coherent understanding of microbiome and highlight future research avenues that could lead to a more effective and efficient healthcare system.
Collapse
Affiliation(s)
- Ziqi Ma
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Tao Zuo
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Ashraf Yusuf Rangrez
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
3
|
Lei Y, Rahman K, Cao X, Yang B, Zhou W, Reheman A, Cai L, Wang Y, Tyagi R, Wang Z, Chen X, Cao G. Epinephrine Stimulates Mycobacterium tuberculosis Growth and Biofilm Formation. Int J Mol Sci 2023; 24:17370. [PMID: 38139199 PMCID: PMC10743465 DOI: 10.3390/ijms242417370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
The human stress hormones catecholamines play a critical role in communication between human microbiota and their hosts and influence the outcomes of bacterial infections. However, it is unclear how M. tuberculosis senses and responds to certain types of human stress hormones. In this study, we screened several human catecholamine stress hormones (epinephrine, norepinephrine, and dopamine) for their effects on Mycobacterium growth. Our results showed that epinephrine significantly stimulated the growth of M. tuberculosis in the serum-based medium as well as macrophages. In silico analysis and molecular docking suggested that the extra-cytoplasmic domain of the MprB might be the putative adrenergic sensor. Furthermore, we showed that epinephrine significantly enhances M. tuberculosis biofilm formation, which has distinct texture composition, antibiotic resistance, and stress tolerance. Together, our data revealed the effect and mechanism of epinephrine on the growth and biofilm formation of M. tuberculosis, which contributes to the understanding of the environmental perception and antibiotic resistance of M. tuberculosis and provides important clues for the understanding of bacterial pathogenesis and the development of novel antibacterial therapeutics.
Collapse
Affiliation(s)
- Yingying Lei
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (K.R.); (X.C.); (B.Y.); (W.Z.); (A.R.)
| | - Khaista Rahman
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (K.R.); (X.C.); (B.Y.); (W.Z.); (A.R.)
| | - Xiaojian Cao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (K.R.); (X.C.); (B.Y.); (W.Z.); (A.R.)
| | - Bing Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (K.R.); (X.C.); (B.Y.); (W.Z.); (A.R.)
| | - Wei Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (K.R.); (X.C.); (B.Y.); (W.Z.); (A.R.)
| | - Aikebaier Reheman
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (K.R.); (X.C.); (B.Y.); (W.Z.); (A.R.)
| | - Luxia Cai
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (K.R.); (X.C.); (B.Y.); (W.Z.); (A.R.)
| | - Yifan Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (K.R.); (X.C.); (B.Y.); (W.Z.); (A.R.)
| | - Rohit Tyagi
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (K.R.); (X.C.); (B.Y.); (W.Z.); (A.R.)
| | - Zhe Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xi Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (K.R.); (X.C.); (B.Y.); (W.Z.); (A.R.)
| | - Gang Cao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (K.R.); (X.C.); (B.Y.); (W.Z.); (A.R.)
- Bio-Medical Center, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Niu L, Gao M, Wen S, Wang F, Shangguan H, Guo Z, Zhang R, Ge J. Effects of Catecholamine Stress Hormones Norepinephrine and Epinephrine on Growth, Antimicrobial Susceptibility, Biofilm Formation, and Gene Expressions of Enterotoxigenic Escherichia coli. Int J Mol Sci 2023; 24:15646. [PMID: 37958634 PMCID: PMC10649963 DOI: 10.3390/ijms242115646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 11/15/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a significant contributor to diarrhea. To determine whether ETEC-catecholamine hormone interactions contribute to the development of diarrhea, we tested the effects of catecholamine hormones acting on ETEC in vitro. The results showed that in the presence of norepinephrine (NE) and epinephrine (Epi), the growth of 9 out of 10 ETEC isolates was promoted, the MICs of more than 60% of the isolates to 6 antibiotics significantly increased, and the biofilm formation ability of 10 ETEC isolates was also promoted. In addition, NE and Epi also significantly upregulated the expression of the virulence genes feaG, estA, estB, and elt. Transcriptome analysis revealed that the expression of 290 genes was affected by NE. These data demonstrated that catecholamine hormones may augment the diarrhea caused by ETEC.
