1
|
Le Bris J, Chen N, Supandy A, Rendueles O, Van Tyne D. Phage therapy for Klebsiella pneumoniae: Understanding bacteria-phage interactions for therapeutic innovations. PLoS Pathog 2025; 21:e1012971. [PMID: 40198880 PMCID: PMC11978313 DOI: 10.1371/journal.ppat.1012971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025] Open
Abstract
Klebsiella pneumoniae (KP) is a Gram-negative bacterium that commonly resides in the human gastrointestinal tract and can also act as an opportunistic pathogen and cause extra-intestinal infections. KP poses a global health threat because it causes both hospital- and community-acquired infections in immune-competent and immunocompromised hosts. These infections can be multidrug-resistant and/or hypervirulent, making KP infections difficult to treat and deadly. In the absence of effective treatments for recalcitrant KP infections, bacteriophage (phage) therapy is gaining attention as a promising alternative. In this review, we evaluate KP epidemiology and epitope diversity, discuss interactions between KP-targeting phages and their bacterial hosts from an eco-evolutionary perspective, and summarize recent efforts in phage therapy for treating KP infections. We also discuss novel approaches, including genetic engineering and machine learning, as initial steps toward developing KP-targeting phage therapy as a precision medicine approach for an emerging and dangerous pathogen.
Collapse
Affiliation(s)
- Julie Le Bris
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France
- Sorbonne Université, Collège Doctoral, Ecole Doctorale Complexité du Vivant, Paris, France
| | - Nathalie Chen
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Adeline Supandy
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Olaya Rendueles
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), CNRS UMR5100, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Daria Van Tyne
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
2
|
Ajakkala PB, Nayak S, Maiti B, Rohit A, Mohan Raj JR, Karunasagar I. Phenotypic Changes in Phage Survivors of Multidrug-Resistant Klebsiella pneumoniae. Indian J Microbiol 2024; 64:1379-1383. [PMID: 39282179 PMCID: PMC11399516 DOI: 10.1007/s12088-024-01217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/28/2024] [Indexed: 09/18/2024] Open
Abstract
Multidrug-resistant Klebsiella pneumoniae (MDR-KP) infections have become a major global issue in the healthcare sector. Alternative viable tactics for combating bacterial infections, such as the use of bacteriophages, can be considered. One of the major challenges in phage therapy is the emergence of phage-resistant bacteria. This study isolated bacteriophages from water and soil samples against MDR-KP isolates. Susceptible bacterial hosts were exposed to phages at different concentrations and prolonged durations of time to obtain phage-resistant survivors. Phenotypic changes such as changes in growth rates, biofilm formation ability, antibiotic sensitivity patterns, and outer membrane proteins (OMPs) profiling of the survivors were studied. Our findings indicate that the phage ØKp11 and ØKp26 survivors had reduced growth rates and biofilm formation ability, altered antibiotic sensitivity patterns, and reduced OMPs expression compared with the parent MDR-KP002 isolate. These results suggest that the alternations in the bacterial envelope result in phenotypic phage resistance among MDR bacterial isolates. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01217-6.
Collapse
Affiliation(s)
- Pallavi Bhat Ajakkala
- NITTE (Deemed to Be University), NITTE University Centre for Science Education and Research, Mangaluru, 575018 Karnataka India
| | - Srajana Nayak
- NITTE (Deemed to Be University), NITTE University Centre for Science Education and Research, Mangaluru, 575018 Karnataka India
| | - Biswajit Maiti
- NITTE (Deemed to Be University), NITTE University Centre for Science Education and Research, Mangaluru, 575018 Karnataka India
| | - Anusha Rohit
- Department of Microbiology, Madras Medical Mission, Chennai, 600037 Tamil Nadu India
| | - Juliet Roshini Mohan Raj
- NITTE (Deemed to Be University), NITTE University Centre for Science Education and Research, Mangaluru, 575018 Karnataka India
| | - Indrani Karunasagar
- DST Technology Enabling Centre, NITTE (Deemed to Be University), Paneer Campus, Deralakatte, Mangaluru, 575018 Karnataka India
| |
Collapse
|
3
|
Phage resistance-mediated trade-offs with antibiotic resistance in Salmonella Typhimurium. Microb Pathog 2022; 171:105732. [PMID: 36002113 DOI: 10.1016/j.micpath.2022.105732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/20/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022]
Abstract
This study was designed to evaluate the trade-offs between phage resistance and antibiotic resistance of Salmonella Typhimurium (STKCCM) exposed to bacteriophage PBST10 and antibiotics (ampicillin and ciprofloxacin). STKCCM was serially exposed to control (no PBST10/antibiotic added), phage alone, ampicillin alone, ampicillin with phage, ciprofloxacin alone, and ciprofloxacin with phage for 8 days at 37 °C. The treated cells were used to evaluate the antibiotic susceptibility, β-lactamase activity, relative fitness, gene expression, and phage-resistance frequency. The antibiotic susceptibility of STKCCM to ampicillin was increased in the presence of phages. The β-lactamase activity was significantly increased in the phage alone and ampicillin with phage. The combination treatments of phages and antibiotics resulted in a greater fitness cost. The efflux pump-associated tolC was suppressed in STKCCM exposed to phage alone. The highest phage-resistance frequencies were observed at phage alone, followed by ampicillin with phage and ciprofloxacin with phage. The tolC-suppressed cells showed the enhanced antibiotic susceptibility. This study provides useful information for designing effective phage-antibiotic combination treatments. The evolutionary trade-offs of phage-resistant bacteria with antibiotic resistance might be good targets for controlling antibiotic-resistant bacteria.
