1
|
Rodrigues Almeida LM, Gonzaga Fernandez L. Ethnomedical uses, biocompounds and biological properties of Cereus Jamacaru DC. (Cactaceae): a comprehensive review. Nat Prod Res 2025; 39:961-975. [PMID: 38534057 DOI: 10.1080/14786419.2024.2330541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 02/05/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024]
Abstract
Cereus jamacaru, popularly known as mandacaru, is a Cacactacea native to the Caatinga of Brazil, but it is distributed in arid and semiarid regions worldwide. This plant is used for various purposes, such as food, animal fodder, civil construction, and as an ornamental and medicinal plant. Traditional medicine uses the cladodes, roots, and seeds of C. jamacaru to treat various diseases. This review discusses the ethnobotanical uses, phytochemical composition, and biological properties of C. jamacaru. The data demonstrate that C. jamacaru produces a wide range of secondary metabolites involved in the defense mechanism against biotic agents and abiotic stresses. Carbohydrate polymers, phenolic compounds, terpenes, and bioactive nitrogen compounds, have been identified and linked to this plant's biological properties. The present review will support future scientific research in identifying new bioproducts and demonstrating the potential of C. jamacaru as a food and medicinal plant.
Collapse
Affiliation(s)
- Leila Magda Rodrigues Almeida
- Laboratory of Biochemistry, Biotechnology, and Bioproducts, Department of Biochemistry, and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Luzimar Gonzaga Fernandez
- Laboratory of Biochemistry, Biotechnology, and Bioproducts, Department of Biochemistry, and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| |
Collapse
|
2
|
Peralta-Ruiz Y, Rossi C, Grande-Tovar CD, Chaves-López C. Green Management of Postharvest Anthracnose Caused by Colletotrichum gloeosporioides. J Fungi (Basel) 2023; 9:623. [PMID: 37367558 DOI: 10.3390/jof9060623] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023] Open
Abstract
Fruits and vegetables are constantly affected by postharvest diseases, of which anthracnose is one of the most severe and is caused by diverse Colletotrichum species, mainly C. gloeosporioides. In the last few decades, chemical fungicides have been the primary approach to anthracnose control. However, recent trends and regulations have sought to limit the use of these substances. Greener management includes a group of sustainable alternatives that use natural substances and microorganisms to control postharvest fungi. This comprehensive review of contemporary research presents various sustainable alternatives to C. gloeosporioides postharvest control in vitro and in situ, ranging from the use of biopolymers, essential oils, and antagonistic microorganisms to cultivar resistance. Strategies such as encapsulation, biofilms, coatings, compounds secreted, antibiotics, and lytic enzyme production by microorganisms are revised. Finally, the potential effects of climate change on C. gloeosporioides and anthracnose disease are explored. Greener management can provide a possible replacement for the conventional approach of using chemical fungicides for anthracnose postharvest control. It presents diverse methodologies that are not mutually exclusive and can be in tune with the needs and interests of new consumers and the environment. Overall, developing or using these alternatives has strong potential for improving sustainability and addressing the challenges generated by climate change.
Collapse
Affiliation(s)
- Yeimmy Peralta-Ruiz
- Programa de Ingeniería Agroindustrial, Facultad de Ingeniería, Universidad del Atlántico, Puerto Colombia 081008, Colombia
| | - Chiara Rossi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| | - Clemencia Chaves-López
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
3
|
Da-Silva JR, Correia-Lima L, Fernandes G, Ribeiro-Filho N, Madruga MS, Lima MDS, Muniz MB. Mandacaru fruit pulp (Cereus jamacaru D.C.) as an adjunct and its influence on Beer properties. Food Chem 2023; 406:135066. [PMID: 36462364 DOI: 10.1016/j.foodchem.2022.135066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022]
Abstract
Beer is a complex product due to its raw materials (malt, hops, yeast, and water). Beer production can also use other matters as adjuncts. This study investigated the influence of Mandacaru fruit pulp (MFP) as an adjunct on volatile and phenolic compounds, and antioxidant properties of Beer. Worts were produced using four treatments including a control. Fermentations were conducted for 10 days at 18 °C using yeast Lachancea spp, maturated at 3 °C for 15 days, and bottled at 20 °C for 15 days. All compounds were evaluated by HPLC, and GC-MS. Worts' supplementation influenced the volatile and phenolic profile and increased the antioxidant activity of wort and Beer. Beers A (100 g of MFP/L), B (200 g of MFP/L), and C (300 g of MFP/L) presented higher ethanol and glycerol content. Beer C contained the highest antioxidant activity and total phenolic content. Worts' supplemented with MFP increased aroma formation.