Collapse
Affiliation(s)
- Lingdi Niu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Mingchun Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin 150030, China
| | - Shanshan Wen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Fang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Haikun Shangguan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhiyuan Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin 150030, China
| |
Collapse
|
5
|
Zhang X, Liu B, Ding X, Bin P, Yang Y, Zhu G. Regulatory Mechanisms between Quorum Sensing and Virulence in Salmonella. Microorganisms 2022; 10:2211. [PMID: 36363803 PMCID: PMC9693372 DOI: 10.3390/microorganisms10112211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 08/28/2023] Open
Abstract
Salmonella is a foodborne pathogen that causes enterogastritis among humans, livestock and poultry, and it not only causes huge economic losses for the feed industry but also endangers public health around the world. However, the prevention and treatment of Salmonella infection has remained poorly developed because of its antibiotic resistance. Bacterial quorum sensing (QS) system is an intercellular cell-cell communication mechanism involving multiple cellular processes, especially bacterial virulence, such as biofilm formation, motility, adherence, and invasion. Therefore, blocking the QS system may be a new strategy for Salmonella infection independent of antibiotic treatment. Here, we have reviewed the central role of the QS system in virulence regulation of Salmonella and summarized the most recent advances about quorum quenching (QQ) in virulence attenuation during Salmonella infection. Unraveling the complex relationship between QS and bacterial virulence may provide new insight into the therapy of pathogen infection.
Collapse
Affiliation(s)
- Xiaojie Zhang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Baobao Liu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xueyan Ding
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Peng Bin
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yang Yang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Guoqiang Zhu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
6
|
Yang L, Yuan TJ, Wan Y, Li WW, Liu C, Jiang S, Duan JA. Quorum sensing: a new perspective to reveal the interaction between gut microbiota and host. Future Microbiol 2022; 17:293-309. [PMID: 35164528 DOI: 10.2217/fmb-2021-0217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Quorum sensing (QS), a chemical communication process between bacteria, depends on the synthesis, secretion and detection of signal molecules. It can synchronize the gene expression of bacteria to promote cooperation within the population and improve competitiveness among populations. The preliminary exploration of bacterial QS has been completed under ideal and highly controllable conditions. There is an urgent need to investigate the QS of bacteria under natural conditions, especially the QS of intestinal flora, which is closely related to health. Excitingly, growing evidence has shown that QS also exists in the intestinal flora. The crosstalk of QS between gut microbiota and the host is systematically clarified in this review.
Collapse
Affiliation(s)
- Lei Yang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Tian-Jie Yuan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Yue Wan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Wen-Wen Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Chen Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| |
Collapse
|
7
|
Lee MD, Ipharraguerre IR, Arsenault RJ, Lyte M, Lyte JM, Humphrey B, Angel R, Korver DR. Informal nutrition symposium: leveraging the microbiome (and the metabolome) for poultry production. Poult Sci 2022; 101:101588. [PMID: 34933222 PMCID: PMC8703059 DOI: 10.1016/j.psj.2021.101588] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 01/07/2023] Open
Abstract
Knowledge of gut microbiology of poultry has advanced from a limited ability to culture relatively few microbial species, to attempting to understand the complex interactions between the bird and its microbiome. The Informal Nutrition Symposium 2021 was intended to help poultry scientists to make sense of the implications of the vast amounts of information being generated by researchers. This paper represents a compilation of the talks given at the symposium by leading international researchers in this field. The symposium began with an overview of the historical developments in the field of intestinal microbiology and microbiome research in poultry. Next, the systemic effects of the microbiome on health in the context of the interplay between the intestinal microbiota and the immune system were presented. Because the microbiome and the host communicate and influence each other, the novel field of kinomics (the study of protein phosphorylation) as used in the study of the poultry microbiome was discussed. Protein phosphorylation is a rapid response to the complex of signals among the microbiome, intestinal lumen metabolites, and the host. Then, a description of why an understanding of the role of microbial endocrinology in poultry production can lead to new understanding of the mechanisms by which the gut microbiota and the host can interact in defined mechanisms that ultimately determine health, pathogenesis of infectious disease, and behavior was given. Finally, a view forward was presented underscoring the importance of understanding mechanisms in microbiomes in other organ systems and other species. Additionally, the importance of the development of new -omics platforms and data management tools to more completely understand host microbiomes was stressed.
