1
|
Rasool K, Wani SM, Ashaq B, Habib S, Wani TA, Hussain SZ, Malik AR, Mir SA, Khan JN. Sustainable ultrasound-assisted thyme oil extraction: Harnessing thyme residue for enhanced recovery of bioactive compounds. Food Chem 2025; 480:143942. [PMID: 40154033 DOI: 10.1016/j.foodchem.2025.143942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
Thyme essential oil (TEO), rich in distinct bioactivities, is extensively used in the food and pharmaceutical industries. This study uniquely integrates green ultrasound-assisted extraction (UAE) of TEO, with sustainable bioactive recovery from thyme residues. Nine ultrasound treatments with varying amplitude (40, 60 and 80 %) and time (20, 40, 60 min) were applied. The extracted TEO was analysed for yield (%), chemical composition (GC-MS), antioxidant, and antimicrobial activity. The treatment A3T1 (80 % amplitude, 20 min) came out to be the most favourable treatment with maximum yield of 1.76 % and 4.21 % for oil and bioactives, respectively. Oil demonstrated strongest antioxidant and antimicrobial activity which was supported by GC-MS profiling. For nanoencapsulation of TEO and bioactives, gum arabic offered better encapsulation characteristics with higher EE (80.13 % and 76.33 %), particle size (310 nm and 284 nm), and zeta potential (-21.1 mV and - 26.4 mV) respectively, confirmed by DSC and FTIR, making it the best option for preserving and enhancing bioactive and thyme oil qualities.
Collapse
Affiliation(s)
- Khansa Rasool
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST) Kashmir, Shalimar 190025, India
| | - Sajad Mohd Wani
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST) Kashmir, Shalimar 190025, India.
| | - Barjees Ashaq
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST) Kashmir, Shalimar 190025, India
| | - Samira Habib
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST) Kashmir, Shalimar 190025, India
| | - Tawseef A Wani
- SMS, KVK, Malangpora, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST) Kashmir, Shalimar 190025, India
| | - Syed Zameer Hussain
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST) Kashmir, Shalimar 190025, India
| | - Ab Raouf Malik
- Division of Fruit Science, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST) Kashmir, Shalimar 190025, India
| | - Shakeel A Mir
- Division of Agriculture Statistics, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST) Kashmir, Shalimar, 190025, India
| | - Junaid N Khan
- College of Agriculture Engineering (Soil and Water Engineering) Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST) Kashmir, Shalimar 190025, India
| |
Collapse
|
2
|
Wang M, Ma X, Han X, Gao Z, Ashokkumar M, Cui J, Hao J, Zhang P, Yu Q. Encapsulation of Monoterpene Phenols in Protein-Stabilized Nanoemulsions for Improved Wound Healing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:8243-8251. [PMID: 40123170 DOI: 10.1021/acs.langmuir.5c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Monoterpene phenols have antibacterial, antioxidant, anticancer, antihypertensive, and antidiabetic properties, but their natural volatility and hydrophobicity limit their biomedical applications. In this work, we developed an oil-in-water nanoemulsion (NE) stabilized by proteins (i.e., sodium caseinate, NaCas) and polyphenols (i.e., tannic acid, TA) using phacoemulsification, where thymol (TH) was dissolved in carvacrol (CA) and the mixture was used as the dispersed phase. The NE avoids the use of traditional surfactants as the stabilizer. Amphiphilic NaCas could stabilize the NE, followed by further cross-linking of NaCas using TA. These antimicrobial agents of monoterpene phenols were efficiently encapsulated in NE to enhance their colloidal stability in aqueous solution. The resulting NE showed strong antibacterial activity, reduced inflammation ability, and improved healing of bacteria-infected wounds. TA acted as both an NE stabilizer and a synergistic agent to boost antibacterial effects and accelerate wound repair. This work demonstrates a promising strategy for delivering natural antimicrobial agents of monoterpene phenols to treat infected wounds.