Collapse
Affiliation(s)
- José Renato Da-Silva
- PPGCTA/Technology Center, Campus I, Federal University of Paraiba, João Pessoa, Paraiba, Brazil
| | - Lys Correia-Lima
- PPGCTA/Technology Center, Campus I, Federal University of Paraiba, João Pessoa, Paraiba, Brazil
| | - Givanildo Fernandes
- PPGCTA/Technology Center, Campus I, Federal University of Paraiba, João Pessoa, Paraiba, Brazil
| | - Normando Ribeiro-Filho
- DSER and PPGA/Centre for Agrarian Science, Campus II, Federal University of Paraiba, Areia, Paraiba, Brazil.
| | - Marta Suely Madruga
- PPGCTA/Technology Center, Campus I, Federal University of Paraiba, João Pessoa, Paraiba, Brazil
| | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão Pernambucano, Petrolina, Pernambuco, Brazil
| | - Marcelo Barbosa Muniz
- PPGCTA/Technology Center, Campus I, Federal University of Paraiba, João Pessoa, Paraiba, Brazil
| |
Collapse
|
4
|
Li HX, Luo XF, Deng P, Zhang SY, Zhou H, Ding YY, Wang YR, Liu YQ, Zhang ZJ. Structural Simplification of Cryptolepine to Obtain Novel Antifungal Quinoline Derivatives against Phytopathogenic Fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2301-2312. [PMID: 36706432 DOI: 10.1021/acs.jafc.2c07575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A series of quinoline derivatives were designed and synthesized by the structural simplification of cryptolepine and evaluated for their fungicidal activity against six phytopathogenic fungi. Most of these compounds exhibited remarkable activities against Botrytis cinereain vitro. Among them, compounds A18 and L01 showed superior antifungal activity. Significantly, compared to cryptolepine, compound A18 exhibited broad-spectrum inhibitory activities against B. cinerea, Sclerotinia sclerotiorum, Rhizoctonia solani, Phytophthora capsica, Magnaporthe oryzae, and Fusarium graminearum with the respective EC50 values of 0.249, 1.569, 3.915, 0.505, 0.246, and 4.999 μg/mL. Compound L01 displayed the best antifungal activity against B. cinerea with an EC50 value of 0.156 μg/mL. Preliminary mechanistic studies showed that compound A18 could inhibit spore germination, affect the permeability of the cell membrane, increase the content of reactive oxygen species, and affect the morphology of hyphae and cells. Moreover, compound A18 showed excellent in vivo protective effect against B. cinerea, which was more potent than pyrimethanil and equitant to cryptolepine. These results evidenced that compound A18 displayed superior fungicidal activities and could be a potential fungicidal candidate against plant fungal diseases.
Collapse
Affiliation(s)
- Hai-Xin Li
- School of Pharmacy, Lanzhou University, Lanzhou730000, People's Republic of China
| | - Xiong-Fei Luo
- School of Pharmacy, Lanzhou University, Lanzhou730000, People's Republic of China
| | - Peng Deng
- School of Pharmacy, Lanzhou University, Lanzhou730000, People's Republic of China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou313000, China
| | - Han Zhou
- School of Pharmacy, Lanzhou University, Lanzhou730000, People's Republic of China
| | - Yan Yan Ding
- School of Pharmacy, Lanzhou University, Lanzhou730000, People's Republic of China
| | - Yi-Rong Wang
- School of Pharmacy, Lanzhou University, Lanzhou730000, People's Republic of China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou730000, People's Republic of China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou313000, China
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou730000, People's Republic of China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou730000, People's Republic of China
| |
Collapse
|
5
|
Silva AL, Bezerra LP, Freitas CDT, Silva AFB, Mesquita FP, Neto NAS, Oliveira JPB, Aguiar TKB, Nagano CS, Carneiro RF, Oliveira JTA, Albuquerque CC, Souza PFN. Luffa operculata seed proteins: Identification by LC-ESI-MS/MS and biotechnological potential against Candida albicans and C. krusei. Anal Biochem 2022; 655:114851. [PMID: 35977597 DOI: 10.1016/j.ab.2022.114851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/01/2022]
Abstract
L: operculata is a plant commonly found in the North and Northeast of Brazil. Although the regional population knows its medicinal potential, there are few scientific studies about its antimicrobial potential. Thus, this study aimed to characterize the proteins from L. operculata seeds extracted using different solutions and evaluate their antimicrobial potentials. The protein extracts obtained with NaCl and sodium acetate buffer presented the best inhibitory activities against Candida albicans and C. krusei. The study of the mechanism of action revealed proteins from L. operculata seeds induced pore formation on the membrane and ROS overaccumulation. Scanning Electron Microscopy images also showed severe morphological changes in Candida albicans and C. krusei. Proteins from L.operculata seeds did not show antibacterial activity. The enzymatic assays revealed the presence of proteolytic enzymes, serine and cysteine protease inhibitors, and chitinases in both protein extracts. Proteomic analysis by LC-ESI-MS/MS identified 57 proteins related to many biological processes, such as defense to (a)biotic stress, energetic metabolism, protein folding, and nucleotide metabolism. In conclusion, the L. operculata seed proteins have biotechnological potential against the human pathogenic yeasts Candida albicans and C. krusei.