Collapse
Affiliation(s)
- Margie D Lee
- Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | | | - Ryan J Arsenault
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA 19716
| | - Mark Lyte
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Joshua M Lyte
- Poultry Production and Product Safety Research Unit, Agricultural Research Service, United States Department of Agriculture, Fayetteville, AR 72701, USA
| | | | - Roselina Angel
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Douglas R Korver
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB, Canada T6G 2P5.
| |
Collapse
|
8
|
Cazals A, Estellé J, Bruneau N, Coville JL, Menanteau P, Rossignol MN, Jardet D, Bevilacqua C, Rau A, Bed’Hom B, Velge P, Calenge F. Differences in caecal microbiota composition and Salmonella carriage between experimentally infected inbred lines of chickens. Genet Sel Evol 2022; 54:7. [PMID: 35093028 PMCID: PMC8801081 DOI: 10.1186/s12711-022-00699-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 01/17/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Salmonella Enteritidis (SE) is one of the major causes of human foodborne intoxication resulting from consumption of contaminated poultry products. Genetic selection of animals that are more resistant to Salmonella carriage and modulation of the gut microbiota are two promising ways to decrease individual Salmonella carriage. The aims of this study were to identify the main genetic and microbial factors that control the level of Salmonella carriage in chickens (Gallus gallus) under controlled experimental conditions. Two-hundred and forty animals from the White Leghorn inbred lines N and 61 were infected by SE at 7 days of age. After infection, animals were kept in isolators to reduce recontamination of birds by Salmonella. Caecal contents were sampled at 12 days post-infection and used for DNA extraction. Microbiota DNA was used to measure individual counts of SE by digital PCR and to determine the bacterial taxonomic composition, using a 16S rRNA gene high-throughput sequencing approach. RESULTS Our results confirmed that the N line is more resistant to Salmonella carriage than the 61 line, and that intra-line variability is higher for the 61 line. Furthermore, the 16S analysis showed strong significant differences in microbiota taxonomic composition between the two lines. Among the 617 operational taxonomic units (OTU) observed, more than 390 were differentially abundant between the two lines. Furthermore, within the 61 line, we found a difference in the microbiota taxonomic composition between the high and low Salmonella carriers, with 39 differentially abundant OTU. Using metagenome functional prediction based on 16S data, several metabolic pathways that are potentially associated to microbiota taxonomic differences (e.g. short chain fatty acids pathways) were identified between high and low carriers. CONCLUSIONS Overall, our findings demonstrate that the caecal microbiota composition differs between genetic lines of chickens. This could be one of the reasons why the investigated lines differed in Salmonella carriage levels under experimental infection conditions.
Collapse
Affiliation(s)
- Anaïs Cazals
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
- Mouse Genetics Laboratory, Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Jordi Estellé
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| | - Nicolas Bruneau
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| | - Jean-Luc Coville
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| | - Pierrette Menanteau
- Université François Rabelais de Tours, INRAE, UMR ISP, 37380 Nouzilly, France
| | | | - Deborah Jardet
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| | - Claudia Bevilacqua
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| | - Andrea Rau
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| | - Bertrand Bed’Hom
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| | - Philippe Velge
- Université François Rabelais de Tours, INRAE, UMR ISP, 37380 Nouzilly, France
| | - Fanny Calenge
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| |
Collapse
|
9
|
Ikeda K, Shoda T, Demizu Y, Tsuji G. Discovery of non-proteinogenic amino acids inhibiting biofilm formation by S. aureus and methicillin-resistant S. aureus. Bioorg Med Chem Lett 2021; 48:128259. [PMID: 34256119 DOI: 10.1016/j.bmcl.2021.128259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 11/25/2022]
Abstract
Bacterial biofilms often cause medical complications and there has been a great deal of interest in the discovery of small-molecule agents that can inhibit the formation of biofilms. Among these agents, it has been reported that several d-amino acids, such as d-Leu, d-Trp, d-Tyr, and d-Met, exhibit weak inhibitory activity toward bacterial biofilm formation. In this study, we have screened a library of 332 non-proteinogenic amino acids for new biofilm inhibitory agents and discovered several compounds exhibiting biofilm-inhibitory activity against Gram-positive bacteria. In particular, H-DL-β-(3,4-dihydroxyphenyl)-dl-Ser-OH (253) showed potent activity against S. aureus, including methicillin-resistant S. aureus.
