1
|
Pearl S, Anbarasu A. Genomic landscape of nosocomial Acinetobacter baumannii: A comprehensive analysis of the resistome, virulome, and mobilome. Sci Rep 2025; 15:18203. [PMID: 40414962 DOI: 10.1038/s41598-025-03246-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025] Open
Abstract
Acinetobacter baumannii (A. baumannii) is a major multidrug-resistant pathogen, posing serious threats in the healthcare settings. This study provides a comprehensive genomic analysis of nosocomial A. baumannii whole-genome sequences retrieved from NCBI Genome database. Multilocus sequence typing and capsule typing were performed to investigate the clonal diversity. The genomes were characterized to identify antimicrobial resistance genes (ARGs), virulence factors, and mobile genetic elements. Further, pangenome analysis was conducted to examine the core and accessory genomes of A. baumannii. Our dataset comprised of 609 genomes deposited from diverse geographic regions worldwide between 2004 and 2024. The genomes showed high clonal heterogeneity, with sequence type ST2 being the predominant sequence type. A total of 185 unique ARGs were identified, with majority of them associated with efflux pump and β-lactamase coding genes. Over 25,000 IS elements were detected, with IS4 family being the prevalent type. High abundance of integron-mediated resistance determinants, especially for aminoglycosides and β-lactams, were identified. The open pangenome window due to its larger accessory genome suggested substantial genome plasticity. Our findings highlight A. baumannii's rapid evolution and resistance potential, emphasizing need for alternative therapeutic strategies. Enhanced surveillance, infection control measures, and antimicrobial stewardship are crucial to combat this persistent threat.
Collapse
Affiliation(s)
- Sara Pearl
- Department of Biotechnology, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - Anand Anbarasu
- Department of Biotechnology, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India.
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India.
| |
Collapse
|
2
|
Alwazzeh MJ, Algazaq J, Al-Salem FA, Alabkari F, Alwarthan SM, Alhajri M, AlShehail BM, Alnimr A, Alrefaai AW, Alsaihati FH, Almuhanna FA. Mortality and clinical outcomes of colistin versus colistin-based combination therapy for infections caused by Multidrug-resistant Acinetobacter baumannii in critically ill patients. BMC Infect Dis 2025; 25:416. [PMID: 40140752 PMCID: PMC11948640 DOI: 10.1186/s12879-025-10781-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Multidrug-resistant Acinetobacter baumannii emerged as a threatening "superbug" with significant morbidity and mortality and limited antimicrobial therapy options. The results of different antibiotic combination studies are heterogeneous and controversial. Further comparative studies are crucial to overcome such difficult-to-treat infections and to improve patient outcomes. This study investigates the mortality and outcomes of colistin versus colistin-based combination therapy for infections caused by Multidrug-resistant Acinetobacter baumannii in critically ill patients. METHODS A retrospective observational study was conducted at an academic tertiary hospital in Khobar City, Eastern Province, Saudi Arabia. Patients who fulfilled the inclusion criteria and were admitted from January 1, 2017, to December 31, 2022, were included. The investigated primary outcome was 30-day mortality, while secondary outcomes were one-year all-cause mortality, clinical cure, microbiologic eradication, and recurrence of Acinetobacter infections. Statistical comparisons were employed, and a P-value of ≤ .05 was considered significant. RESULTS Of the 178 patients who fulfilled the inclusion criteria, 47 received colistin only, and 131 received colistin in combinations (55 with carbapenems, 53 with tigecycline, and 23 with both). The estimated 30-day mortality rate of the study population was 22.5%, with statistically insignificant differences in 30-day mortality rates when the colistin group compared to cumulative colistin-based combination (23.4% vs. 22.1%; difference, 1.3 percentage points; 95% confidence interval [CI], 0.487-2.371; P = 0.858) or subgroups. However, colistin-based combination groups showed better secondary outcomes, with significantly less all-cause mortality and better clinical cure in colistin combination with carbapenems or tigecycline and less Acinetobacter infection recurrence in combination with carbapenems. CONCLUSIONS The study findings demonstrate the benefits of investigated colistin combination options that result in less one-year all-cause mortality, better clinical cure, higher microbiologic response, and less infection recurrence. However, no significant differences were observed regarding 30-day mortality. In addition, the study highlights the limitations of the available antimicrobial options and the crucial need for new effective antimicrobials and more successful combinations.
Collapse
Affiliation(s)
- Marwan J Alwazzeh
- Infectious Disease Division, Department of Internal Medicine, Faculty of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, & King Fahad Hospital of the University, Al Khobar, Saudi Arabia.
| | - Jumanah Algazaq
- Infectious Disease Division, Department of Internal Medicine, Faculty of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, & King Fahad Hospital of the University, Al Khobar, Saudi Arabia
| | - Fatimah Ali Al-Salem
- Infectious Disease Division, Department of Internal Medicine, Faculty of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, & King Fahad Hospital of the University, Al Khobar, Saudi Arabia
| | - Fatimah Alabkari
- Infectious Disease Division, Department of Internal Medicine, Faculty of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, & King Fahad Hospital of the University, Al Khobar, Saudi Arabia
| | - Sara M Alwarthan
- Infectious Disease Division, Department of Internal Medicine, Faculty of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, & King Fahad Hospital of the University, Al Khobar, Saudi Arabia
| | - Mashael Alhajri
- Infectious Disease Division, Department of Internal Medicine, Faculty of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, & King Fahad Hospital of the University, Al Khobar, Saudi Arabia
| | - Bashayer M AlShehail
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Amani Alnimr
- Department of Microbiology, College of Medicine, King Fahad Hospital of the University, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ahmad Wajeeh Alrefaai
- Department of Microbiology, College of Medicine, King Fahad Hospital of the University, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Department of Internal Medicine, Faculty of Medicine, Imam Abdulrahman Bin Faisal University, Fahad Hospital of the University, Dammam & King, Al Khobar, Saudi Arabia
| | - Faten Hussain Alsaihati
- Department of Internal Medicine, Faculty of Medicine, Imam Abdulrahman Bin Faisal University, Fahad Hospital of the University, Dammam & King, Al Khobar, Saudi Arabia
| | - Fahd Abdulaziz Almuhanna
- Nephrology Division, Department of Internal Medicine, Faculty of Medicine, Imam Abdulrahman Bin Faisal University, Fahad Hospital of the University, Dammam & King, Al-Khobar, Saudi Arabia
| |
Collapse
|
3
|
Gallegos-Monterrosa R, Cid-Uribe JI, Delgado-Prudencio G, Pérez-Morales D, Banda MM, Téllez-Galván A, Carcamo-Noriega EN, Garza-Ramos U, Zare RN, Possani LD, Bustamante VH. Blue benzoquinone from scorpion venom shows bactericidal activity against drug-resistant strains of the priority pathogen Acinetobacter baumannii. J Antibiot (Tokyo) 2025; 78:235-245. [PMID: 39966632 PMCID: PMC11946886 DOI: 10.1038/s41429-025-00809-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/20/2025]