Collapse
Affiliation(s)
- André L Silva
- Plant Biochemistry and Physiology Laboratory, State University of Rio Grande of North, Mossoró, Rio Grande do Norte, Brazil
| | - Leandro P Bezerra
- Plant Biochemistry and Physiology Laboratory, State University of Rio Grande of North, Mossoró, Rio Grande do Norte, Brazil; Department of Biochemistry and Molecular Biology, Laboratory of Plant Defense Proteins, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Cleverson D T Freitas
- Department of Biochemistry and Molecular Biology, Laboratory of Plant Defense Proteins, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Ayrles F B Silva
- Department of Biochemistry and Molecular Biology, Laboratory of Plant Defense Proteins, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Felipe P Mesquita
- Drug Research and Development Center, Department of Medicine, Federal University of Ceará, Brazil
| | - Nilton A S Neto
- Department of Biochemistry and Molecular Biology, Laboratory of Plant Defense Proteins, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - João P B Oliveira
- Department of Biochemistry and Molecular Biology, Laboratory of Plant Defense Proteins, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Tawanny K B Aguiar
- Department of Biochemistry and Molecular Biology, Laboratory of Plant Defense Proteins, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Celso S Nagano
- Drug Research and Development Center, Department of Medicine, Federal University of Ceará, Brazil
| | - Rômulo F Carneiro
- Drug Research and Development Center, Department of Medicine, Federal University of Ceará, Brazil
| | - Jose T A Oliveira
- Department of Biochemistry and Molecular Biology, Laboratory of Plant Defense Proteins, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Cynthia C Albuquerque
- Plant Biochemistry and Physiology Laboratory, State University of Rio Grande of North, Mossoró, Rio Grande do Norte, Brazil
| | - Pedro F N Souza
- Department of Biochemistry and Molecular Biology, Laboratory of Plant Defense Proteins, Federal University of Ceará, Fortaleza, Ceará, Brazil; Department of Fishing Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
6
|
da Silva Santos É, Savam A, Cabral MRP, Castro JC, de Oliveira Collet SA, Mandim F, Calhelha RC, Barros L, da Silva Machado MDFP, de Oliveira AJB, Gonçalves RAC. Low-cost alternative for the bioproduction of bioactive phenolic compounds of callus cultures from Cereus hildmannianus (K.) Schum. J Biotechnol 2022; 356:8-18. [PMID: 35842071 DOI: 10.1016/j.jbiotec.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 10/17/2022]
Abstract
The aim of this study was to establish a sustainable alternative callus culture of Cereus hildmannianus for the production and bioactive determination of phenolic compounds from this species. The conventional callus was cultivated using agar and Murashige and Skoog (MS) medium, while for the alternative culture the agar was replaced with a cotton support covered with filter paper and MS medium (incubated at 32°C with photoperiod of 16h), and the morphological characteristics and growth index were assessed (8 weeks). Extracts were obtained by maceration followed by partition, characterized by nuclear magnetic resonance - NMR and ultra-high performance liquid chromatography - UHPLC, quantified (phenolic compounds) by UV-Vis methods, and their antioxidant, antitumor activities, as well as cytotoxicity, were evaluated. The establishment of an alternative callus culture was carried out successfully. Characteristic signals of phenolic compounds were determined by NMR, and 46 compounds with fragment ions were identified using UHPLC analysis. The highest concentrations of phenolic compounds, and greatest antioxidant and antitumor activities, were obtained with the dichloromethane fractions of both callus tissue cultures, which were not cytotoxic. The callus culture from C. hildmannianus has shown promise as a source for the sustainable production of phenolic compounds with antioxidant and antiproliferative activities and thus, has potential use as a natural antitumor product.