Collapse
Affiliation(s)
- Kentaro Ikeda
- Division of Organic Chemistry, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan; Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Yokohama, Kanagawa 230-0045, Japan
| | - Takuji Shoda
- Division of Organic Chemistry, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Yosuke Demizu
- Division of Organic Chemistry, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan; Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Yokohama, Kanagawa 230-0045, Japan.
| | - Genichiro Tsuji
- Division of Organic Chemistry, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan.
| |
Collapse
|
10
|
Meza-Torres J, Auria E, Dupuy B, Tremblay YDN. Wolf in Sheep's Clothing: Clostridioides difficile Biofilm as a Reservoir for Recurrent Infections. Microorganisms 2021; 9:1922. [PMID: 34576818 PMCID: PMC8470499 DOI: 10.3390/microorganisms9091922] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/21/2022] Open
Abstract
The microbiota inhabiting the intestinal tract provide several critical functions to its host. Microorganisms found at the mucosal layer form organized three-dimensional structures which are considered to be biofilms. Their development and functions are influenced by host factors, host-microbe interactions, and microbe-microbe interactions. These structures can dictate the health of their host by strengthening the natural defenses of the gut epithelium or cause disease by exacerbating underlying conditions. Biofilm communities can also block the establishment of pathogens and prevent infectious diseases. Although these biofilms are important for colonization resistance, new data provide evidence that gut biofilms can act as a reservoir for pathogens such as Clostridioides difficile. In this review, we will look at the biofilms of the intestinal tract, their contribution to health and disease, and the factors influencing their formation. We will then focus on the factors contributing to biofilm formation in C. difficile, how these biofilms are formed, and their properties. In the last section, we will look at how the gut microbiota and the gut biofilm influence C. difficile biofilm formation, persistence, and transmission.
Collapse
Affiliation(s)
- Jazmin Meza-Torres
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, UMR-CNRS 2001, Université de Paris, 25 rue du Docteur Roux, 75724 Paris, France; (J.M.-T.); (E.A.)
| | - Emile Auria
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, UMR-CNRS 2001, Université de Paris, 25 rue du Docteur Roux, 75724 Paris, France; (J.M.-T.); (E.A.)
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, UMR-CNRS 2001, Université de Paris, 25 rue du Docteur Roux, 75724 Paris, France; (J.M.-T.); (E.A.)
| | - Yannick D. N. Tremblay
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, UMR-CNRS 2001, Université de Paris, 25 rue du Docteur Roux, 75724 Paris, France; (J.M.-T.); (E.A.)
- Health Sciences Building, Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
11
|
Chamarande J, Cunat L, Caillet C, Mathieu L, Duval JFL, Lozniewski A, Frippiat JP, Alauzet C, Cailliez-Grimal C. Surface Properties of Parabacteroides distasonis and Impacts of Stress-Induced Molecules on Its Surface Adhesion and Biofilm Formation Capacities. Microorganisms 2021; 9:1602. [PMID: 34442682 PMCID: PMC8400631 DOI: 10.3390/microorganisms9081602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
The gut microbiota is a complex and dynamic ecosystem whose balance and homeostasis are essential to the host's well-being and whose composition can be critically affected by various factors, including host stress. Parabacteroides distasonis causes well-known beneficial roles for its host, but is negatively impacted by stress. However, the mechanisms explaining its maintenance in the gut have not yet been explored, in particular its capacities to adhere onto (bio)surfaces, form biofilms and the way its physicochemical surface properties are affected by stressing conditions. In this paper, we reported adhesion and biofilm formation capacities of 14 unrelated strains of P. distasonis using a steam-based washing procedure, and the electrokinetic features of its surface. Results evidenced an important inter-strain variability for all experiments including the response to stress hormones. In fact, stress-induced molecules significantly impact P. distasonis adhesion and biofilm formation capacities in 35% and 23% of assays, respectively. This study not only provides basic data on the adhesion and biofilm formation capacities of P. distasonis to abiotic substrates but also paves the way for further research on how stress-molecules could be implicated in P. distasonis maintenance within the gut microbiota, which is a prerequisite for designing efficient solutions to optimize its survival within gut environment.