Abstract
Antibiotic-resistant bacteria pose a significant global health threat, particularly pathogens resistant to last-resort antibiotics, such as those listed as priority pathogens by the World Health Organization. Addressing this challenge requires the development of novel antimicrobial agents. Previously, we identified a blue 1,4-benzoquinone isolated from the venom of the Mexican scorpion Diplocentrus melici as a potent antimicrobial compound effective against Staphylococcus aureus and Mycobacterium tuberculosis. Moreover, we devised a cost-effective synthetic route for its production. In this study, we demonstrate that the blue benzoquinone exhibits antibacterial activity against additional pathogens, including the priority pathogen Acinetobacter baumannii. Notably, the compound effectively killed clinical strains of A. baumannii resistant to multiple antibiotics, including carbapenem and colistin. Furthermore, A. baumannii did not develop resistance to the benzoquinone even after multiple growth cycles under sub-inhibitory concentrations, unlike the tested antibiotics. These findings underscore the potential of this blue benzoquinone as a lead compound for the development of a new class of antibiotics targeting multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Ramses Gallegos-Monterrosa
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, C.P. 62210, Cuernavaca, Morelos, México
| | - Jimena I Cid-Uribe
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, C.P. 62210, Cuernavaca, Morelos, México
| | - Gustavo Delgado-Prudencio
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, C.P. 62210, Cuernavaca, Morelos, México
| | - Deyanira Pérez-Morales
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, C.P. 62210, Cuernavaca, Morelos, México
- Programa de Biología de Sistemas, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, C.P. 62210, Cuernavaca, Morelos, México
| | - María M Banda
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, C.P. 62210, Cuernavaca, Morelos, México
- Programa de Microbiología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, C.P. 62210, Cuernavaca, Morelos, México
| | - Alexis Téllez-Galván
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, C.P. 62210, Cuernavaca, Morelos, México
| | - Edson N Carcamo-Noriega
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, C.P. 62210, Cuernavaca, Morelos, México
| | - Ulises Garza-Ramos
- Instituto Nacional de Salud Pública, Centro de Investigación Sobre Enfermedades Infecciosas, Laboratorio de Resistencia Bacteriana, C. P. 62210, Cuernavaca, Morelos, México
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, C.P. 62210, Cuernavaca, Morelos, México.
| | - Víctor H Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, C.P. 62210, Cuernavaca, Morelos, México.
| |
Collapse
|
4
|
Zehra M, Shafiq J, Asghar S, Vankwani S, Hasan SM, Khan RMA, Mirza MR, Ahmed A. Proteomic profiling and pre-clinical efficacy of antimicrobial lithium complex and colistin combination against multi-drug resistant Acinetobacter baumannii. Microb Pathog 2025; 200:107335. [PMID: 39864760 DOI: 10.1016/j.micpath.2025.107335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/04/2025] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
Multi-drug resistant (MDR) Acinetobacter baumannii accounts for high mortality rates in hospital-acquired infections. Colistin is the last resort treatment despite nephrotoxic effects and the emergence of colistin resistant A. baumannii is an emerging issue. To tackle this dilemma, metal complexes can be used to potentiate colistin as combination therapy. However, mechanistic and in vivo studies are lacking to present them as compelling therapeutic options. In this study, a lithium complex ([Li(phen)2sal]) based on salicylic acid and 1,10-phenanthroline was used in synergy with colistin to test its antimicrobial and anti-biofilm potential against MDR A. baumannii. Furthermore, proteomics via mass spectrometry, flow cytometry and scanning electron microscopy was performed to study the cellular targets of the treatment. Combination therapy was also tested against pneumonia model in mice to observe pre-clinical efficacy. The lithium complex showed synergistic and additive interaction with colistin and inhibited >85 % of bacterial cells and biofilm formation in A. baumannii strains. Proteomic analysis revealed that combination therapy downregulated significantly more membrane proteins as compared to the individual doses. Flow cytometry indicated that combination therapy caused hyperpolarization in bacteria which led to the cellular damage as observed in scanning electron microscopy. Combination therapy was non-toxic in mice and reduced the clinical score to 0 with bacterial load lessened to 5.56 ± 0.90 log10 CFU in 48 h. Therefore, parenchymal sections had lesser inflammatory regions with intact alveoli. Consequently, combination therapy can be an alternative therapeutic approach with antimicrobial, anti-biofilm, and pre-clinical efficacy against MDR A. baumannii infection.
Collapse
Affiliation(s)
- Moatter Zehra
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Jazib Shafiq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Sidrah Asghar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Soma Vankwani
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Syed Mehmood Hasan
- Department of Pathology, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Rao Muhammad Abid Khan
- Department of Microbiology, Sindh Institute of Urology and Transplantation, Karachi, Pakistan
| | - Munazza Raza Mirza
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Ayaz Ahmed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
5
|
Yadav KS, Datkhile K, Pawar S, Patil S. An Overview of the Genetic Mechanisms of Colistin-Resistance in Bacterial Pathogens: An Indian Perspective. Cureus 2025; 17:e78800. [PMID: 40078264 PMCID: PMC11902915 DOI: 10.7759/cureus.78800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/09/2025] [Indexed: 03/14/2025] Open
Abstract
Colistin resistance in bacteria is a growing global issue, given its role as a critical last-resort antibiotic, particularly for treating Gram-negative bacterial infections. Pathogens adopt multiple resistance mechanisms, mediated either by plasmids or chromosomal changes. Some of the most frequently observed strategies include the occurrence of plasmid-borne mobile colistin resistance (mcr) genes, enhanced efflux pump activity, mutations in the regulatory systems, and alterations in the lipid A structure. This article provides an overview of the studies investigating the genetic mechanisms underlying colistin resistance in nosocomial Gram-negative bacteria from India. A total of 37 studies were identified through online searches across various databases, including PubMed, ScienceDirect, and Web of Science. These studies were reviewed to examine bacterial species and their mechanisms of colistin resistance. Over 26 (70.27%) studies were focused on Klebsiella pneumoniae. The most commonly reported mechanism of colistin resistance involved mutations in the two-component systems pmrAB and phoPQ. Plasmid-mediated colistin-resistant mcr genes were identified in 22 studies (18.18%). Four studies reported the overexpression of efflux pump genes as a mechanism of colistin resistance. This article provides a comprehensive summary of these studies, emphasizing the presence of diverse resistance mechanisms across various pathogens. It underscores the necessity for future genomic research on a broader range of pathogens to investigate the prevalence of different mechanisms of colistin resistance in the various regions of India.