Collapse
Affiliation(s)
- Éverton da Silva Santos
- Programa de Pós-graduação em Ciências Farmacêuticas (PCF), Universidade Estadual de Maringá (UEM), Av. Colombo 5790, 87.020-900, Maringá, Brazil
| | - Aline Savam
- Departamento de Farmácia, Universidade Estadual de Maringá (UEM), Av. Colombo 5790, 87.020-900, Maringá, Brazil
| | - Márcia Regina Pereira Cabral
- Programa de Pós-graduação em Ciências Farmacêuticas (PCF), Universidade Estadual de Maringá (UEM), Av. Colombo 5790, 87.020-900, Maringá, Brazil
| | - Juliana Cristina Castro
- Programa de Pós-graduação em Ciências Farmacêuticas (PCF), Universidade Estadual de Maringá (UEM), Av. Colombo 5790, 87.020-900, Maringá, Brazil
| | - Sandra Aparecida de Oliveira Collet
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá (UEM), Av. Colombo 5790, 87.020-900, Maringá, Brazil
| | - Filipa Mandim
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | | | - Arildo José Braz de Oliveira
- Programa de Pós-graduação em Ciências Farmacêuticas (PCF), Universidade Estadual de Maringá (UEM), Av. Colombo 5790, 87.020-900, Maringá, Brazil; Departamento de Farmácia, Universidade Estadual de Maringá (UEM), Av. Colombo 5790, 87.020-900, Maringá, Brazil
| | - Regina Aparecida Correia Gonçalves
- Programa de Pós-graduação em Ciências Farmacêuticas (PCF), Universidade Estadual de Maringá (UEM), Av. Colombo 5790, 87.020-900, Maringá, Brazil; Departamento de Farmácia, Universidade Estadual de Maringá (UEM), Av. Colombo 5790, 87.020-900, Maringá, Brazil.
| |
Collapse
|
7
|
Lima PG, Oliveira JTA, Amaral JL, Freitas CDT, Souza PFN. Synthetic antimicrobial peptides: Characteristics, design, and potential as alternative molecules to overcome microbial resistance. Life Sci 2021; 278:119647. [PMID: 34043990 DOI: 10.1016/j.lfs.2021.119647] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/08/2021] [Accepted: 05/18/2021] [Indexed: 01/09/2023]
Abstract
Recently, the dramatic emergence of antimicrobial resistance has received attention from World Health Organization. Synthetic antimicrobial peptides (SAMPs) are considered new weapons to fight against infections caused by multi-drug resistant pathogens. Here, the authors provide an overview of the current research on SAMPs. The focus is SAMPs, how to design them, which features must be considered during design, and comparison with natural peptides. This review also includes a discussion about the natural AMPs, mechanisms of action and applications as new drugs or even as adjuvants molecules to enhance commercial drugs activity. The advances in chemical synthesis have reduced the cost to produce synthetic peptides open ways to achieve new antimicrobial agents. Therefore, synthetic peptides are new promising molecules to safeguard human and animal health.
Collapse
Affiliation(s)
- Patrícia G Lima
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, CEP 60.440-554 Fortaleza, Ceará, Brazil
| | - Jose T A Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, CEP 60.440-554 Fortaleza, Ceará, Brazil
| | - Jackson L Amaral
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, CEP 60.440-554 Fortaleza, Ceará, Brazil
| | - Cleverson D T Freitas
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, CEP 60.440-554 Fortaleza, Ceará, Brazil
| | - Pedro F N Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, CEP 60.440-554 Fortaleza, Ceará, Brazil.
