1
|
Zhang J, Hu Y, Feng J, He N, Li X, Liyi Q, Yang Q, Yi H, Yang W. Hsp70-mediated manipulation of antimicrobial peptide-related genes promotes BmNPV proliferation in Bombyx mori at relatively high temperatures. Int J Biol Macromol 2025; 310:143426. [PMID: 40274170 DOI: 10.1016/j.ijbiomac.2025.143426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/31/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
The silkworm, an economically important insect in agricultural production, are highly susceptible to various diseases caused by pathogenic microorganisms under dense group feeding conditions, particularly Bombyx mori nucleopolyhedrovirus (BmNPV), which poses a heightened infection risk at temperatures exceeding 30 °C, leading to severe economic losses. In this study, we investigated the environmental temperature dynamics of virus-host interactions using BmNPV. Our survival assays revealed that elevated temperatures significantly impact the proliferation and accumulation of BmNPV within the silkworm. RNA-seq and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) revealed that Hsp70 mRNA levels were increased in response to high temperatures and BmNPV infection. Notably, while antimicrobial peptide (AMP) genes were induced by BmNPV, the expression of Hsp70 at high temperatures decreased AMP gene expression by inhibiting the nuclear translocation of nuclear transcription factor-κB (NF-κB) transcription factors. Our findings suggest that higher environmental temperatures facilitate BmNPV infection in silkworms by downregulating the expression of AMPs through the Hsp70 protein. The results of this study offer valuable insights into the interactions between BmNPV and its host under relatively high temperatures, potentially guiding strategies to mitigate viral infections in sericulture production.
Collapse
Affiliation(s)
- Jie Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Department of Microbiology, College of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Yingying Hu
- Guangdong Laboratory for Lingnan Modern Agriculture, Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiawei Feng
- Guangdong Laboratory for Lingnan Modern Agriculture, Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Na He
- Guangdong Laboratory for Lingnan Modern Agriculture, Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaofeng Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qingge Liyi
- Guangdong Laboratory for Lingnan Modern Agriculture, Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qiong Yang
- The Sericultural and Agri-Food Research Institute of the Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Huiyu Yi
- Guangdong Laboratory for Lingnan Modern Agriculture, Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wanying Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Li R, Zhang B, Chen C. Comparison of structures and inhibition activities of serine protease inhibitors of Trichinella spiralis and Trichinella pseudospiralis. Cell Biosci 2025; 15:35. [PMID: 40082967 PMCID: PMC11905679 DOI: 10.1186/s13578-025-01375-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/28/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Trichinosis is one of the most widespread parasitic infections worldwide. Trichinella spiralis not only infects humans but can also utilize wild anddomestic animals as hosts. The serine protease inhibitors secreted by Trichinella spiralis play a critical role in its invasion and immune evasion. Serpins can effectively inhibit host proteases, although the host can mount a strongimmune response against to these inhibitors. RESULTS In this study we analyzed the crystal structures of the serine protease inhibitors from Trichinella spiralis and Trichinella pseudospiralis, revealing that both serpins exhibit.structural characteristics typical of serine protease inhibitors. The similarity of both "breach" region and "shutter" region of the two serpins are very high, but the "hinge" region are different, the "hinge" of Tp-serpin is closed, while of Ts-serpin was partially inserted into sheet-A, suggesting that Tp-serpin had higher inhibition activity. Using alpha chymotrypsin as Ts-serpin and Tp-serpin protease targets, the two serpins enzyme inhibition activity were measured separately, by measuring the secondary inhibition rate constant, half inhibitory concentration IC50, inhibition of stoichiometric number parameters and confirmed both the serine protease inhibitory activity, and Tp-serpin slightly higher than that of Ts-serpin, but no inhibition activity of P1-P1' mutant. CONCLUSION In this study, the mechanism of enzyme inhibition activity of serpin was studied by means of structural biology and biochemistry comprehensively. These discoveries provide a theoretical foundation for a deeper understanding of the inhibition mechanisms of serpins and for the development of new drugs and vaccines against Trichinella spiralis infection.