Collapse
Affiliation(s)
- Kajal S Yadav
- Department of Microbiology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Kailas Datkhile
- Department of Allied Sciences, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Satyajeet Pawar
- Department of Microbiology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Satish Patil
- Department of Microbiology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| |
Collapse
|
6
|
Li N, Ebrahimi E, Sholeh M, Dousti R, Kouhsari E. A systematic review and meta-analysis: rising prevalence of colistin resistance in ICU-acquired Gram-negative bacteria. APMIS 2025; 133:e13508. [PMID: 39710513 DOI: 10.1111/apm.13508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 12/03/2024] [Indexed: 12/24/2024]
Abstract
Colistin is a last-resort treatment for multidrug-resistant Gram-negative bacterial infections, particularly in critically ill patients. Nevertheless, it remains a major threat to public health. We assessed the proportion of colistin-resistant Gram-negative isolates from intensive care unit (ICU) infections in different years, areas, pathogens, and antimicrobial susceptibility tests (AST). We searched the studies in PubMed, Scopus, Embase, and Web of Science (until November 2021). Statistical analyses were conducted using STATA software (ver. 14.0). The overall rate of colistin resistance was 5.18% (95% CI 2.70%-8.22%). The proportion of colistin resistance was 4% (95% CI 2%-7%) before 2015 and 6% (95% CI 4%-9%) in 2015-2019. The rates of colistin resistance in Europe, America, Asia, and Africa were 8.24%, 3.78%, 3.60%, and 0%, respectively. The proportion of colistin-resistant non-fermenting Gram-negative bacilli isolated from the ICU was 2.25% (Acinetobacter baumannii [1.68%] and Pseudomonas aeruginosa [3.30%]). A 4-fold increase in colistin resistance was observed when comparing EUCAST and CLSI. We described the global epidemiology of colistin resistance over time and shown the distribution of colistin-resistant strains in different countries. Robust antimicrobial stewardship programs can increase the success of ICU physicians in improving patient outcomes.
Collapse
Affiliation(s)
- Na Li
- Zhejiang Provincial Headquarters Hospital of the Chinese People's Armed Police Force Zhejiang, Hangzhou, China
| | - Elaheh Ebrahimi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sholeh
- Department of Medical Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Reyhane Dousti
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ebrahim Kouhsari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
7
|
Richards GA, Perovic O, Brink AJ. The challenges of difficult-to-treat Acinetobacter infections. Clin Microbiol Rev 2024; 37:e0009324. [PMID: 39555919 PMCID: PMC11629631 DOI: 10.1128/cmr.00093-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
SUMMARYInfections due to Acinetobacter spp. are among the most difficult to treat. Most are resistant to standard antibiotics, and there is difficulty in distinguishing colonizers from pathogens. This mini-review examines the available antibiotics that exhibit activity against these organisms and provides guidance as to which cultures are relevant and how to treat active infections. Antibiograms describing resistance mechanisms and the minimum inhibitory concentration (MIC) are essential to determine which agent or combination of agents should be used after confirmation of infection, utilizing clinical parameters and biomarkers such as procalcitonin. Directed therapy should be prompt as despite its reputation as a colonizer, the attributable mortality is high. However, although combination therapy is advised, no specific combination has definite evidence of superiority.
Collapse
Affiliation(s)
- Guy A. Richards
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Olga Perovic
- AMR Division at WITS Health Consortium, Pathologist Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses (CHARM), at the National Institute for Communicable Diseases, a division of NHLS and the University of the Witwatersrand, Johannesburg, South Africa
| | - Adrian J. Brink
- Division of Medical Microbiology, Faculty of Health Sciences, National Health Laboratory Services, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
8
|
Huang Y, Liao M, Hu X, Hu H, Gong H. Advances in the clinical treatment of multidrug-resistant pathogens using polymyxins. J Antimicrob Chemother 2024; 79:3210-3229. [PMID: 39351975 DOI: 10.1093/jac/dkae344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/13/2024] [Indexed: 10/03/2024] Open
Abstract
OBJECTIVES Polymyxins are a vital class of antibiotics used to combat multidrug-resistant Gram-negative bacteria. However, their use is limited due to potential nephrotoxicity and the availability of alternative antibiotics. This review aims to examine the properties of polymyxins and the clinical advances in their use for treating infections caused by carbapenem-resistant Gram-negative bacteria (CR-GNB). METHODS This review analyses literature on polymyxin properties and various clinical approaches, including intravenous drip infusion, nebulized or dry powder inhalation, and ointment application. Treatment efficacy in terms of bacterial eradication, cure rate and mortality rate are reviewed and evaluated. RESULTS Polymyxins have been reintroduced to treat critical infections due to the increasing prevalence of CR-GNB. Clinical trials and studies have confirmed that polymyxins can effectively treat CR-GNB infections when the formulation and administration are appropriate, with acceptable levels of nephrotoxicity. CONCLUSIONS In the future, the development of polymyxin formulations will aim to improve their clinical effectiveness while reducing toxicity and side effects and preventing the emergence of polymyxin-resistant strains. Enhanced efficacy and minimized potential side effects can be achieved by developing new polymyxin-delivery systems that provide a smart and controlled release or customized patient administration.
Collapse
Affiliation(s)
- Yizhen Huang
- Department of Pharmacy, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China
| | - Mingrui Liao
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK
| | - Xuzhi Hu
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK
| | - Honghua Hu
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haoning Gong
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Jamwal V, Palmo T, Singh K. Understanding the mechanisms of antimicrobial resistance and potential therapeutic approaches against the Gram-negative pathogen Acinetobacter baumannii. RSC Med Chem 2024; 15:d4md00449c. [PMID: 39386059 PMCID: PMC11457259 DOI: 10.1039/d4md00449c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Globally, the emergence of anti-microbial resistance in pathogens has become a serious threat to human health and well-being. Infections caused by drug-resistant microorganisms in hospitals are associated with increased morbidity, mortality, and healthcare costs. Acinetobacter baumannii is a Gram-negative bacterium belonging to the ESKAPE group and is widely associated with nosocomial infections. It persists in hospitals and survives antibiotic treatment, prompting acute infections such as urinary tract infections, pneumonia, bacteremia, meningitis, and wound-related infections. An innovation void in drug discovery and the lack of new therapeutic measures against A. baumannii continue to afflict infection control against the rising drug-resistant cases. The emergence of drug-resistant A. baumannii strains has also led to the incessant collapse of newly discovered antibiotics. Therefore exploring novel strategies is requisite to give impetus to A. baumannii drug discovery. The present review discusses the bacterial research community's efforts in the field of A. baumannii, focusing on the strategies adapted to identify potent scaffolds and novel targets to bolster and diversify the chemical space available for drug discovery. Firstly, we have discussed existing chemotherapy and various anti-microbial resistance mechanisms in A. baumannii bacterial strains. Next, we elaborate on multidisciplinary approaches and strategies that may be the way forward to combat the current menace caused by the drug-resistant A. baumannii strains. The review highlights the recent advances in drug discovery, including combinational therapy, high-throughput screening, drug repurposing, nanotechnology, and anti-microbial peptides, which are imperative tools to fight bacterial pathogens in the future.