| |
Collapse
|
8
|
da Silva Santos É, Braz de Oliveira AJ, de Fátima Pires da Silva Machado M, Mangolin CA, Correia Gonçalves RA. Cereus hildmannianus (K.) Schum. (Cactaceae): Ethnomedical uses, phytochemistry and biological activities. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113339. [PMID: 32898627 DOI: 10.1016/j.jep.2020.113339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/07/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cereus hildmannianus (K.) Schum. (syn. C. peruvianus) is a native medicinal plant in the Neotropical region. C. hildmannianus cladodes extracts are used in folk medicine for weight loss, reducing cholesterol, low-density lipoprotein (LDL) levels, as diuretic and cardiotonic, and to treat various diseases, including pulmonary disorders, rheumatism, and in topical treatment for wounds and lithiasis. Fruits and flowers of C. hildmmanianus have high nutritional value. AIM OF THE REVIEW In this review, previous reports on C. hildmannianus (syn. C. peruvianus) concerning its botanical description, geographical distribution, ethnomedicinal use, phytochemistry, in vitro and in vivo pharmacological properties, food benefits and plant biotechnology were summarized. MATERIALS AND METHODS Scientific search engines, including ScienceDirect, Capes Journals Portal, Google Scholar, PubMed, Scielo, and Scifinder, were consulted to gather data on C. hildmannianus. The present review is an up-to-date and comprehensive analysis of phytochemical compounds, ethnomedicinal uses, phytopharmacological activities, and food value of cladodes, flowers, fruits, seeds, and tissue culture from C. hildmannianus. RESULTS In traditional medicine, C.hildmannianus is used to treat various diseases, including pulmonary disorders, rheumatism, and in topical treatment for wounds and lithiasis. The extracts from the cladodes of C. hildmannianus exhibited numerous in vitro and in vivo pharmacological activities such as gastroprotective, antioxidant, antifungal, ovicidal, hemagglutinating and slimming, and anticancer activity. These extracts' substances belong to different classes of chemical compounds such as fatty acids, polysaccharides, terpenes, alkaloids, phenolic acids, and flavonoids CONCLUSIONS: Ethnomedicinal surveys have indicated the use of C. hildmannianus, an important medicinal plant in South America, for the treatment of various diseases. The ethnobotanical, phytochemical, pharmacological, and ethnomedicinal properties from various morphological parts of the plant of C. hildmannianus were highlighted in this review, which provides information for future studies, commercial exploration and reveals that this plant has a huge potential for pharmaceutical and nutraceutical applications.
Collapse
Affiliation(s)
- Éverton da Silva Santos
- Graduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringá, Av. Colombo 5790, 87.020-900, Maringá, Brazil
| | - Arildo José Braz de Oliveira
- Graduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringá, Av. Colombo 5790, 87.020-900, Maringá, Brazil
| | | | - Claudete Aparecida Mangolin
- Department of Biotechnology, Genetic and Cell Biology, State University of Maringá, Av. Colombo 5790, 87.020-900, Maringá, Brazil
| | - Regina Aparecida Correia Gonçalves
- Graduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringá, Av. Colombo 5790, 87.020-900, Maringá, Brazil.
| |
Collapse
|
9
|
Souza PFN. The forgotten 2S albumin proteins: Importance, structure, and biotechnological application in agriculture and human health. Int J Biol Macromol 2020; 164:4638-4649. [PMID: 32937155 DOI: 10.1016/j.ijbiomac.2020.09.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/17/2020] [Accepted: 09/08/2020] [Indexed: 01/21/2023]
Abstract
2S albumin proteins are a group of important seed storage proteins (SSPs) essential to seeds at early and late developmental stages, by providing amino acids and other nutrients during germination and for seed defense. 2S albumins possess a well-conserved cysteine supporting the stability of temperature, pH, and proteolysis. The 3D structure rich in alpha-helices and positively charged is particularly suited for antibacterial and antifungal activity, which is presented by many 2S albumins. However, the hypervariable region present in 2S albumins induces allergenic reactions. Because of that, 2S albumins have never been recognized for their biotechnological potential. However, the development of servers used for the rational design of antimicrobial molecules has now brought a new application to 2S albumins, acting as a model to design antimicrobial molecules without the toxic or allergenic effects of 2S albumins. Therefore, this review is focused on discussing the importance of 2S albumins to seed development and defense and the biochemical, structural and functional properties of these proteins thought to play a role in their antimicrobial activity. Additionally, the application of 2S albumins to design synthetic antimicrobial peptides is discussed, potentially bringing new functions to these forgotten proteins.