Collapse
Affiliation(s)
- Jordan Chamarande
- SIMPA, Université de Lorraine, F-54000 Nancy, France; (J.C.); (L.C.); (A.L.); (J.-P.F.); (C.A.)
| | - Lisiane Cunat
- SIMPA, Université de Lorraine, F-54000 Nancy, France; (J.C.); (L.C.); (A.L.); (J.-P.F.); (C.A.)
| | - Céline Caillet
- CNRS, LIEC, Université de Lorraine, F-54000 Nancy, France; (C.C.); (J.F.L.D.)
| | - Laurence Mathieu
- Ecole Pratique des Hautes Etudes (EPHE), Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l’Environnement (LCPME), Paris Sciences Lettres University (PSL), F-54500 Nancy, France;
| | - Jérôme F. L. Duval
- CNRS, LIEC, Université de Lorraine, F-54000 Nancy, France; (C.C.); (J.F.L.D.)
| | - Alain Lozniewski
- SIMPA, Université de Lorraine, F-54000 Nancy, France; (J.C.); (L.C.); (A.L.); (J.-P.F.); (C.A.)
- CHRU de Nancy, Service de Microbiologie, F-54000 Nancy, France
| | - Jean-Pol Frippiat
- SIMPA, Université de Lorraine, F-54000 Nancy, France; (J.C.); (L.C.); (A.L.); (J.-P.F.); (C.A.)
| | - Corentine Alauzet
- SIMPA, Université de Lorraine, F-54000 Nancy, France; (J.C.); (L.C.); (A.L.); (J.-P.F.); (C.A.)
- CHRU de Nancy, Service de Microbiologie, F-54000 Nancy, France
| | | |
Collapse
|
12
|
Serotonin Exposure Improves Stress Resistance, Aggregation, and Biofilm Formation in the Probiotic Enterococcus faecium NCIMB10415. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12030043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The role of the microbiota–gut–brain axis in maintaining a healthy status is well recognized. In this bidirectional flux, the influence of host hormones on gut bacteria is crucial. However, data on commensal/probiotics are scarce since most reports analyzed the effects of human bioactive compounds on opportunistic strains, highlighting the risk of increased pathogenicity under stimulation. The present investigation examined the modifications induced by 5HT, a tryptophan-derived molecule abundant in the intestine, on the probiotic Enterococcus faecium NCIMB10415. Specific phenotypic modifications concerning the probiotic potential and possible effects of treated bacteria on dendritic cells were explored together with the comparative soluble proteome evaluation. Increased resistance to bile salts and ampicillin in 5HT-stimulated conditions relate with overexpression of specific proteins (among which Zn-beta-lactamases, a Zn-transport protein and a protein involved in fatty acid incorporation into the membrane). Better auto-aggregating properties and biofilm-forming aptitude are consistent with enhanced QS peptide transport. Concerning interaction with the host, E. faecium NCIMB10415 enhanced dendritic cell maturation, but no significant differences were observed between 5HT-treated and untreated bacteria; meanwhile, after 5HT exposure, some moonlight proteins possibly involved in tissue adhesion were found in higher abundance. Finally, the finding in stimulated conditions of a higher abundance of VicR, a protein involved in two-component signal transduction system (VicK/R), suggests the existence of a possible surface receptor (VicK) for 5HT sensing in the strain studied. These overall data indicate that E. faecium NCIMB10415 modifies its physiology in response to 5HT by improving bacterial interactions and resistance to stressors.