Collapse
Affiliation(s)
- Mengran Wang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xue Ma
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xinxin Han
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Zhiliang Gao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | | | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Peiyu Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Qun Yu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
3
|
Watabe N, Subsomwong P, Yamane K, Asano K, Nakane A. Polygonum tinctorium extract suppresses the virulence of methicillin-resistant Staphylococcus aureus by disrupting its extracellular vesicles. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118933. [PMID: 39396717 DOI: 10.1016/j.jep.2024.118933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Methicillin-resistant S. aureus (MRSA) is a significant global health concern, causing both hospital- and community-acquired infections. The extracellular vesicles released by S. aureus (SaEVs) contain essential factors related to the bacterial survival and pathogenicity. Polygonum tinctorium is traditionally used as a natural dye (indigo) and for treating various infectious diseases caused by microorganisms. However, the effect of P. tinctorium extract (Indigo Ex) and its mechanism on SaEVs is unknown. AIM OF THE STUDY We investigated the effect and mechanism of Indigo Ex on SaEVs, which could be used in controlling S. aureus, especially MRSA infection. MATERIALS AND METHODS Indigo Ex was prepared from pesticide-free P. tinctorium, which was dried, powdered, and extracted with d-limonene. SaEVs were isolated and purified from MRSA culture supernatant by step-gradient ultracentrifugation. The effect of Indigo Ex on SaEVs morphology was observed by both transmission and scanning electron microscopy after incubating the Indigo Ex and SaEVs under shaking conditions. The cytotoxicity of Indigo Ex was performed using mouse macrophage cell line, RAW 264.7. In addition, the ability of Indigo Ex-treated SaEVs to stimulate the immune response and cytotoxicity in RAW 264.7 cells were evaluated by ELISA and WST-1 assay, respectively. RESULTS SaEV particles were disrupted when treated with undiluted Indigo Ex in a time-dependent manner. For the cytotoxicity of Indigo Ex on RAW 264.7 cells, over 50% of the cell viability decreased when diluted Indigo Ex 1000-fold and no cytotoxic effect was observed at a 25,000-fold dilution of Indigo Ex. Interestingly, the Indigo Ex-treated SaEVs showed less cytotoxic effect than SaEVs alone. Similarly, SaEVs treated with Indigo Ex reduced stimulation of pro-inflammatory cytokines (TNF-α and IL-6) and anti-inflammatory cytokine (IL-10) in RAW 264.7 cells compared to untreated SaEVs. Our results indicate that Indigo Ex disrupted SaEV particles, resulting in reduced virulence and stimulation of immune response. CONCLUSIONS This study reveals that the low concentration of Indigo Ex can suppresses the virulence of SaEVs without causing cytotoxicity to the host cells. Therefore, Indigo Ex may have the potential to be used to control S. aureus infection.
Collapse
Affiliation(s)
- Naoko Watabe
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan.
| | - Phawinee Subsomwong
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan.
| | | | - Krisana Asano
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan; Department of Biopolymer and Health Science, Hirosaki University Graduate School of. Medicine, Hirosaki, Aomori, Japan.
| | - Akio Nakane
- Department of Biopolymer and Health Science, Hirosaki University Graduate School of. Medicine, Hirosaki, Aomori, Japan.
| |
Collapse
|
4
|
Nazari M, Shokoohizadeh L, Taheri M. Natural products in the treatment of diabetic foot infection. Eur J Med Res 2025; 30:8. [PMID: 39773682 PMCID: PMC11705749 DOI: 10.1186/s40001-024-02255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/22/2024] [Indexed: 01/11/2025] Open
Abstract
Diabetic foot infections (DFIs) are a significant complication in diabetes mellitus, leading to increased morbidity, hospitalizations, and healthcare burdens. The growing prevalence of antibiotic-resistant pathogens has reduced the efficacy of conventional treatments, highlighting the need for alternative therapeutic strategies. Natural products, known for their antimicrobial, anti-inflammatory, and wound-healing properties, have garnered attention as potential treatments for DFIs. This review examines key natural compounds, including eugenol, thymol, carvacrol, curcumin, and Aloe vera, and their mechanisms of action in combating diabetic infections. We analyze the antimicrobial efficacy of these compounds, their ability to inhibit biofilm formation, and their role in wound healing. The review also explores challenges in integrating natural products into clinical practice and the potential for their use alongside or in place of traditional antibiotic therapies. Our findings suggest that natural products could play a crucial role in developing sustainable and effective treatment strategies for DFIs, especially in the face of rising antimicrobial resistance.
Collapse
Affiliation(s)
- Mohsen Nazari
- Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leili Shokoohizadeh
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taheri
- Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
5
|
Wang X, Lee JC. Staphylococcus aureus membrane vesicles: an evolving story. Trends Microbiol 2024; 32:1096-1105. [PMID: 38677977 PMCID: PMC11511790 DOI: 10.1016/j.tim.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/29/2024]
Abstract
Staphylococcus aureus is an important bacterial pathogen that causes a wide variety of human diseases in community and hospital settings. S. aureus employs a diverse array of virulence factors, both surface-associated and secreted, to promote colonization, infection, and immune evasion. Over the past decade, a growing body of research has shown that S. aureus generates extracellular membrane vesicles (MVs) that package a variety of bacterial components, many of which are virulence factors. In this review, we summarize recent advances in our understanding of S. aureus MVs and highlight their biogenesis, cargo, and potential role in the pathogenesis of staphylococcal infections. Lastly, we present some emerging questions in the field.