Collapse
Affiliation(s)
- Pedro F N Souza
- Laboratory of Plant Defense Proteins, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará CEP 60.440-554, Brazil.
| |
Collapse
|
10
|
Yan YF, Yang CJ, Shang XF, Zhao ZM, Liu YQ, Zhou R, Liu H, Wu TL, Zhao WB, Wang YL, Hu GF, Qin F, He YH, Li HX, Du SS. Bioassay-guided isolation of two antifungal compounds from Magnolia officinalis, and the mechanism of action of honokiol. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 170:104705. [PMID: 32980068 DOI: 10.1016/j.pestbp.2020.104705] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Magnolia officinalis, as a well-known herb worldwide, has been widely used to treat multiple diseases for a long time. In this study, the petroleum ether extract from M. officinalis showed effective antifungal activity against seven plant pathogens (particularly against R. solani with an inhibition rate of 100.00% at 250 μg/mL). Honokiol and magnolol, isolated by the bioassay-guided method, exhibited greater antifungal activity than tebuconazole (EC50 = 3.07 μg/mL, p ≤ 0.001) against R. solani, which EC50 values were 2.18 μg/mL and 3.48 μg/mL, respectively. We used transcriptomics to explore the mechanism of action of honokiol against R. solani. Results indicated that honokiol may exert antifungal effects by blocking the oxidative phosphorylation metabolic pathway. Further studies indicated that honokiol induced ROS overproduction, disrupted the mitochondrial function, affected respiration, and blocked the TCA cycle, which eventually inhibited ATP production. Besides, honokiol also damaged cell membranes and caused morphological changes. This study demonstrated that the lignans isolated from M. officinalis possess the potential to be developed as botanical fungicides.
Collapse
Affiliation(s)
- Yin-Fang Yan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Cheng-Jie Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xiao-Fei Shang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhong-Min Zhao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China.
| | - Rui Zhou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Hua Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Tian-Lin Wu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Wen-Bin Zhao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yu-Ling Wang
- Gansu Academy of Agricultural Sciences, Lanzhou 730000, People's Republic of China
| | - Guan-Fang Hu
- Gansu Academy of Agricultural Sciences, Lanzhou 730000, People's Republic of China
| | - Fang Qin
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ying-Hui He
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Hai-Xin Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Sha-Sha Du
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
11
|
Oliveira TNS, Silva-Filho CMS, Malveira EA, Aguiar TKB, Santos HS, Albuquerque CC, Morais MB, Teixeira EH, Vasconcelos MA. Antifungal and antibiofilm activities of the essential oil of leaves from Lippia gracilis Schauer against phytopathogenic fungi. J Appl Microbiol 2020; 130:1117-1129. [PMID: 32961612 DOI: 10.1111/jam.14857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/02/2020] [Accepted: 09/13/2020] [Indexed: 01/04/2023]
Abstract
AIMS This study aimed to evaluate the antifungal and antibiofilm effects of essential oil (EO) from leaves of Lippia gracilis and its major constituents, thymol and carvacrol, against phytopathogenic fungi. METHODS AND RESULTS The leaves of L. gracilis were hydrodistilled to obtain the EO and the chemical composition was determined by GC/MS analysis. The antifungal activity of EO of L. gracilis was evaluated on the vegetative and mycelial growth of Colletotrichum gloeosporioides, Colletotrichum lindemuthianum, Fusarium oxysporum and Fusarium solani. In addition, the ability of the oil to inhibit fungal biofilm formation was assessed by total biomass quantification using crystal violet staining, analysis of metabolic activity, and scanning electron microscopy (SEM). Moreover the antifungal and antibiofilm activities of the monoterpenes, thymol and carvacrol, present in EO of L. gracilis were evaluated against F. oxysporum. The analysis of the chemical composition of EO extracted from L. gracilis, revealed the presence of monoterpenes (94·13%), which included carvacrol (48·57%) and thymol (7·78%), and 4 sesquiterpenes (3·74%). In general, EO showed significant antifungal activity and inhibited the formation of fungal biofilms. Furthermore, thymol and carvacrol showed significant antifungal and antibiofilm activities against F. oxysporum. SEM images showed structural changes in fungal morphology upon treatment with EO of L. gracilis. CONCLUSION The results presented in this study showed promising antifungal and antibiofilm effects of EO of L. gracilis and its major components, carvacrol and thymol. SIGNIFICANCE AND IMPACT OF THE STUDY These findings indicate that the EO extracted from L. gracilis, and the monoterpenes, carvacrol and thymol have a great potential as antifungal and antibiofilm agents. Furthermore, this is the first report of the antibiofilm activity of the EO of L. gracilis and its major components against phytopathogenic fungi.