Collapse
Affiliation(s)
- Ruixue Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Bing Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Chen Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
3
|
Cao HH, Wang YL, Toufeeq S, Kong WW, Ayaz S, Liu SH, Wang J, Xu JP. Bombyx mori serpin 3 is involved in innate immunity by interacting with serine protease 7 to regulate prophenoloxidase activation. J Invertebr Pathol 2024; 207:108188. [PMID: 39245295 DOI: 10.1016/j.jip.2024.108188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
A subfamily of conserved proteins called serpins plays crucial roles in various physiological functions, particularly in the activation pathway of the serine protease cascade, an essential component of insect innate immunity. Here, we found Bombyx mori serpin 3 (BmSerpin3) was most highly expressed in the fat body, and was up-regulated after exposure to bacteria, fungus and virus. Further, the expression of BmSerpin3 in the hemocytes, fat body, midgut of silkworm larvae, and BmN cells was up-regulated upon Bombyx mori nucleopolyhedrovirus (BmNPV) infection. Through Bac-to-Bac expression system, we obtained the active protein of BmSerpin3, and the enzyme activity assay showed that BmSerpin3 significantly inhibited the activity of both subtilisin and trypsin. In addition, BmSerpin3 could inhibit the activation of prophenoloxidase (PPO) in larvae. The knockdown of BmSerpin3 showed increased phenoloxidase (PO) activity compared to control after BmNPV infection. Ultimately, we confirmed that BmSerpin3 interacts with B. mori Serine Protease 7 (BmSP7). Hence, we hypothesize that BmSerpin3 is involved in innate immunity by interacting with BmSP7 to regulate the PPO activation cascade. Taken together, these results showed that BmSerpin3 play a role in silkworm innate immunity and lay a foundation for studying its functions.
Collapse
Affiliation(s)
- Hui-Hua Cao
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; School of Bioengineering, Huainan Normal University, Huainan 232038, China
| | - Yu-Ling Wang
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; School of Bioengineering, Huainan Normal University, Huainan 232038, China
| | - Shahzad Toufeeq
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Wei-Wei Kong
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Sadaf Ayaz
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Shi-Huo Liu
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Jie Wang
- Institute of Sericulture, Anhui Academy of Agricultural Sciences, Hefei 230061, China.
| | - Jia-Ping Xu
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China.
| |
Collapse
|
4
|
Muhammad A, Sun C, Shao Y. The humoral immune response of the lepidopteran model insect, silkworm Bombyx mori L., to microbial pathogens. CURRENT RESEARCH IN INSECT SCIENCE 2024; 6:100097. [PMID: 39364346 PMCID: PMC11447326 DOI: 10.1016/j.cris.2024.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/10/2024] [Accepted: 09/16/2024] [Indexed: 10/05/2024]
Abstract
Insects are valuable models for studying innate immunity and its role in combating infections. The silkworm Bombyx mori L., a well-studied insect model, is susceptible to a range of pathogens, including bacteria, fungi, viruses, and microsporidia. Their susceptibility makes it a suitable model for investigating host-pathogen interactions and immune responses against infections and diseases. This review focuses on the humoral immune response and the production of antimicrobial peptides (AMPs), the phenoloxidase (PO) system, and other soluble factors that constitute the primary defense of silkworms against microbial pathogens. The innate immune system of silkworms relies on pattern recognition receptors (PRRs) to recognize pathogen-associated molecular patterns (PAMPs), which then activate various immune pathways including Imd, Toll, JAK/STAT, and RNA interference (RNAi). Their activation triggers the secretion of AMPs, enzymatic defenses (lysozyme and PO), and the generation of reactive oxygen species (ROS). Collectively, these pathways work together to neutralize and eliminate pathogens, thereby contributing to the defense mechanism of silkworms. Understanding the innate immunity of silkworms can uncover conserved molecular pathways and key immune components shared between insects and vertebrates. Additionally, it can provide valuable insights for improving sericulture practices, developing strategies to control diseases affecting silk production, and providing a theoretical foundation for developing pest control measures.