Collapse
Affiliation(s)
- Xiaogang Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA.
| | - Jean C Lee
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
6
|
Zhang JY, Meng X, Zhu XL, Peng SR, Li HB, Mo HZ, Hu LB. Thymol Induces Fenton-Reaction-Dependent Ferroptosis in Vibrio parahemolyticus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14337-14348. [PMID: 38867141 DOI: 10.1021/acs.jafc.4c01584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Thymol has efficient bactericidal activity against a variety of pathogenic bacteria, but the bactericidal mechanism against Vibrio parahemolyticus (V. parahemolyticus) has rarely been reported. In the current study, we investigated the bactericidal mechanism of thymol against V. parahemolyticus. The Results revealed that 150 μg/mL of thymol had 99.9% bactericidal activity on V. parahemolyticus. Intracellular bursts of reactive oxygen species (ROS), Fe2+accumulation, lipid peroxidation, and DNA breakage were checked by cell staining. The exogenous addition of H2O2 and catalase promoted and alleviated thymol-induced cell death to a certain extent, respectively, and the addition of the ferroptosis inhibitor Liproxstatin-1 also alleviated thymol-induced cell death, confirming that thymol induced Fenton-reaction-dependent ferroptosis in V. parahemolyticus. Proteomic analysis revealed that relevant proteins involved in ROS production, lipid peroxidation accumulation, and DNA repair were significantly upregulated after thymol treatment. Molecular docking revealed two potential binding sites (amino acids 46H and 42F) between thymol and ferritin, and thymol could promote the release of Fe2+ from ferritin proteins through in vitro interactions analyzed. Therefore, we hypothesized that ferritin as a potential target may mediate thymol-induced ferroptosis in V. parahemolyticus. This study provides new ideas for the development of natural inhibitors for controlling V. parahemolyticus in aquatic products.
Collapse
Affiliation(s)
- Jia-Yi Zhang
- School of Food Science and Technology, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Xuan Meng
- School of Food Science and Technology, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Xiao-Lin Zhu
- School of Food Science and Technology, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Shu-Rui Peng
- School of Food Science and Technology, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Hong-Bo Li
- School of Food Science and Technology, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Hai-Zhen Mo
- School of Food Science and Technology, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Liang-Bin Hu
- School of Food Science and Technology, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| |
Collapse
|
7
|
Yuan C, Chen S, Sun R, Ren L, Zhao T, Wu M, Zhang A. Thymol improves the growth performance of blue foxes by regulating the gut microbiota. Front Microbiol 2024; 15:1368293. [PMID: 38946897 PMCID: PMC11212683 DOI: 10.3389/fmicb.2024.1368293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/07/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction The drawbacks of using antibiotics as feed additives for blue foxes have gradually become apparent; moreover, thymol has wide-spectrum antimicrobial activity and has the potential to replace antibiotics in various animals. However, there are few reports on the effects of thymol on blue foxes. Methods This study aimed to investigate the effects of different concentrations of thymol on the growth performance, apparent nutrient digestibility, serum biochemical indicators, intestinal morphology, and gut microbiota of blue foxes. Twenty-four male blue foxes (120 ± 5 d) of similar weight (6.05 ± 0.16 kg) were randomly divided into 4 groups. 0, 100, 200, and 300 mg/kg thymol were added to the basal diets of groups C, L, M, and H, respectively. Results Compared with those in the C group, the addition of 100 mg/kg thymol to the diet significantly increased organic matter (OM) digestibility, crude protein (CP) digestibility, immunoglobulin (Ig) A, IgM, the VH of the duodenum, the CD of the jejunum, the VH of the ileum, and the VH/CD of the ileum (P < 0.05) and strongly significantly increased IgG (P < 0.01). The addition of 200 mg/kg thymol to the diet increased the VH/CD of the duodenum (P < 0.05). The addition of 300 mg/kg thymol to the diet significantly increased the VH and CD of the jejunum (P < 0.05). The addition of 200 mg/kg and 300 mg/kg thymol to the diets increased the final weight (FW) (P < 0.05). Adding 100 mg/kg thymol significantly increased the levels of interleukin-4 (IL-4) and catalase (CAT) compared with those in the other groups (P < 0.05). 16S rRNA gene detection revealed that thymol can change the abundances of Bifidobacterium, Fusobacterium, Allobaculum, Streptococcus, Megasphaera, and Lactobacillus in the gut. Conclusion The addition of thymol to diets can increase the abundance of Bifidobacterium, Fusobacterium, and Allobaculum, which may contribute to improving the growth performance of blue foxes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Aiwu Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
8
|
Xie J, Haesebrouck F, Van Hoecke L, Vandenbroucke RE. Bacterial extracellular vesicles: an emerging avenue to tackle diseases. Trends Microbiol 2023; 31:1206-1224. [PMID: 37330381 DOI: 10.1016/j.tim.2023.05.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/19/2023]
Abstract
A growing body of research, especially in recent years, has shown that bacterial extracellular vesicles (bEVs) are one of the key underlying mechanisms behind the pathogenesis of various diseases like pulmonary fibrosis, sepsis, systemic bone loss, and Alzheimer's disease. Given these new insights, bEVs are proposed as an emerging vehicle that can be used as a diagnostic tool or to tackle diseases when used as a therapeutic target. To further boost the understanding of bEVs in health and disease we thoroughly discuss the contribution of bEVs in disease pathogenesis and the underlying mechanisms. In addition, we speculate on their potential as novel diagnostic biomarkers and how bEV-related mechanisms can be exploited as therapeutic targets.