Collapse
|
13
|
Sholpan A, Lamas A, Cepeda A, Franco CM. Salmonella spp. quorum sensing: an overview from environmental persistence to host cell invasion. AIMS Microbiol 2021; 7:238-256. [PMID: 34250377 PMCID: PMC8255907 DOI: 10.3934/microbiol.2021015] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022] Open
Abstract
Salmonella spp. is one of the main foodborne pathogens around the world. It has a cyclic lifestyle that combines host colonization with survival outside the host, implying that Salmonella has to adapt to different conditions rapidly in order to survive. One of these environments outside the host is the food production chain. In this environment, this foodborne pathogen has to adapt to different stress conditions such as acidic environments, nutrient limitation, desiccation, or biocides. One of the mechanisms used by Salmonella to survive under such conditions is biofilm formation. Quorum sensing plays an important role in the production of biofilms composed of cells from the same microorganism or from different species. It is also important in terms of food spoilage and regulates the pathogenicity and invasiveness of Salmonella by regulating Salmonella pathogenicity islands and flagella. Therefore, in this review, we will discuss the genetic mechanism involved in Salmonella quorum sensing, paying special attention to small RNAs and their post-regulatory activity in quorum sensing. We will further discuss the importance of this cell-to-cell communication mechanism in the persistence and spoilage of Salmonella in the food chain environment and the importance in the communication with microorganisms from different species. Subsequently, we will focus on the role of quorum sensing to regulate the virulence and invasion of host cells by Salmonella and on the interaction between Salmonella and other microbial species. This review offers an overview of the importance of quorum sensing in the Salmonella lifestyle.
Collapse
Affiliation(s)
- Amanova Sholpan
- Almaty Technological University, Almaty, Republic of Kazakhstan
| | | | | | | |
Collapse
|
14
|
Elgueta E, Mena J, Orihuela PA. Hydroethanolic Extracts of Haplopappus baylahuen Remy and Aloysia citriodora Palau Have Bactericide Activity and Inhibit the Ability of Salmonella Enteritidis to Form Biofilm and Adhere to Human Intestinal Cells. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3491831. [PMID: 33575326 PMCID: PMC7857884 DOI: 10.1155/2021/3491831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 01/15/2023]
Abstract
We analysed whether the hydroethanolic extracts from leaves of Haplopappus baylahuen Remy (bailahuen) and Aloysia citriodora Palau (cedron) inhibit the growth and ability of Salmonella Enteritidis to form biofilms and to adhere to human intestinal epithelial cells. Herein, we first determined the total phenolic content and antioxidant and antibacterial activities of the extracts. Then, Salmonella Enteritidis was treated with the extracts to analyse biofilm formation by scanning electronic microscopy and the violet crystal test. We also measured the efflux pump activity of Salmonella Enteritidis since biofilm formation is associated with this phenomenon. Furthermore, the human intestinal cell line Caco-2 was infected with Salmonella Enteritidis pretreated with the extracts, and 30 min later, the number of bacteria that adhered to the cell surface was quantified. Finally, we determined by qPCR the expression of genes associated with biofilm formation, namely, the diguanilate cyclase AdrA protein gene (adrA) and the BapA protein gene (bapA), and genes associated with adhesion, namely, the transcriptional regulator HilA (hilA). The phenolic content and antioxidant and bactericide activities were higher in bailahuen than in the cedron extract. Biofilm formation was inhibited by the extracts in a dose-dependent manner, while the activity of efflux pumps was decreased only with the cedron extract. Adhesion to Caco-2 cells was also inhibited without differences between doses and extracts. The extracts decreased the expression of adrA; with the cedron extract being the most efficient. The expression of hilA is affected only with the cedron extract. We concluded that hydroethanolic extracts of bailahuen and cedron differentially inhibit the growth of Salmonella Enteritidis and affect its the ability to form biofilms and to adhere to human intestinal epithelial cells. These results highlight the presence of molecules in bailahuen and cedron with a high potential for the control of the Salmonella Enteritidis pathogenesis.