Collapse
Affiliation(s)
- Abrar Muhammad
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Yongqi Shao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| |
Collapse
|
5
|
Liu SH, Zhang Y, Guo ZX, Ayaz S, Wang YX, Huang ZH, Cao HH, Xu JP. Effects of baculovirus infection on intestinal microflora of BmNPV resistant and susceptible strain silkworm. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:1141-1151. [PMID: 38706118 DOI: 10.1093/jee/toae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/05/2024] [Accepted: 04/13/2024] [Indexed: 05/07/2024]
Abstract
Bombyx mori L. (Lepidoptera: Bombycidae) nucleopolyhedrovirus (BmNPV) is a serious pathogen causing huge economic losses to sericulture. There is growing evidence that the gut microbiota of silkworms plays a critical role in shaping host responses and interactions with viral infection. However, little is known about the differences in the composition and diversity of intestinal microflora, especially with respect to silkworm strain differences and BmNPV infection-induced changes. Here, we aim to explore the differences between BmNPV-resistant strain A35 and susceptible strain P50 silkworm and the impact of BmNPV infection on intestinal microflora in different strains. The 16S rDNA sequencing analysis revealed that the fecal microbial populations were distinct between A35 and P50 and were significantly changed post BmNPV infection in both strains. Further analysis showed that the BmNPV-resistant strain silkworm possessed higher bacterial diversity than the susceptible strain, and BmNPV infection reduced the diversity of intestinal flora assessed by feces in both silkworm strains. In response to BmNPV infection, the abundance of Muribaculaceae increased in P50 and decreased in A35, while the abundance of Enterobacteriaceae decreased in P50 and increased in A35. These results indicated that BmNPV infection had various effects on the abundance of fecal microflora in different silkworm strains. Our findings not only broadened the understanding of host-pathogen interactions but also provided theoretical help for the breeding of resistant strains and healthy rearing of silkworms based on symbiotic bacteria.
Collapse
Affiliation(s)
- Shi-Huo Liu
- Anhui Province Key Laboratory of Resource Insects Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Ying Zhang
- Anhui Province Key Laboratory of Resource Insects Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Zhe-Xiao Guo
- Anhui Province Key Laboratory of Resource Insects Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Sadaf Ayaz
- Anhui Province Key Laboratory of Resource Insects Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Yan-Xiang Wang
- Anhui Province Key Laboratory of Resource Insects Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Zhi-Hao Huang
- Anhui Province Key Laboratory of Resource Insects Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Hui-Hua Cao
- Anhui Province Key Laboratory of Resource Insects Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Jia-Ping Xu
- Anhui Province Key Laboratory of Resource Insects Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| |
Collapse
|
6
|
Wu Q, Xing L, Du M, Huang C, Liu B, Zhou H, Liu W, Wan F, Qian W. A Genome-Wide Analysis of Serine Protease Inhibitors in Cydia pomonella Provides Insights into Their Evolution and Expression Pattern. Int J Mol Sci 2023; 24:16349. [PMID: 38003538 PMCID: PMC10671500 DOI: 10.3390/ijms242216349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Serine protease inhibitors (serpins) appear to be ubiquitous in almost all living organisms, with a conserved structure and varying functions. Serpins can modulate immune responses by negatively regulating serine protease activities strictly and precisely. The codling moth, Cydia pomonella (L.), a major invasive pest in China, can cause serious economic losses. However, knowledge of serpin genes in this insect remain largely unknown. In this study, we performed a systematic analysis of the serpin genes in C. pomonella, obtaining 26 serpins from the C. pomonella genome. Subsequently, their sequence features, evolutionary relationship, and expression pattern were characterized. Comparative analysis revealed the evolution of a number of serpin genes in Lepidoptera. Importantly, the evolutionary relationship and putative roles of serpin genes in C. pomonella were revealed. Additionally, selective pressure analysis found amino acid sites with strong evidence of positive selection. Interestingly, the serpin1 gene possessed at least six splicing isoforms with distinct reactive-center loops, and these isoforms were experimentally validated. Furthermore, we observed a subclade expansion of serpins, and these genes showed high expression in multiple tissues, suggesting their important roles in C. pomonella. Overall, this study will enrich our knowledge of the immunity of C. pomonella and help to elucidate the role of serpins in the immune response.