Collapse
Affiliation(s)
- Junhua Xie
- VIB Center for Inflammation Research, VIB, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium; Department of Pathobiology, Pharmacology, and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathobiology, Pharmacology, and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Lien Van Hoecke
- VIB Center for Inflammation Research, VIB, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- VIB Center for Inflammation Research, VIB, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
9
|
Wang X, Uppu DSSM, Dickey SW, Burgin DJ, Otto M, Lee JC. Staphylococcus aureus delta toxin modulates both extracellular membrane vesicle biogenesis and amyloid formation. mBio 2023; 14:e0174823. [PMID: 37795985 PMCID: PMC10653798 DOI: 10.1128/mbio.01748-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/15/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE Extracellular membrane vesicles (MVs) produced by Staphylococcus aureus in planktonic cultures encapsulate a diverse cargo of bacterial proteins, nucleic acids, and glycopolymers that are protected from destruction by external factors. δ-toxin, a member of the phenol soluble modulin family, was shown to be critical for MV biogenesis. Amyloid fibrils co-purified with MVs generated by virulent, community-acquired S. aureus strains, and fibril formation was dependent on expression of the S. aureus δ-toxin gene (hld). Mass spectrometry data confirmed that the amyloid fibrils were comprised of δ-toxin. Although S. aureus MVs were produced in vivo in a localized murine infection model, amyloid fibrils were not observed in the in vivo setting. Our findings provide critical insights into staphylococcal factors involved in MV biogenesis and amyloid formation.
Collapse
Affiliation(s)
- Xiaogang Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Divakara SSM Uppu
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Seth W. Dickey
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine,University of Maryland, Bethesda, Maryland, USA
| | - Dylan J. Burgin
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Jean C. Lee
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Vassiliou E, Awoleye O, Davis A, Mishra S. Anti-Inflammatory and Antimicrobial Properties of Thyme Oil and Its Main Constituents. Int J Mol Sci 2023; 24:ijms24086936. [PMID: 37108100 PMCID: PMC10138399 DOI: 10.3390/ijms24086936] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Thyme oil (TO) is derived from the flowers of various plants belonging to the genus Thymus. It has been used as a therapeutic agent since ancient times. Thymus comprises numerous molecular species exhibiting diverse therapeutic properties that are dependent on their biologically active concentrations in the extracted oil. It is therefore not surprising that oils extracted from different thyme plants present different therapeutic properties. Furthermore, the phenophase of the same plant species has been shown to yield different anti-inflammatory properties. Given the proven efficacy of TO and the diversity of its constituents, a better understanding of the interactions of the various components is warranted. The aim of this review is to gather the latest research findings regarding TO and its components with respect to their immunomodulatory properties. An optimization of the various components has the potential to yield more effective thyme formulations with increased potency.