Collapse
Affiliation(s)
- Vishwani Jamwal
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Tashi Palmo
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
10
|
Wang W, Weng J, Wei J, Zhang Q, Zhou Y, He Y, Zhang L, Li W, Zhang Y, Zhang Z, Li X. Whole genome sequencing insight into carbapenem-resistant and multidrug-resistant Acinetobacter baumannii harboring chromosome-borne blaOXA-23. Microbiol Spectr 2024; 12:e0050124. [PMID: 39101706 PMCID: PMC11370241 DOI: 10.1128/spectrum.00501-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/26/2024] [Indexed: 08/06/2024] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) poses a significant threat to hospitalized patients as effective therapeutic options are scarce. Based on the genomic characteristics of the CRAB strain AB2877 harboring chromosome-borne blaOXA-23, which was isolated from the bronchoalveolar lavage fluid (BALF) of a patient in a respiratory intensive care unit (RICU), we systematically analyzed antibiotic resistance genes (ARGs) and the genetic context associated with ARGs carried by CRAB strains harboring chromosome-borne blaOXA-23 worldwide. Besides blaOXA-23, other ARGs were detected on the chromosome of the CRAB strain AB2877 belonging to ST208/1806 (Oxford MLST scheme). Several key genetic contexts associated with the ARGs were identified on the chromosome of the CRAB strain AB2877, including (1) the MDR region associated with blaOXA-23, tet(B)-tetR(B), aph(3'')-Ib, and aph(6)-Id (2); the resistance island AbGRI3 harboring armA and mph(E)-msr(E) (3); the Tn3-like composite transposon containing blaTEM-1D and aph(3')-Ia; and (4) the structure "ISAba1-blaADC-25." The first two genetic contexts were most common in ST195/1816, followed by ST208/1806. The last two genetic contexts were found most frequently in ST208/1806, followed by ST195/1816.IMPORTANCEThe blaOXA-23 gene can be carried by plasmid or chromosome, facilitating horizontal genetic transfer and increasing carbapenem resistance in healthcare settings. In this study, we focused on the genomic characteristics of CRAB strains harboring the chromosome-borne blaOXA-23 gene, and the important genetic contexts associated with blaOXA-23 and other ARGs were identified, and their prevalent clones worldwide were determined. Notably, although the predominant clonal CRAB lineages worldwide containing the MDR region associated with blaOXA-23, tet(B)-tetR(B), aph(3'')-Ib, and aph (6)-Id was ST195/1816, followed by ST208/1806, the CRAB strain AB2877 in our study belonged to ST208/1806. Our findings contribute to the knowledge regarding the dissemination of CRAB strains and the control of nosocomial infection.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pulmonary and Critical Care Medicine, Zhuhai People’s Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
- Department of Critical Care Medicine, Zhuhai People’s Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Jiahui Weng
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jie Wei
- Department of Clinical Laboratory, Zhuhai People’s Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Qinghuan Zhang
- Department of Clinical Laboratory, Zhuhai People’s Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Yu Zhou
- Department of Anesthesiology, Zhuhai People’s Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Yanju He
- Department of Pulmonary and Critical Care Medicine, Zhuhai People’s Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Limei Zhang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Wenting Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Yi Zhang
- Department of Pulmonary and Critical Care Medicine, Zhuhai People’s Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Zhiren Zhang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Xiaobin Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| |
Collapse
|
11
|
C S S, Kini V, Singh M, Mukhopadhyay C, Nag P, Sadani K. Disposable electrochemical biosensors for the detection of bacteria in the light of antimicrobial resistance. Biotechnol Bioeng 2024; 121:2549-2584. [PMID: 38822742 DOI: 10.1002/bit.28735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/30/2024] [Accepted: 04/24/2024] [Indexed: 06/03/2024]
Abstract
Persistent and inappropriate use of antibiotics is causing rife antimicrobial resistance (AMR) worldwide. Common bacterial infections are thus becoming increasingly difficult to treat without the use of last resort antibiotics. This has necessitated a situation where it is imperative to confirm the infection to be bacterial, before treating it with antimicrobial speculatively. Conventional methods of bacteria detection are either culture based which take anywhere between 24 and 96 hor require sophisticated molecular analysis equipment with libraries and trained operators. These are difficult propositions for resource limited community healthcare setups of developing or less developed countries. Customized, inexpensive, point-of-care (PoC) biosensors are thus being researched and developed for rapid detection of bacterial pathogens. The development and optimization of disposable sensor substrates is the first and crucial step in development of such PoC systems. The substrates should facilitate easy charge transfer, a high surface to volume ratio, be tailorable by the various bio-conjugation chemistries, preserve the integrity of the biorecognition element, yet be inexpensive. Such sensor substrates thus need to be thoroughly investigated. Further, if such systems were made disposable, they would attain immunity to biofouling. This article discusses a few potential disposable electrochemical sensor substrates deployed for detection of bacteria for environmental and healthcare applications. The technologies have significant potential in helping reduce bacterial infections and checking AMR. This could help save lives of people succumbing to bacterial infections, as well as improve the overall quality of lives of people in low- and middle-income countries.
Collapse
Affiliation(s)
- Sreelakshmi C S
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vrinda Kini
- Department of Instrumentation and Control, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Maargavi Singh
- Department of Instrumentation and Control, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Chiranjay Mukhopadhyay
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Pooja Nag
- Department of Mechatronics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kapil Sadani
- Department of Instrumentation and Control, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
12
|
Sun K, Peng F, Xu K, Liu Y, Zhou X, Shang N, Li C. A novel multivariate logistic model for predicting risk factors of failed treatment with carbapenem-resistant Acinetobacter baumannii ventilator-associated pneumonia. Front Public Health 2024; 12:1385118. [PMID: 38784576 PMCID: PMC11111873 DOI: 10.3389/fpubh.2024.1385118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Background This study aimed to explore the risk factors for failed treatment of carbapenem-resistant Acinetobacter baumannii ventilator-associated pneumonia (CRAB-VAP) with tigecycline and to establish a predictive model to predict the incidence of failed treatment and the prognosis of CRAB-VAP. Methods A total of 189 CRAB-VAP patients were included in the safety analysis set from two Grade 3 A national-level hospitals between 1 January 2022 and 31 December 2022. The risk factors for failed treatment with CRAB-VAP were identified using univariate analysis, multivariate logistic analysis, and an independent nomogram to show the results. Results Of the 189 patients, 106 (56.1%) patients were in the successful treatment group, and 83 (43.9%) patients were in the failed treatment group. The multivariate logistic model analysis showed that age (OR = 1.04, 95% CI: 1.02, 1.07, p = 0.001), yes. of hypoproteinemia (OR = 2.43, 95% CI: 1.20, 4.90, p = 0.013), the daily dose of 200 mg (OR = 2.31, 95% CI: 1.07, 5.00, p = 0.034), yes. of medication within 14 days prior to surgical intervention (OR = 2.98, 95% CI: 1.19, 7.44, p = 0.019), and no. of microbial clearance (OR = 0.31, 95% CI: 0.14, 0.70, p = 0.005) were risk factors for the failure of tigecycline treatment. Receiver operating characteristic (ROC) analysis showed that the AUC area of the prediction model was 0.745 (0.675-0.815), and the decision curve analysis (DCA) showed that the model was effective in clinical practice. Conclusion Age, hypoproteinemia, daily dose, medication within 14 days prior to surgical intervention, and microbial clearance are all significant risk factors for failed treatment with CRAB-VAP, with the nomogram model indicating that high age was the most important factor. Because the failure rate of CRAB-VAP treatment with tigecycline was high, this prediction model can help doctors correct or avoid risk factors during clinical treatment.