Collapse
Affiliation(s)
- Qiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Longsheng Xing
- College of Life Sciences, Hebei Basic Science Center for Biotic Interactions, Institute of Life Sciences and Green Development, Hebei University, Baoding 071000, China
| | - Min Du
- Shandong Province Key Laboratory for Integrated Control of Plant Diseases and Insect Pests, Sino-Australian Joint Research Institute of Agriculture and Environmental Health, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Cong Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Bo Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hongxu Zhou
- Shandong Province Key Laboratory for Integrated Control of Plant Diseases and Insect Pests, Sino-Australian Joint Research Institute of Agriculture and Environmental Health, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Wanxue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fanghao Wan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Wanqiang Qian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
7
|
Maarouf M, Wang L, Wang Y, Rai KR, Chen Y, Fang M, Chen JL. Functional Involvement of circRNAs in the Innate Immune Responses to Viral Infection. Viruses 2023; 15:1697. [PMID: 37632040 PMCID: PMC10458642 DOI: 10.3390/v15081697] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Effective viral clearance requires fine-tuned immune responses to minimize undesirable inflammatory responses. Circular RNAs (circRNAs) are a class of non-coding RNAs that are abundant and highly stable, formed by backsplicing pre-mRNAs, and expressed ubiquitously in eukaryotic cells, emerging as critical regulators of a plethora of signaling pathways. Recent progress in high-throughput sequencing has enabled a better understanding of the physiological and pathophysiological functions of circRNAs, overcoming the obstacle of the sequence overlap between circRNAs and their linear cognate mRNAs. Some viruses also encode circRNAs implicated in viral replication or disease progression. There is increasing evidence that viral infections dysregulate circRNA expression and that the altered expression of circRNAs is critical in regulating viral infection and replication. circRNAs were shown to regulate gene expression via microRNA and protein sponging or via encoding small polypeptides. Recent studies have also highlighted the potential role of circRNAs as promising diagnostic and prognostic biomarkers, RNA vaccines and antiviral therapy candidates due to their higher stability and lower immunogenicity. This review presents an up-to-date summary of the mechanistic involvement of circRNAs in innate immunity against viral infections, the current understanding of their regulatory roles, and the suggested applications.
Collapse
Affiliation(s)
- Mohamed Maarouf
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.); (L.W.); (Y.W.); (K.R.R.); (Y.C.)
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China;
- Department of Virology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Lulu Wang
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.); (L.W.); (Y.W.); (K.R.R.); (Y.C.)
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the “Belt and Road”, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yiming Wang
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.); (L.W.); (Y.W.); (K.R.R.); (Y.C.)
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the “Belt and Road”, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kul Raj Rai
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.); (L.W.); (Y.W.); (K.R.R.); (Y.C.)
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the “Belt and Road”, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Microbiology, ShiGan International College of Science and Technology/ShiGan Health Foundation, Narayangopal Chowk, Kathmandu 44600, Nepal
| | - Yuhai Chen
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.); (L.W.); (Y.W.); (K.R.R.); (Y.C.)
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China;
| | - Min Fang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China;
| | - Ji-Long Chen
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.); (L.W.); (Y.W.); (K.R.R.); (Y.C.)
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the “Belt and Road”, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
8
|
Etebari K, Gharuka M, Asgari S, Furlong MJ. Diverse Host Immune Responses of Different Geographical Populations of the Coconut Rhinoceros Beetle to Oryctes Rhinoceros Nudivirus (OrNV) Infection. Microbiol Spectr 2021; 9:e0068621. [PMID: 34523987 PMCID: PMC8557903 DOI: 10.1128/spectrum.00686-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/12/2021] [Indexed: 11/20/2022] Open
Abstract