Collapse
Affiliation(s)
- Evros Vassiliou
- Department of Biological Sciences, Kean University, Union, NJ 07083, USA
| | - Oreoluwa Awoleye
- Department of Biological Sciences, Kean University, Union, NJ 07083, USA
| | - Amanda Davis
- Department of Biological Sciences, Kean University, Union, NJ 07083, USA
| | - Sasmita Mishra
- Department of Biological Sciences, Kean University, Union, NJ 07083, USA
| |
Collapse
|
11
|
Wang X, Uppu DS, Dickey SW, Burgin DJ, Otto M, Lee JC. Staphylococcus aureus Delta Toxin Modulates both Extracellular Membrane Vesicle Biogenesis and Amyloid Formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533957. [PMID: 36993475 PMCID: PMC10055364 DOI: 10.1101/2023.03.23.533957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Staphylococcus aureus secretes phenol-soluble modulins (PSMs), a family of small, amphipathic, secreted peptides with multiple biologic activities. Community-acquired S. aureus strains produce high levels of PSMs in planktonic cultures, and PSM alpha peptides have been shown to augment the release of extracellular membrane vesicles (MVs). We observed that amyloids, aggregates of proteins characterized by a fibrillar morphology and stained with specific dyes, co-purified with MVs harvested from cell-free culture supernatants of community-acquired S. aureus strains. δ-toxin was a major component of amyloid fibrils that co-purified with strain LAC MVs, and δ-toxin promoted the production of MVs and amyloid fibrils in a dose-dependent manner. To determine whether MVs and amyloid fibrils were generated under in vivo conditions, we inoculated mice with S. aureus harvested from planktonic cultures. Bacterial MVs could be isolated and purified from lavage fluids recovered from infected animals. Although δ-toxin was the most abundant PSM in lavage fluids, amyloid fibrils could not be detected in these samples. Our findings expand our understanding of amyloid fibril formation in S. aureus cultures, reveal important roles of δ-toxin in amyloid fibril formation and MV biogenesis, and demonstrate that MVs are generated in vivo in a staphylococcal infection model. Importance Extracellular membrane vesicles (MVs) produced by Staphylococcus aureus in planktonic cultures encapsulate a diverse cargo of bacterial proteins, nucleic acids, and glycopolymers that are protected from destruction by external factors. δ-toxin, a member of the phenol soluble modulin family, was shown to be critical for MV biogenesis. Amyloid fibrils co-purified with MVs generated by virulent, community-acquired S. aureus strains, and fibril formation was dependent on expression of the S. aureus δ-toxin gene ( hld ). Mass spectrometry data confirmed that the amyloid fibrils were comprised of δ-toxin. Although S. aureus MVs were produced in vivo in a localized murine infection model, amyloid fibrils were not observed in the in vivo setting. Our findings provide critical insights into staphylococcal factors involved in MV biogenesis and amyloid formation.
Collapse
|
12
|
Abstract
The microbial secretome modulates how the organism interacts with its environment. Included in the Staphylococcus aureus secretome are extracellular membrane vesicles (MVs) that consist of cytoplasmic and membrane proteins, as well as exoproteins, some cell wall-associated proteins, and glycopolymers. The extent to which MVs contribute to the diverse composition of the secretome is not understood. We performed a proteomic analysis of MVs purified from the S. aureus strain MRSA252 along with a similar analysis of the whole secretome (culture supernatant) before and after depletion of MVs. The MRSA252 secretome was comprised of 1,001 proteins, of which 667 were also present in MVs. Cell membrane-associated proteins and lipoteichoic acid in the culture supernatant were highly associated with MVs, followed by cytoplasmic and extracellular proteins. Few cell wall-associated proteins were contained in MVs, and capsular polysaccharides were found both in the secretome and MVs. When MVs were removed from the culture supernatant by ultracentrifugation, 54 of the secretome proteins were significantly depleted in abundance. Proteins packaged in MVs were characterized by an isoelectric point that was significantly higher than that of proteins excluded from MVs. Our data indicate that the generation of S. aureus MVs is a mechanism by which lipoteichoic acid, cytoplasmic, and cell membrane-associated proteins are released into the secretome. IMPORTANCE The secretome of Staphylococcus aureus includes soluble molecules and nano-sized extracellular membrane vesicles (MVs). The protein composition of both the secretome and MVs includes cytoplasmic and membrane proteins, as well as exoproteins, some cell wall-associated proteins, and glycopolymers. How the MV cargo differs from the protein composition of the secretome has not yet been addressed. Although the compositions of the secretome and MVs were strikingly similar, we identified 54 proteins that were specifically packaged in MVs. Proteins highly associated with MVs were characterized by their abundance in the secretome, an association with the bacterial membrane, and a basic isoelectric point. This study deepens our limited understanding about the contribution of MVs to the secretome of S. aureus.