Collapse
Affiliation(s)
- Ke Sun
- Department of Pharmacy, The First Hospital of Shanxi Medical University, Taiyuan, China
| | | | - Kaiqiang Xu
- Qinhuangdao Center for Disease Control and Prevention, Qinhuangdao, Hebei, China
| | - Yong Liu
- Shandong Public Health Clinical Center, Jinan, Shangdong, China
| | - Xuanping Zhou
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Nan Shang
- Department of Pharmacy, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Chao Li
- Department of Pharmacy, The First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
13
|
Bostanghadiri N, Narimisa N, Mirshekar M, Dadgar-Zankbar L, Taki E, Navidifar T, Darban-Sarokhalil D. Prevalence of colistin resistance in clinical isolates of Acinetobacter baumannii: a systematic review and meta-analysis. Antimicrob Resist Infect Control 2024; 13:24. [PMID: 38419112 PMCID: PMC10902961 DOI: 10.1186/s13756-024-01376-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/04/2024] [Indexed: 03/02/2024] Open
Abstract
INTRODUCTION The development of colistin resistance in Acinetobacter baumannii during treatment has been identified in certain patients, often leading to prolonged or recurrent infections. As colistin, is the last line of therapy for A. baumannii infections that are resistant to almost all other antibiotics, colistin-resistant A. baumannii strains currently represent a significant public health threat, particularly in healthcare settings where there is significant selective pressure. AIM The aim of this study was to comprehensively determine the prevalence of colistin resistance in A. baumannii from clinical samples. Regional differences in these rates were also investigated using subgroup analyses. METHOD The comprehensive search was conducted using "Acinetobacter baumannii", "Colistin resistant" and all relevant keywords. A systematic literature search was performed after searching in PubMed, Embase, Web of Science, and Scopus databases up to April 25, 2023. Statistical analysis was performed using Stata software version 17 and sources of heterogeneity were evaluated using I2. The potential for publication bias was explored using Egger's tests. A total of 30,307 articles were retrieved. After a thorough evaluation, 734 studies were finally eligible for inclusion in the present systematic review and meta-analysis. RESULT According to the results, the prevalence of resistance to colistin among A. baumannii isolates was 4% (95% CI 3-5%), which has increased significantly from 2% before 2011 to 5% after 2012. South America had the highest resistance rate to this antibiotic. The broth microdilution method had the highest level of resistance, while the agar dilution showed the lowest level. CONCLUSIONS This meta-analysis found a low prevalence of colistin resistance among A. baumannii isolates responsible for infections worldwide from 2000 to 2023. However, there is a high prevalence of colistin-resistant isolates in certain countries. This implies an urgent public health threat, as colistin is one of the last antibiotics available for the treatment of infections caused by XDR strains of A. baumannii.
Collapse
Affiliation(s)
- Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Negar Narimisa
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Mirshekar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Dadgar-Zankbar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elahe Taki
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Tahereh Navidifar
- Department of Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran.
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Bagińska N, Grygiel I, Orwat F, Harhala MA, Jędrusiak A, Gębarowska E, Letkiewicz S, Górski A, Jończyk-Matysiak E. Stability study in selected conditions and biofilm-reducing activity of phages active against drug-resistant Acinetobacter baumannii. Sci Rep 2024; 14:4285. [PMID: 38383718 PMCID: PMC10881977 DOI: 10.1038/s41598-024-54469-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/13/2024] [Indexed: 02/23/2024] Open
Abstract
Acinetobacter baumannii is currently a serious threat to human health, especially to people with immunodeficiency as well as patients with prolonged hospital stays and those undergoing invasive medical procedures. The ever-increasing percentage of strains characterized by multidrug resistance to widely used antibiotics and their ability to form biofilms make it difficult to fight infections with traditional antibiotic therapy. In view of the above, phage therapy seems to be extremely attractive. Therefore, phages with good storage stability are recommended for therapeutic purposes. In this work, we present the results of studies on the stability of 12 phages specific for A. baumannii under different conditions (including temperature, different pH values, commercially available disinfectants, essential oils, and surfactants) and in the urine of patients with urinary tract infections (UTIs). Based on our long-term stability studies, the most optimal storage method for the A. baumannii phage turned out to be - 70 °C. In contrast, 60 °C caused a significant decrease in phage activity after 1 h of incubation. The tested phages were the most stable at a pH from 7.0 to 9.0, with the most inactivating pH being strongly acidic. Interestingly, ethanol-based disinfectants caused a significant decrease in phage titers even after 30 s of incubation. Moreover, copper and silver nanoparticle solutions also caused a decrease in phage titers (which was statistically significant, except for the Acba_3 phage incubated in silver solution), but to a much lesser extent than disinfectants. However, bacteriophages incubated for 24 h in essential oils (cinnamon and eucalyptus) can be considered stable.
Collapse
Affiliation(s)
- Natalia Bagińska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland
| | - Ilona Grygiel
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland
| | - Filip Orwat
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland
| | - Marek Adam Harhala
- Laboratory of Phage Molecular Biology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland
| | - Adam Jędrusiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland
| | - Elżbieta Gębarowska
- Division of Biogeochemistry and Environmental Microbiology, Department of Plant Protection, Wroclaw University of Environmental and Life Sciences, Grunwaldzka 53, 50-357, Wrocław, Poland
| | | | - Andrzej Górski
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland.