Collapse
|
4
|
Li P, Zhang Y, Yan F, Zhou X. Characteristics of a Bacteriophage, vB_Kox_ZX8, Isolated From Clinical Klebsiella oxytoca and Its Therapeutic Effect on Mice Bacteremia. Front Microbiol 2021; 12:763136. [PMID: 34925270 PMCID: PMC8678519 DOI: 10.3389/fmicb.2021.763136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
Klebsiella oxytoca is an important nosocomial and community-acquired opportunistic pathogenic Klebsiella and has become the second most prevalent strain in the clinic after K. pneumoniae. However, there have been few reports of bacteriophages used for treating K. oxytoca. In this study, a novel bacteriophage, vB_Kox_ZX8, which specifically infects K. oxytoca AD3, was isolated for the first time from human fecal samples. The biological characteristics of vB_Kox_ZX8 showed an incubation period of 10 min, a burst size of 74 PFU/cell, and a stable pH range of 3-11. Genomic bioinformatics studies of vB_Kox_ZX8 showed that it belongs to the genus Przondovirus, subfamily Studiervirinae, family Autographiviridae. The genome of vB_Kox_ZX8 is 39,398 bp in length and contains 46 putative open reading frames encoding functional proteins, such as DNA degradation, packaging, structural, lysin-holin, and hypothetical proteins. We further investigated the efficacy of vB_Kox_ZX8 phage in the treatment of mice with bacteremia caused by K. oxytoca infection. The results showed that vB_Kox_ZX8 (5 × 109 PFU/mouse) injected intraperitoneally alone was metabolized rapidly in BALB/c mice, and no significant side effects were observed in the control and treatment groups. Importantly, intraperitoneal injection with a single dose of phage vB_Kox_ZX8 (5 × 107 PFU/mouse) for 1 h post-infection saved 100% of BALB/c mice from bacteremia induced by intraperitoneal challenge with a minimum lethal dose of K. oxytoca AD3. However, all negative control mice injected with PBS alone died. Owing to its good safety, narrow host infectivity, high lysis efficiency in vitro, and good in vivo therapeutic effect, phage vB_Kox_ZX8 has the potential to be an excellent antibacterial agent for clinical K. oxytoca-caused infections.
Collapse
Affiliation(s)
- Ping Li
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yangheng Zhang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xin Zhou
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Giacometti F, Shirzad-Aski H, Ferreira S. Antimicrobials and Food-Related Stresses as Selective Factors for Antibiotic Resistance along the Farm to Fork Continuum. Antibiotics (Basel) 2021; 10:671. [PMID: 34199740 PMCID: PMC8230312 DOI: 10.3390/antibiotics10060671] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global problem and there has been growing concern associated with its widespread along the animal-human-environment interface. The farm-to-fork continuum was highlighted as a possible reservoir of AMR, and a hotspot for the emergence and spread of AMR. However, the extent of the role of non-antibiotic antimicrobials and other food-related stresses as selective factors is still in need of clarification. This review addresses the use of non-antibiotic stressors, such as antimicrobials, food-processing treatments, or even novel approaches to ensure food safety, as potential drivers for resistance to clinically relevant antibiotics. The co-selection and cross-adaptation events are covered, which may induce a decreased susceptibility of foodborne bacteria to antibiotics. Although the available studies address the complexity involved in these phenomena, further studies are needed to help better understand the real risk of using food-chain-related stressors, and possibly to allow the establishment of early warnings of potential resistance mechanisms.
Collapse
Affiliation(s)
- Federica Giacometti
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064 Bologna, Italy;
| | - Hesamaddin Shirzad-Aski
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan 49178-67439, Iran;
| | - Susana Ferreira
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| |
Collapse
|
6
|
Majkowska-Skrobek G, Markwitz P, Sosnowska E, Lood C, Lavigne R, Drulis-Kawa Z. The evolutionary trade-offs in phage-resistant Klebsiella pneumoniae entail cross-phage sensitization and loss of multidrug resistance. Environ Microbiol 2021; 23:7723-7740. [PMID: 33754440 DOI: 10.1111/1462-2920.15476] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/11/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022]
Abstract
Bacteriophage therapy is currently being evaluated as a critical complement to traditional antibiotic treatment. However, the emergence of phage resistance is perceived as a major hurdle to the sustainable implementation of this antimicrobial strategy. By combining comprehensive genomics and microbiological assessment, we show that the receptor-modification resistance to capsule-targeting phages involves either escape mutation(s) in the capsule biosynthesis cluster or qualitative changes in exopolysaccharides, converting clones to mucoid variants. These variants introduce cross-resistance to phages specific to the same receptor yet sensitize to phages utilizing alternative ones. The loss/modification of capsule, the main Klebsiella pneumoniae virulence factor, did not dramatically impact population fitness, nor the ability to protect bacteria against the innate immune response. Nevertheless, the introduction of phage drives bacteria to expel multidrug resistance clusters, as observed by the large deletion in K. pneumoniae 77 plasmid containing blaCTX-M , ant(3″), sul2, folA, mph(E)/mph(G) genes. The emerging bacterial resistance to viral infection steers evolution towards desired population attributes and highlights the synergistic potential for combined antibiotic-phage therapy against K. pneumoniae.
Collapse
Affiliation(s)
- Grazyna Majkowska-Skrobek
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, Poland
| | - Pawel Markwitz
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, Poland
| | - Ewelina Sosnowska
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, Poland
| | - Cédric Lood
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, 3001 Heverlee, Belgium.,Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics, Laboratory of Computational Systems Biology, KU Leuven, 3000 Leuven, Belgium
| | - Rob Lavigne
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, 3001 Heverlee, Belgium
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|