Collapse
|
13
|
Chemical profile and in vitro Antibacterial potential of Essential Oils and Hydrolat Extracts from Aerial Parts of Three Wild species of Moroccan Thymus. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Liu Y, Yan H, Yu B, He J, Mao X, Yu J, Zheng P, Huang Z, Luo Y, Luo J, Wu A, Chen D. Protective Effects of Natural Antioxidants on Inflammatory Bowel Disease: Thymol and Its Pharmacological Properties. Antioxidants (Basel) 2022; 11:antiox11101947. [PMID: 36290669 PMCID: PMC9598597 DOI: 10.3390/antiox11101947] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/24/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a gastrointestinal disease that involves chronic mucosal or submucosal lesions that affect tissue integrity. Although IBD is not life-threatening, it sometimes causes severe complications, such as colon cancer. The exact etiology of IBD remains unclear, but several risk factors, such as pathogen infection, stress, diet, age, and genetics, have been involved in the occurrence and aggravation of IBD. Immune system malfunction with the over-production of inflammatory cytokines and associated oxidative stress are the hallmarks of IBD. Dietary intervention and medical treatment suppressing abnormal inflammation and oxidative stress are recommended as potential therapies. Thymol, a natural monoterpene phenol that is mostly found in thyme, exhibits multiple biological functions as a potential adjuvant for IBD. The purpose of this review is to summarize current findings on the protective effect of thymol on intestinal health in the context of specific animal models of IBD, describe the role of thymol in the modulation of inflammation, oxidative stress, and gut microbiota against gastrointestinal disease, and discuss the potential mechanism for its pharmacological activity.
Collapse
Affiliation(s)
| | - Hui Yan
- Correspondence: (H.Y.); (D.C.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Thymol Reduces agr-Mediated Virulence Factor Phenol-Soluble Modulin Production in Staphylococcus aureus. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8221622. [PMID: 35586806 PMCID: PMC9110180 DOI: 10.1155/2022/8221622] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/08/2022] [Accepted: 04/23/2022] [Indexed: 12/12/2022]
Abstract
Staphylococcus aureus is a major human bacterial pathogen that carries a large number of virulence factors. Many virulence factors of S. aureus are regulated by the accessory gene regulator (agr) quorum-sensing system. Phenol-soluble modulins (PSMs) are one of the agr-mediated virulence determinants known to play a significant role in S. aureus pathogenesis. In the present study, the efficacy of thymol to inhibit PSM production including δ-toxin in S. aureus was explored. We employed liquid chromatography-mass spectrometry (LC-MS) to quantify the PSMsα1-PSMα4, PSMβ1 and PSMβ2, and δ-toxin production from culture supernatants. We found that thymol at 0.5 MIC (128 μg/mL) significantly reduced the PSMα and δ-toxin production in S. aureus WKZ-1, WKZ-2, LAC USA300, and ATCC29213. Downregulation in transcription by quantitative real-time (qRT) PCR analysis of response regulator agrA and receptor histidine kinase agrC upon 0.5 MIC thymol treatment affirmed the results of LC-MS quantification of PSMs. In silico molecular docking analysis demonstrated the binding affinity of thymol with receptors AgrA and AgrC. Transmission electron microscopy images revealed no ultrastructural alterations (cell wall and membrane) in thymol-treated WKZ-1 and WKZ-2 S. aureus strains. Here, we demonstrated that thymol reduces various PSM production in S. aureus clinical isolates and reference strains with mass spectrometry.
Collapse
|
16
|
Chen J, Zhang H, Wang S, Du Y, Wei B, Wu Q, Wang H. Inhibitors of Bacterial Extracellular Vesicles. Front Microbiol 2022; 13:835058. [PMID: 35283837 PMCID: PMC8905621 DOI: 10.3389/fmicb.2022.835058] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/25/2022] [Indexed: 01/22/2023] Open
Abstract
Both Gram-positive and Gram-negative bacteria can secrete extracellular vesicles (EVs), which contain numerous active substances. EVs mediate bacterial interactions with their hosts or other microbes. Bacterial EVs play a double-edged role in infections through various mechanisms, including the delivery of virulence factors, modulating immune responses, mediating antibiotic resistance, and inhibiting competitive microbes. The spread of antibiotic resistance continues to represent a difficult clinical challenge. Therefore, the investigation of novel therapeutics is a valuable research endeavor for targeting antibiotic-resistant bacterial infections. As a pathogenic substance of bacteria, bacterial EVs have gained increased attention. Thus, EV inhibitors are expected to function as novel antimicrobial agents. The inhibition of EV production, EV activity, and EV-stimulated inflammation are considered potential pathways. This review primarily introduces compounds that effectively inhibit bacterial EVs and evaluates the prospects of their application.