| |
Collapse
|
15
|
Abou Fayad A, Haraoui LP, Sleiman A, Hussein H, Grenier F, Derbaj G, Itani D, Iweir S, Sherri N, Bazzi W, Rasheed S, Tanelian A, Miari M, el Hafi B, Kanj SS, Kanafani ZA, Daoud Z, Araj GF, Matar GM. Molecular Characteristics of Colistin Resistance in Acinetobacter baumannii and the Activity of Antimicrobial Combination Therapy in a Tertiary Care Medical Center in Lebanon. Microorganisms 2024; 12:349. [PMID: 38399753 PMCID: PMC10892383 DOI: 10.3390/microorganisms12020349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
(1) Background: Infections with pan-drug-resistant (PDR) bacteria, such as A. baumannii, are becoming increasingly common, especially in healthcare facilities. In this study, we selected 15 colistin-resistant clinical A. baumannii isolates from a hospital in Beirut, Lebanon, to test combination therapies and determine their sequence types (STs) and the mechanism of colistin resistance using whole-genome sequencing (WGS). (2) Methods: Antimicrobial susceptibility testing via broth microdilution against 12 antimicrobials from different classes and growth rate assays were performed. A checkerboard assay was conducted on PDR isolates using six different antimicrobials, each in combination with colistin. Genomic DNA was extracted from all isolates and subjected to WGS. (3) Results: All isolates were resistant to all tested antimicrobials with the one exception that was susceptible to gentamicin. Combining colistin with either meropenem, ceftolozane-tazobactam, or teicoplanin showed synergistic activity. Sequencing data revealed that 67% of the isolates belonged to Pasteur ST2 and 33% to ST187. Furthermore, these isolates harbored a number of resistance genes, including blaOXA-23. Mutations in the pmrC gene were behind colistin resistance. (4) Conclusions: With the rise in antimicrobial resistance and the absence of novel antimicrobial production, alternative treatments must be found. The combination therapy results from this study suggest treatment options for PDR ST2 A. baumannii-infected patients.
Collapse
Affiliation(s)
- Antoine Abou Fayad
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (A.A.F.); (A.S.); (G.D.); (D.I.); (S.I.); (N.S.); (W.B.); (S.R.); (A.T.); (M.M.)
- Center for Infectious Diseases Research, American University of Beirut, Beirut 1107 2020, Lebanon; (S.S.K.); (Z.A.K.); (G.F.A.)
- World Health Organization (WHO) Collaborating Center for Reference and Research on Bacterial Pathogens, Beirut 1107 2020, Lebanon
| | - Louis-Patrick Haraoui
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
- Centre de recherche Charles-Le Moyne, Hôpital Charles-Le Moyne, Greenfield Park, QC J4V 2G9, Canada
| | - Ahmad Sleiman
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (A.A.F.); (A.S.); (G.D.); (D.I.); (S.I.); (N.S.); (W.B.); (S.R.); (A.T.); (M.M.)
- Center for Infectious Diseases Research, American University of Beirut, Beirut 1107 2020, Lebanon; (S.S.K.); (Z.A.K.); (G.F.A.)
- World Health Organization (WHO) Collaborating Center for Reference and Research on Bacterial Pathogens, Beirut 1107 2020, Lebanon
| | - Hadi Hussein
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (A.A.F.); (A.S.); (G.D.); (D.I.); (S.I.); (N.S.); (W.B.); (S.R.); (A.T.); (M.M.)
- Center for Infectious Diseases Research, American University of Beirut, Beirut 1107 2020, Lebanon; (S.S.K.); (Z.A.K.); (G.F.A.)
- World Health Organization (WHO) Collaborating Center for Reference and Research on Bacterial Pathogens, Beirut 1107 2020, Lebanon
| | - Frédéric Grenier
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
| | - Ghada Derbaj
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (A.A.F.); (A.S.); (G.D.); (D.I.); (S.I.); (N.S.); (W.B.); (S.R.); (A.T.); (M.M.)
- Center for Infectious Diseases Research, American University of Beirut, Beirut 1107 2020, Lebanon; (S.S.K.); (Z.A.K.); (G.F.A.)
- World Health Organization (WHO) Collaborating Center for Reference and Research on Bacterial Pathogens, Beirut 1107 2020, Lebanon
| | - Dana Itani
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (A.A.F.); (A.S.); (G.D.); (D.I.); (S.I.); (N.S.); (W.B.); (S.R.); (A.T.); (M.M.)
- Center for Infectious Diseases Research, American University of Beirut, Beirut 1107 2020, Lebanon; (S.S.K.); (Z.A.K.); (G.F.A.)
- World Health Organization (WHO) Collaborating Center for Reference and Research on Bacterial Pathogens, Beirut 1107 2020, Lebanon
| | - Sereen Iweir
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (A.A.F.); (A.S.); (G.D.); (D.I.); (S.I.); (N.S.); (W.B.); (S.R.); (A.T.); (M.M.)
- Center for Infectious Diseases Research, American University of Beirut, Beirut 1107 2020, Lebanon; (S.S.K.); (Z.A.K.); (G.F.A.)
- World Health Organization (WHO) Collaborating Center for Reference and Research on Bacterial Pathogens, Beirut 1107 2020, Lebanon
| | - Nour Sherri
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (A.A.F.); (A.S.); (G.D.); (D.I.); (S.I.); (N.S.); (W.B.); (S.R.); (A.T.); (M.M.)
- Center for Infectious Diseases Research, American University of Beirut, Beirut 1107 2020, Lebanon; (S.S.K.); (Z.A.K.); (G.F.A.)
- World Health Organization (WHO) Collaborating Center for Reference and Research on Bacterial Pathogens, Beirut 1107 2020, Lebanon
| | - Wael Bazzi
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (A.A.F.); (A.S.); (G.D.); (D.I.); (S.I.); (N.S.); (W.B.); (S.R.); (A.T.); (M.M.)
- Center for Infectious Diseases Research, American University of Beirut, Beirut 1107 2020, Lebanon; (S.S.K.); (Z.A.K.); (G.F.A.)
- World Health Organization (WHO) Collaborating Center for Reference and Research on Bacterial Pathogens, Beirut 1107 2020, Lebanon
| | - Sari Rasheed
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (A.A.F.); (A.S.); (G.D.); (D.I.); (S.I.); (N.S.); (W.B.); (S.R.); (A.T.); (M.M.)
- Center for Infectious Diseases Research, American University of Beirut, Beirut 1107 2020, Lebanon; (S.S.K.); (Z.A.K.); (G.F.A.)
- World Health Organization (WHO) Collaborating Center for Reference and Research on Bacterial Pathogens, Beirut 1107 2020, Lebanon
| | - Arax Tanelian
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (A.A.F.); (A.S.); (G.D.); (D.I.); (S.I.); (N.S.); (W.B.); (S.R.); (A.T.); (M.M.)
- Center for Infectious Diseases Research, American University of Beirut, Beirut 1107 2020, Lebanon; (S.S.K.); (Z.A.K.); (G.F.A.)
- World Health Organization (WHO) Collaborating Center for Reference and Research on Bacterial Pathogens, Beirut 1107 2020, Lebanon
| | - Mariam Miari
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (A.A.F.); (A.S.); (G.D.); (D.I.); (S.I.); (N.S.); (W.B.); (S.R.); (A.T.); (M.M.)
- Center for Infectious Diseases Research, American University of Beirut, Beirut 1107 2020, Lebanon; (S.S.K.); (Z.A.K.); (G.F.A.)