Incursions of the coconut rhinoceros beetle (CRB), Oryctes rhinoceros, into different islands in the South Pacific have been detected in recent years. It has been suggested that this range expansion is related to an O. rhinoceros haplotype reported to show reduced susceptibility to the well-established classical biocontrol agent, Oryctes rhinoceros nudivirus (OrNV). Our understanding of the genetic characteristics which distinguish the population of O. rhinoceros that has recently established in Solomon Islands from other well-established populations across the region is very limited. Here, we hypothesized that the recently established O. rhinoceros population should have greater innate immune responses when challenged by OrNV than those of well-established and native O. rhinoceros populations. We used the RNA sequencing (RNA-Seq) approach to generate gene expression profiles of midgut tissue from OrNV-infected and noninfected individuals collected in the Solomon Islands (recent incursion), Papua New Guinea and Fiji (previously established), and the Philippines (within the native range). The collections included individuals from each of the three major mitochondrial lineages (CRB-G, CRB-PNG, and CRB-S) known to the region, allowing us to explore the specific responses of each haplotype to infection. Although insects from the Philippines and Solomon Islands that were tested belong to the same mitochondrial lineage (CRB-G), their overall responses to infection were different. The number of differentially expressed genes between OrNV-infected and noninfected wild-caught individuals from the four different locations varied from 148 to 252. Persistent OrNV infection caused a high level of induced antimicrobial activity and immune responses in O. rhinoceros, but the direction and magnitude of the responses were population specific. The insects tested from the Solomon Islands displayed extremely high expression of genes which are known to be involved in immune responses (e.g. coleoptericin, cecropin, and serpin). These variations in the host immune system among insects from different geographical regions might be driven by variations in the virulence of OrNV isolates, and this requires further investigation. Overall, our current findings support the importance of immunity in insect pest incursion and an expansion of the pest's geographic range. IMPORTANCE Oryctes rhinoceros nudivirus (OrNV) is a double-stranded DNA (dsDNA) virus which has been used as a biocontrol agent to suppress coconut rhinoceros beetle (CRB) in the Pacific Islands. Recently a new wave of CRB incursions in Oceania is thought to be related to the presence of low-virulence isolates of OrNV or virus-tolerant haplotypes of beetles (CRB-G). Our comparative analysis of OrNV-infected and noninfected CRBs revealed that specific sets of genes were induced by viral infection in the beetles. This induction was much stronger in beetles collected from the Solomon Islands, a newly invaded country, than in individuals collected from within the beetle's native range (the Philippines) or from longer-established populations in its exotic range (Fiji and Papua New Guinea [PNG]). Beetles from the Philippines and the Solomon Islands that were tested in this study all belonged to the CRB-G haplotype, but the country-specific responses of the beetles to OrNV infection were different.
Collapse
Affiliation(s)
- Kayvan Etebari
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Maria Gharuka
- Research Division, Ministry of Agriculture and Livestock, Honiara, Solomon Islands
| | - Sassan Asgari
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Michael J. Furlong
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
9
|
Nesa J, Sadat A, Buccini DF, Kati A, Mandal AK, Franco OL. Antimicrobial peptides fromBombyx mori: a splendid immune defense response in silkworms. RSC Adv 2020; 10:512-523. [PMID: 35492565 PMCID: PMC9047522 DOI: 10.1039/c9ra06864c] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/15/2019] [Indexed: 01/27/2023] Open
Abstract
Bombyx mori L., a primary producer of silk, is the main tool in the sericulture industry and provides the means of livelihood to a large number of people. Silk cocoon crop losses due to bacterial infection pose a major threat to the sericulture industry. Bombyx mori L., a silkworm of the mulberry type, has a sophisticated inherent innate immune mechanism to combat such invasive pathogens. Among all the components in this defense system, antimicrobial peptides (AMPs) are notable due to their specificity towards the invading pathogens without harming the normal host cells. Bombyx mori L. so far has had AMPs identified that belong to six different families, namely cecropin, defensin, moricin, gloverin, attacin and lebocin, which are produced by the Toll and immune deficiency (IMD) pathways. Their diverse modes of action depend on microbial pathogens and are still under investigation. This review examines the recent progress in understanding the immune defense mechanism of Bombyx mori based on AMPs. AMPs produced by B. mori induced by microbial challenge in the fat body.![]()
Collapse
Affiliation(s)
- Jannatun Nesa
- Chemical Biology Laboratory
- Department of Sericulture
- Raiganj University
- India
| | - Abdul Sadat
- Insect Ecology and Conservation Biology Laboratory
- Department of Sericulture
- Raiganj University
- India
| | - Danieli F. Buccini
- S-INOVA Biotech, Post-Graduate Program in Biotechnology
- Catholic University Dom Bosco
- Campo Grande
- Brazil
| | - Ahmet Kati
- Biotechnology Department
- Institution of Health Science
- University of Health Science
- Istanbul
- Turkey
| | - Amit K. Mandal
- Chemical Biology Laboratory
- Department of Sericulture
- Raiganj University
- India
- Centre for Nanotechnology Sciences
| | - Octavio L. Franco
- S-INOVA Biotech, Post-Graduate Program in Biotechnology
- Catholic University Dom Bosco
- Campo Grande
- Brazil
- Center of Proteomic and Biochemical Analysis
| |
Collapse
|