Collapse
Affiliation(s)
- Jianwei Chen
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Hongfang Zhang
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Siqi Wang
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Yujie Du
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Bin Wei
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Qiang Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Hong Wang
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
17
|
Cao R, Liu X, Zhai X, Wang L, Zhou Z. Preparation, investigation and storage application of thymol-chitooligosaccharide complex with enhanced antioxidant and antibacterial properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1561-1568. [PMID: 34403490 DOI: 10.1002/jsfa.11492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/02/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Thymol (Thy) is a natural bioactive agent which possesses various properties and has been widely used in medicine and food industries. However, its poor bioavailability can limit its application. RESULTS In this study, Thy was interacted with chitooligosaccharide (COS) as Thy-COS complex via an ionic crosslinking method using sodium tripolyphosphate as a crosslinker. The characteristics and thermal stability of Thy-COS were evaluated by ultraviolet-visible (UV-vis), Fourier-transform infrared (FTIR) spectroscopy, proton nuclear magnetic resonance (1 H-NMR) and thermogravimetric analysis, and its antioxidant and antibacterial properties were also evaluated. The highest loading capacity of Thy (52.3%) in Thy-COS formed at mass ratio of 1:5. Results indicated the Thy-COS complex was formed mainly by hydrophobic interactions and hydrogen bonds. Upon complexation, the thermal stability, antioxidant and antibacterial activity of Thy were significantly improved. Thy-COS complex was made into a coated film for Nanguo pears and greatly improved its storage quality. Thy-COS delayed the weight loss and softening of Nanguo pears and kept more vitamin-C content (2.12 mg (100 g)-1 ). CONCLUSION In conclusion, Thy-COS was successfully prepared and improved antioxidant and antibacterial properties of Thy, which has great potential in the food industry. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ruge Cao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xinru Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xuqing Zhai
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Lili Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, China
| | - Zhongkai Zhou
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
18
|
Effects of Growth Stage on the Characterization of Enterotoxin A-Producing Staphylococcus aureus‐Derived Membrane vesicles. Microorganisms 2022; 10:microorganisms10030574. [PMID: 35336149 PMCID: PMC8948643 DOI: 10.3390/microorganisms10030574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/17/2022] Open
Abstract
Virulence factors, such as staphylococcal enterotoxin A (SEA), are contained within membrane vesicles (MVs) in the cell membrane of Staphylococcus aureus. In this study, the effects of the growth stage on quantitative and qualitative changes in the components contained in the MVs of S. aureus SEA-producing strains were examined. Changes in the expression levels of S. aureus genes were examined at each growth stage; phenol-soluble modulin (PSM) gene reached a maximum after 8 h, and the expression of cell membrane-related genes was decreased after 6 h. Based on these gene expression patterns, MVs were prepared at 6, 17, and 24 h. The particle size of MVs did not change depending on the growth stage. MVs prepared after culture for 17 h maintained their particle size when stored at 23 °C. The amount of SEA in the culture supernatant and MVs were not correlated. Bifunctional autolysin, a protein involved in cell wall biosynthesis/degradation, was increased in MVs at 17 h. The expression pattern of inflammation-related genes in human adult low calcium high temperature (HaCaT) cells induced by MVs was different for each growth stage. The inclusion components of S. aureus-derived MVs are selective, depend on the stage of growth, and may play an important role in toxicity.
Collapse
|
19
|
Wang X, Koffi PF, English OF, Lee JC. Staphylococcus aureus Extracellular Vesicles: A Story of Toxicity and the Stress of 2020. Toxins (Basel) 2021; 13:toxins13020075. [PMID: 33498438 PMCID: PMC7909408 DOI: 10.3390/toxins13020075] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus generates and releases extracellular vesicles (EVs) that package cytosolic, cell-wall associated, and membrane proteins, as well as glycopolymers and exoproteins, including alpha hemolysin, leukocidins, phenol-soluble modulins, superantigens, and enzymes. S. aureus EVs, but not EVs from pore-forming toxin-deficient strains, were cytolytic for a variety of mammalian cell types, but EV internalization was not essential for cytotoxicity. Because S. aureus is subject to various environmental stresses during its encounters with the host during infection, we assessed how these exposures affected EV production in vitro. Staphylococci grown at 37 °C or 40 °C did not differ in EV production, but cultures incubated at 30 °C yielded more EVs when grown to the same optical density. S. aureus cultivated in the presence of oxidative stress, in iron-limited media, or with subinhibitory concentrations of ethanol, showed greater EV production as determined by protein yield and quantitative immunoblots. In contrast, hyperosmotic stress or subinhibitory concentrations of erythromycin reduced S. aureus EV yield. EVs represent a novel S. aureus secretory system that is affected by a variety of stress responses and allows the delivery of biologically active pore-forming toxins and other virulence determinants to host cells.