Collapse
Affiliation(s)
- Estefanía Elgueta
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Javier Mena
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Pedro A. Orihuela
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Centro de Nanociencia y Nanotecnología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
15
|
Scardaci R, Varese F, Manfredi M, Marengo E, Mazzoli R, Pessione E. Enterococcus faecium NCIMB10415 responds to norepinephrine by altering protein profiles and phenotypic characters. J Proteomics 2020; 231:104003. [PMID: 33038511 DOI: 10.1016/j.jprot.2020.104003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 12/13/2022]
Abstract
The long-term established symbiosis between gut microbiota and humans is based upon a dynamic equilibrium that, if unbalanced, could lead to the development of diseases. Despite the huge amount of data concerning the microbiota-gut-brain-axis, little information is available on what happens at the molecular level in bacteria, when exposed to human signals. In the present study, the physiological effects exerted by norepinephrine (NE), a human hormone present in significant amounts in the host gut, were analyzed using the commensal/probiotic strain Enterococcus faecium NCIMB10415 as a target. The aim was to compare the protein profiles of treated and untreated bacteria and relating these proteome patterns to some phenotypic modifications important for bacteria-host interaction. Actually, to date, only pathogens have been considered. Combining a gel-free/label-free proteomic analysis with the evaluation of bile salts resistance, biofilm formation and autoaggregation ability (as well as with the bacterial growth kinetics), allowed to detect changes induced by NE treatment on all the tested probiotic properties. Furthermore, exposure to the bioactive molecule increased the abundance of proteins related to stress response and to host-microbe interaction, such as moonlight proteins involved in adhesion and immune stimulation. The results of this investigation demonstrated that, not only pathogens, but also commensal gut bacteria are affected by host-derived hormones, underlining the importance of a correct cross-signalling in the maintenance of gut homeostasis. SIGNIFICANCE: The crucial role played by the human gut microbiota in ensuring host homeostasis and health is definitively ascertained as suggested by the holobiome concept. The present research was intended to shed light on the endocrinological perturbations possibly affecting microbiota. The microbial model used in this study belongs to Enterococcus faecium species, whose controversial role as gut commensal and opportunistic pathogen in the gut ecosystem is well recognized. The results obtained in the present investigation clearly demonstrate that E. faecium NCIMB10415 can sense and respond to norepinephrine, a human hormone abundant at the gut level, by changing protein profiles and physiology, inducing changes that could favor survival and colonization of the host tissues. To our knowledge, this is the first proteomic report concerning the impact of a human hormone on a commensal/probiotic bacterium, since previous research has focused on exploring the effects of neuroendocrine molecules on growth and virulence of pathogenic species.
Collapse
Affiliation(s)
- R Scardaci
- Structural and Functional Biochemistry, Laboratory of Microbial Biochemistry and Proteomics, Department of Life Sciences and Systems Biology, Università di Torino, Torino, Italy.
| | - F Varese
- Structural and Functional Biochemistry, Laboratory of Microbial Biochemistry and Proteomics, Department of Life Sciences and Systems Biology, Università di Torino, Torino, Italy
| | - M Manfredi
- Center for Translational Research on Autoimmune and Allergic Diseases, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - E Marengo
- Center for Translational Research on Autoimmune and Allergic Diseases, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - R Mazzoli
- Structural and Functional Biochemistry, Laboratory of Microbial Biochemistry and Proteomics, Department of Life Sciences and Systems Biology, Università di Torino, Torino, Italy
| | - E Pessione
- Structural and Functional Biochemistry, Laboratory of Microbial Biochemistry and Proteomics, Department of Life Sciences and Systems Biology, Università di Torino, Torino, Italy.