- World Health Organization (WHO) Collaborating Center for Reference and Research on Bacterial Pathogens, Beirut 1107 2020, Lebanon
| | - Bassam el Hafi
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (A.A.F.); (A.S.); (G.D.); (D.I.); (S.I.); (N.S.); (W.B.); (S.R.); (A.T.); (M.M.)
- Center for Infectious Diseases Research, American University of Beirut, Beirut 1107 2020, Lebanon; (S.S.K.); (Z.A.K.); (G.F.A.)
- World Health Organization (WHO) Collaborating Center for Reference and Research on Bacterial Pathogens, Beirut 1107 2020, Lebanon
| | - Souha S. Kanj
- Center for Infectious Diseases Research, American University of Beirut, Beirut 1107 2020, Lebanon; (S.S.K.); (Z.A.K.); (G.F.A.)
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Zeina A. Kanafani
- Center for Infectious Diseases Research, American University of Beirut, Beirut 1107 2020, Lebanon; (S.S.K.); (Z.A.K.); (G.F.A.)
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Ziad Daoud
- Laboratory Department, My Michigan Health Midland Medical Center, College of Medicine, Central Michigan University, Saginaw, MI 48602, USA;
| | - George F. Araj
- Center for Infectious Diseases Research, American University of Beirut, Beirut 1107 2020, Lebanon; (S.S.K.); (Z.A.K.); (G.F.A.)
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Ghassan M. Matar
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (A.A.F.); (A.S.); (G.D.); (D.I.); (S.I.); (N.S.); (W.B.); (S.R.); (A.T.); (M.M.)
- Center for Infectious Diseases Research, American University of Beirut, Beirut 1107 2020, Lebanon; (S.S.K.); (Z.A.K.); (G.F.A.)
- World Health Organization (WHO) Collaborating Center for Reference and Research on Bacterial Pathogens, Beirut 1107 2020, Lebanon
| |
Collapse
|
16
|
Shi J, Cheng J, Liu S, Zhu Y, Zhu M. Acinetobacter baumannii: an evolving and cunning opponent. Front Microbiol 2024; 15:1332108. [PMID: 38318341 PMCID: PMC10838990 DOI: 10.3389/fmicb.2024.1332108] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Acinetobacter baumannii is one of the most common multidrug-resistant pathogens causing nosocomial infections. The prevalence of multidrug-resistant A. baumannii infections is increasing because of several factors, including unregulated antibiotic use. A. baumannii drug resistance rate is high; in particular, its resistance rates for tigecycline and polymyxin-the drugs of last resort for extensively drug-resistant A. baumannii-has been increasing annually. Patients with a severe infection of extensively antibiotic-resistant A. baumannii demonstrate a high mortality rate along with a poor prognosis, which makes treating them challenging. Through carbapenem enzyme production and other relevant mechanisms, A. baumannii has rapidly acquired a strong resistance to carbapenem antibiotics-once considered a class of strong antibacterials for A. baumannii infection treatment. Therefore, understanding the resistance mechanism of A. baumannii is particularly crucial. This review summarizes mechanisms underlying common antimicrobial resistance in A. baumannii, particularly those underlying tigecycline and polymyxin resistance. This review will serve as a reference for reasonable antibiotic use at clinics, as well as new antibiotic development.
Collapse
Affiliation(s)
- Jingchao Shi
- Open Laboratory Medicine, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
- Graduate School, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianghao Cheng
- Open Laboratory Medicine, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Shourong Liu
- Department of Infectious Disease, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yufeng Zhu
- Open Laboratory Medicine, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Mingli Zhu
- Open Laboratory Medicine, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
17
|
Soontarach R, Srimanote P, Arechanajan B, Nakkaew A, Voravuthikunchai SP, Chusri S. Characterization of a novel bacteriophage endolysin (LysAB1245) with extended lytic activity against distinct capsular types associated with Acinetobacter baumannii resistance. PLoS One 2024; 19:e0296453. [PMID: 38165983 PMCID: PMC10760713 DOI: 10.1371/journal.pone.0296453] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/11/2023] [Indexed: 01/04/2024] Open
Abstract
Capsular polysaccharides are considered as major virulence factors associated with the ability of multidrug-resistant (MDR) Acinetobacter baumannii to cause severe infections. In this study, LysAB1245, a novel bacteriophage-encoded endolysin consisting of a lysozyme-like domain from phage T1245 was successfully expressed, purified, and evaluated for its antibacterial activity against distinct capsular types associated with A. baumannii resistance. The results revealed a broad spectrum activity of LysAB1245 against all clinical MDR A. baumannii isolates belonging to capsular type (KL) 2, 3, 6, 10, 47, 49, and 52 and A. baumannii ATCC 19606. At 2 h following the treatment with 1.7 unit/reaction of LysAB1245, more than 3 log reduction in the numbers of bacterial survival was observed. In addition, LysAB1245 displayed rapid bactericidal activity within 30 min (nearly 3 log CFU/mL of bacterial reduction). Thermostability assay indicated that LysAB1245 was stable over a broad range of temperature from 4 to 70°C, while pH sensitivity assay demonstrated a wide range of pH from 4.5 to 10.5. Furthermore, both minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of LysAB1245 against all MDR A. baumannii isolates and A. baumannii ATCC 19606 were 4.21 μg/mL (0.1 unit/reaction). Conclusively, these results suggest that LysAB1245 possesses potential application for the treatment of nosocomial MDR A. baumannii infections.
Collapse
Affiliation(s)
- Rosesathorn Soontarach
- Faculty of Science, Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Songkhla, Thailand
- Faculty of Medicine, Department of Internal Medicine, Division of Infectious Diseases, Prince of Songkla University, Songkhla, Thailand
| | - Potjanee Srimanote
- Faculty of Allied Health Sciences, Graduate in Biomedical Sciences, Thammasat University, Pathum Thani, Thailand
| | - Buppa Arechanajan
- Faculty of Allied Health Sciences, Graduate in Biomedical Sciences, Thammasat University, Pathum Thani, Thailand
| | - Alisa Nakkaew
- Faculty of Science, Division of Biological Science, Program in Molecular Biology and Bioinformatics, Prince of Songkla University, Songkhla, Thailand
| | | | - Sarunyou Chusri
- Faculty of Medicine, Department of Internal Medicine, Division of Infectious Diseases, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
18
|
Velmurugan H, Venkatesan S, Meles HN, Neelambaram K, Thangaraju P. Sulbactam-Durlobactam, A Novel Drug for the Treatment of Multidrug Resistant Acinetobacter baumannii Infections - A Systematic Review. Infect Disord Drug Targets 2024; 24:e220124225835. [PMID: 38258766 DOI: 10.2174/0118715265276432231217192054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND Sulbactam-durlobactam (SUL-DUR) has been tested in vitro for its ability to generate resistance in clinical isolates of Acinetobacter species. According to prior studies, combining durlobactam with sulbactam causes sulbactam-resistant isolates to become more active and revert to susceptibility. We aimed to conduct a systematic review of the in vitro activity of SUL-DUR on A. baumannii (Ab) isolates, including carbapenem-resistant A. baumannii (CRAb), to provide an overview for physicians dealing with Ab infections. METHODS The following keywords were searched in the PubMed, Google Scholar, and EMBASE databases to look for eligible original works that have been published without restrictions till June 30, 2023: A. baumannii and sulbactam-durlobactam, SUL-DUR, durlobactam, and sulbactam-ETX2514. We also searched clinicaltrials.gov and the Clinical Trials Registry of India (CTRI) for clinical trials involving sulbactamdurlobactam and Acinetobacter. RESULTS There were a total of 852 abstracts found. Among them, 633 articles with titles, abstracts, and keywords were reviewed, and 574 articles were removed after the initial screening. A total of 59 full-text eligible articles were evaluated, and 51 of them were eliminated because they did not satisfy the criteria set for inclusion. The full texts of the final 8 in vitro studies on A. baumanii and sulbactam/durlobactam were further evaluated. There were 5 trials on A. baumanii and sulbactam/durlobactam found on clinicaltrials.gov and the Clinical Trial Registry of India (CTRI). CONCLUSION The findings from the studies show that SUL-DUR might be a successful therapeutic option for multidrug-resistant-Ab infections. Future clinical trials will be required to validate the possibility of using this combination to treat multidrug-resistant A. baumannii infections.