Collapse
|
20
|
Escobar A, Pérez M, Romanelli G, Blustein G. Thymol bioactivity: A review focusing on practical applications. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.11.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
21
|
Dong J, Zhang L, Liu Y, Xu N, Zhou S, Yang Q, Yang Y, Ai X. Thymol Protects Channel Catfish from Aeromonas hydrophila Infection by Inhibiting Aerolysin Expression and Biofilm Formation. Microorganisms 2020; 8:microorganisms8050636. [PMID: 32349419 PMCID: PMC7284873 DOI: 10.3390/microorganisms8050636] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 12/21/2022] Open
Abstract
Aeromonas hydrophila is an opportunistic pathogen responsible for a number of diseases in freshwater farming. Moreover, the bacterium has been identified as a zoonotic pathogen that threatens human health. Antibiotics are widely used for treatments of infectious diseases in aquaculture. However, the abuse of antibiotics has led to the emergence of antimicrobial resistant strains. Thus, novel strategies are required against resistant A. hydrophila strains. The quorum sensing (QS) system, involved in virulence factor production and biofilm formation, is a promising target in identifying novel drugs against A. hydrophila infections. In this study, we found that thymol, at sub-inhibitory concentrations, could significantly reduce the production of aerolysin and biofilm formation by inhibiting the transcription of genes aerA, ahyI, and ahyR. These results indicate that thymol inhibits the quorum sensing system. The protective effects of thymol against A. hydrophila mediated cell injury were determined by live/dead assay and lactate dehydrogenase (LDH) release assay. Moreover, the in vivo study showed that thymol could significantly decrease the mortality of channel catfish infected with A. hydrophila. Taken together, these findings demonstrate that thymol could be chosen as a phytotherapeutic candidate for inhibiting quorum sensing system-mediated aerolysin production and biofilm formation in A. hydrophila.
Collapse
Affiliation(s)
- Jing Dong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.D.); (L.Z.); (Y.L.); (N.X.); (S.Z.); (Q.Y.); (Y.Y.)
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing 100071, China
| | - Lushan Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.D.); (L.Z.); (Y.L.); (N.X.); (S.Z.); (Q.Y.); (Y.Y.)
| | - Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.D.); (L.Z.); (Y.L.); (N.X.); (S.Z.); (Q.Y.); (Y.Y.)
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing 100071, China
| | - Ning Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.D.); (L.Z.); (Y.L.); (N.X.); (S.Z.); (Q.Y.); (Y.Y.)
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing 100071, China
| | - Shun Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.D.); (L.Z.); (Y.L.); (N.X.); (S.Z.); (Q.Y.); (Y.Y.)
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing 100071, China
| | - Qiuhong Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.D.); (L.Z.); (Y.L.); (N.X.); (S.Z.); (Q.Y.); (Y.Y.)
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing 100071, China
| | - Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.D.); (L.Z.); (Y.L.); (N.X.); (S.Z.); (Q.Y.); (Y.Y.)
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing 100071, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.D.); (L.Z.); (Y.L.); (N.X.); (S.Z.); (Q.Y.); (Y.Y.)
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing 100071, China
- Correspondence: ; Tel.: +86-027-8178-0298
| |
Collapse
|
22
|
Cymbopogon Proximus Essential Oil Protects Rats against Isoproterenol-Induced Cardiac Hypertrophy and Fibrosis. Molecules 2020; 25:molecules25081786. [PMID: 32295062 PMCID: PMC7221672 DOI: 10.3390/molecules25081786] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/08/2020] [Accepted: 04/11/2020] [Indexed: 01/19/2023] Open
Abstract
Cardiac hypertrophy is an independent risk factor of many cardiovascular diseases. Several cardiovascular protective properties of Cymbopogon proximus have been reported. However, no reports investigating the direct effect of C. proximus essential oil on the heart are available. The goal of this study was to explore the cardioprotective effect of C. proximus on cardiac hypertrophy and fibrosis. Male albino rats were administered C. proximus essential oil in the presence or absence of hypertrophic agonist isoproterenol. Cardiac hypertrophy and fibrosis were assessed using real-time polymerase chain reaction (PCR) and histological examination. Pre- treatment of rats with C. proximus decreased the ratio of heart weight to body weight and gene expression of hypertrophy markers atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and β-myosin heavy chain (β-MHC), which were induced by isoproterenol. Moreover, C. proximus prevented the increase in gene expression of fibrosis markers procollagen I and procollagen III and alleviated the collagen volume fraction caused by isoproterenol. The pre- treatment with C. proximus essential oil conferred cardio-protection against isoproterenol- induced cardiac hypertrophy and fibrosis.
Collapse
|