| |
Collapse
|
16
|
Lucca V, Apellanis Borges K, Quedi Furian T, Borsoi A, Pippi Salle CT, de Souza Moraes HL, Pinheiro do Nascimento V. Influence of the norepinephrine and medium acidification in the growth and adhesion of Salmonella Heidelberg isolated from poultry. Microb Pathog 2019; 138:103799. [PMID: 31614192 DOI: 10.1016/j.micpath.2019.103799] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/07/2019] [Accepted: 10/11/2019] [Indexed: 02/03/2023]
Abstract
Salmonella spp. are among the leading pathogens responsible for foodborne illnesses worldwide. Bacterial communities use a quorum sensing (QS) system to control biofilm formation. QS is a cell-to-cell signaling mechanism involving compounds called auto-inducers (AI). Norepinephrine utilizes the same bacterial signaling of AI-3 and serves as a signal of QS. Acid stress is a challenge encountered by microorganisms in food processing environments and in the gastrointestinal tracts of hosts. Thus, adaptation to acidic environments may increase the pathogenicity of the strain. The aim of this study was to evaluate the influence of two concentrations of norepinephrine (100 μM and 250 μM) and acidification (pH 3.0) of the medium on the growth and adhesion of Salmonella Heidelberg strains isolated from poultry sources at 12 °C and 25 °C. Furthermore, three genes associated with the biofilm formation process were detected (adrA, csgD, and sidA). Norepinephrine stimulation did not influence the growth or adhesion of Salmonella Heidelberg strains, regardless of the catecholamine concentration and temperature. On the other hand, the use of acidified medium (pH 3.0) resulted in a significant reduction of growth and a significant increase of S. Heidelberg adhesion at both temperatures, indicating that the acidified medium favors the biofilm formation process. The adrA and sidA genes showed higher detection frequencies than csgD. Experiments analyzing the biofilm production process by S. Heidelberg strains are not common, and further studies are necessary to understand this complex process.
Collapse
Affiliation(s)
- Vivian Lucca
- Universidade Federal do Rio Grande do Sul, Faculdade de Veterinária, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Av. Bento Gonçalves, 8824, Porto Alegre, RS, Brazil
| | - Karen Apellanis Borges
- Universidade Federal do Rio Grande do Sul, Faculdade de Veterinária, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Av. Bento Gonçalves, 8824, Porto Alegre, RS, Brazil.
| | - Thales Quedi Furian
- Universidade Federal do Rio Grande do Sul, Faculdade de Veterinária, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Av. Bento Gonçalves, 8824, Porto Alegre, RS, Brazil
| | - Anderlise Borsoi
- Universidade Tuiuti do Paraná, R. Sydnei Antonio Rangel Santos, 238, Curitiba, PR, Brazil
| | - Carlos Tadeu Pippi Salle
- Universidade Federal do Rio Grande do Sul, Faculdade de Veterinária, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Av. Bento Gonçalves, 8824, Porto Alegre, RS, Brazil
| | - Hamilton Luiz de Souza Moraes
- Universidade Federal do Rio Grande do Sul, Faculdade de Veterinária, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Av. Bento Gonçalves, 8824, Porto Alegre, RS, Brazil
| | - Vladimir Pinheiro do Nascimento
- Universidade Federal do Rio Grande do Sul, Faculdade de Veterinária, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Av. Bento Gonçalves, 8824, Porto Alegre, RS, Brazil
| |
Collapse
|
17
|
Influences of stress hormones on microbial infections. Microb Pathog 2019; 131:270-276. [PMID: 30981718 DOI: 10.1016/j.micpath.2019.04.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 02/08/2023]
Abstract
Stress hormones have been recently suggested to influence the pathogenicity of bacteria significantly. Stress has been identified as part of the factors causing an outbreak of infections in the aquaculture industry. The most studied neuroendocrine hormonal family from a microbial endocrinology perspective is the catecholamine comprising of norepinephrine, epinephrine, and dopamine. It is of importance that catecholamine affects the growth and virulence of bacteria. The influence of stress on bacterial infections is attributed to the ability of catecholamines to suppress the immune system as the mode of action for increased bacterial growth. Catecholamines have increased the growth of bacteria, virulence-associated factors, adhesions, and biofilm formation and consequently influence the outcome of infections by these bacteria in many hosts. The siderophores and the ferric iron transport system plays a vital role in the mechanism by which catecholamines stimulates growth and exposure of genes to stress hormones enhances the expression of genes involved in bacterial virulence. In recent years, it has been discovered that intestinal microflora takes part in bidirectional communication between the gut and brain. The rapidly growing field of microbiome research, understanding the communities of bacteria living within our bodies and the genes they contain is yielding new perspectives. This review reveals catecholamines effects on the growth and virulence of bacteria and the latest trends in microbial endocrinology.
Collapse
|