Collapse
Affiliation(s)
- T N S Oliveira
- Programa de Pós-graduação em Ciências Naturais, Universidade do Estado do Rio Grande do Norte, Mossoró, RN, Brazil
| | - C M S Silva-Filho
- Departamento de Ciências Biológicas, Faculdade de Ciências Exatas e Naturais, Universidade do Estado do Rio Grande do Norte, Mossoró, RN, Brazil
| | - E A Malveira
- Departamento de Ciências Biológicas, Faculdade de Ciências Exatas e Naturais, Universidade do Estado do Rio Grande do Norte, Mossoró, RN, Brazil
| | - T K B Aguiar
- Departamento de Ciências Biológicas, Faculdade de Ciências Exatas e Naturais, Universidade do Estado do Rio Grande do Norte, Mossoró, RN, Brazil
| | - H S Santos
- Centro de Ciências Exatas e Tecnologia, Universidade Estadual Vale do Acaraú, Sobral, CE, Brazil.,Departamento de Química Biológica, Universidade Regional do Cariri, Crato, CE, Brazil.,Centro de Ciências e Tecnologia, Programa de Pós-graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, CE, Brazil
| | - C C Albuquerque
- Programa de Pós-graduação em Ciências Naturais, Universidade do Estado do Rio Grande do Norte, Mossoró, RN, Brazil.,Departamento de Ciências Biológicas, Faculdade de Ciências Exatas e Naturais, Universidade do Estado do Rio Grande do Norte, Mossoró, RN, Brazil
| | - M B Morais
- Programa de Pós-graduação em Ciências Naturais, Universidade do Estado do Rio Grande do Norte, Mossoró, RN, Brazil
| | - E H Teixeira
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - M A Vasconcelos
- Programa de Pós-graduação em Ciências Naturais, Universidade do Estado do Rio Grande do Norte, Mossoró, RN, Brazil.,Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brazil.,Universidade do Estado de Minas Gerais, Unidade de Divinópolis, Minas Gerais, Brazil
| |
Collapse
|
12
|
Razzaq A, Shamsi S, Ali A, Ali Q, Sajjad M, Malik A, Ashraf M. Microbial Proteases Applications. Front Bioeng Biotechnol 2019; 7:110. [PMID: 31263696 PMCID: PMC6584820 DOI: 10.3389/fbioe.2019.00110] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/01/2019] [Indexed: 11/13/2022] Open
Abstract
The use of chemicals around the globe in different industries has increased tremendously, affecting the health of people. The modern world intends to replace these noxious chemicals with environmental friendly products for the betterment of life on the planet. Establishing enzymatic processes in spite of chemical processes has been a prime objective of scientists. Various enzymes, specifically microbial proteases, are the most essentially used in different corporate sectors, such as textile, detergent, leather, feed, waste, and others. Proteases with respect to physiological and commercial roles hold a pivotal position. As they are performing synthetic and degradative functions, proteases are found ubiquitously, such as in plants, animals, and microbes. Among different producers of proteases, Bacillus sp. are mostly commercially exploited microbes for proteases. Proteases are successfully considered as an alternative to chemicals and an eco-friendly indicator for nature or the surroundings. The evolutionary relationship among acidic, neutral, and alkaline proteases has been analyzed based on their protein sequences, but there remains a lack of information that regulates the diversity in their specificity. Researchers are looking for microbial proteases as they can tolerate harsh conditions, ways to prevent autoproteolytic activity, stability in optimum pH, and substrate specificity. The current review focuses on the comparison among different proteases and the current problems faced during production and application at the industrial level. Deciphering these issues would enable us to promote microbial proteases economically and commercially around the world.
Collapse
Affiliation(s)
- Abdul Razzaq
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Sadia Shamsi
- School of Medicine, Medical Sciences and Nutrition, The Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Arfan Ali
- 1-FB, Genetics, Four Brothers Group, Lahore, Pakistan
| | - Qurban Ali
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Sajjad
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Arif Malik
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| |
Collapse
|