Collapse
Affiliation(s)
| | | | - Hadush Negash Meles
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Adigrat University, Tigrai, Northern Ethiopia
| | | | | |
Collapse
|
19
|
Stabile M, Esposito A, Iula VD, Guaragna A, De Gregorio E. PYED-1 Overcomes Colistin Resistance in Acinetobacter baumannii. Pathogens 2023; 12:1323. [PMID: 38003788 PMCID: PMC10674209 DOI: 10.3390/pathogens12111323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/21/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Antibiotic resistance has become more and more widespread over the recent decades, becoming a major global health problem and causing colistin to be increasingly used as an antibiotic of last resort. Acinetobacter baumannii, an opportunistic pathogen that has rapidly evolved into a superbug exhibiting multidrug-resistant phenotypes, is responsible for a large number of hospital infection outbreaks. With the intensive use of colistin, A. baumannii resistance to colistin has been found to increase significantly. In previous work, we identified a deflazacort derivative, PYED-1 (pregnadiene-11-hydroxy-16,17-epoxy-3,20-dione-1), which exhibits either direct-acting or synergistic activity against Gram-positive and Gram-negative species and Candida spp., including A. baumannii. The aim of this study was to evaluate the antibacterial activity of PYED-1 in combination with colistin against both A. baumannii planktonic and sessile cells. Furthermore, the cytotoxicity of PYED-1 with and without colistin was assessed. Our results show that PYED-1 and colistin can act synergistically to produce a strong antimicrobial effect against multidrug-resistant populations of A. baumannii. Interestingly, our data reveal that PYED-1 is able to restore the efficacy of colistin against all colistin-resistant A. baumannii isolates. This drug combination could achieve a much stronger antimicrobial effect than colistin while using a much smaller dosage of the drugs, additionally eliminating the toxicity and resistance issues associated with the use of colistin.
Collapse
Affiliation(s)
- Maria Stabile
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy; (M.S.); (A.G.)
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Anna Esposito
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy;
| | - Vita Dora Iula
- Department of Laboratory Medicine, U.O.C Patologia Clinica, Ospedale del Mare—ASL Napoli1 Centro, 80145 Naples, Italy;
| | - Annalisa Guaragna
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy; (M.S.); (A.G.)
| | - Eliana De Gregorio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| |
Collapse
|
20
|
Abbasi E, van Belkum A, Ghaznavi-Rad E. High frequency of carbapenemase in extensively drug-resistant Acinetobacter baumannii isolates in central Iran. World J Microbiol Biotechnol 2023; 39:321. [PMID: 37755552 DOI: 10.1007/s11274-023-03778-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/22/2023] [Indexed: 09/28/2023]
Abstract
OBJECTIVES We assessed the frequency of occurrence for infections caused by wild-type A. baumannii, multidrug-resistant (MDR) or XDR A. baumannii, and CRAB. We detected different antibiotic resistance genes in the genomes of infectious A. baumannii strains from central Iran. METHODS This study investigated 546 clinical patient samples for the presence of A. baumannii by using conventional culture methods and PCR. Antibiotic resistance profiles, and the phenotypic and genotypic characteristics of various antibiotic genes were analyzed. RESULTS Out of 546 samples, 87 (15.9%) A. baumannii isolates were obtained using culture and all culture positive samples were also positive by PCR. The most effective antibiotics were polymyxin B (n = 84 strains) (96.6% susceptibility), colistin (n = 81) (93.1%), and ampicillin/sulbactam (n = 18) (20.7%). All clinical A. baumannii isolates were ESBL-positive. The number of CRAB was 84 (96.5%). All CRAB isolates were both MDR and XDR. Of all CRAB isolates, 78 out of 84 (92.4%) produced metallo-β-lactamase (MBL) by phenotypic diagnosis. The most abundant genes were blaPER (32/87; 36.7%), blaTEM (29/87; 33.3%), blaVEB (26/87; 29.8%) for ESBL and Ambler class D β -lactamases included blaOXA-23 (69/84; 82.1%), blaOXA-24 (46/84; 54.7%), MBLs included blaVIM (51/84; 60.7%), and blaIMP (28/84; 33.3%) for carbapenemase. CONCLUSION High frequencies of XDR A. baumannii and CRAB (96.5%) were detected in central Iran. Quick and accurate diagnosis, appropriate isolation of patients colonized or infected by CRAB isolates, application of accurate and effective infection control policies and programs, and appropriate preventive measures are deemed helpful in preventing the further spread of these resistant and clinically highly relevant strains.
Collapse
Affiliation(s)
- Elnaz Abbasi
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
- , Khomein, Iran
| | | | - Ehsanollah Ghaznavi-Rad
- Molecular and Medicine Research Center, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.
- Department of Microbiology & Immunology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.
- , Arak, Iran.
| |
Collapse
|
21
|
Khoshbakht R, Panahi S, Neshani A, Ghavidel M, Ghazvini K. Novel approaches to overcome Colistin resistance in Acinetobacter baumannii: Exploring quorum quenching as a potential solution. Microb Pathog 2023; 182:106264. [PMID: 37474078 DOI: 10.1016/j.micpath.2023.106264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/22/2023]
Abstract
Acinetobacter baumannii is responsible for a variety of infections, such as nosocomial infections. In recent years, this pathogen has gained resistance to many antibiotics, and thus, carbapenems were used to treat infections with MDR A. baumannii strains in clinical settings. However, as carbapenem-resistant isolates are becoming increasingly prevalent, Colistin is now used as the last line of defense against resistant A. baumannii strains. Unfortunately, reports are increasing on the presence of Colistin-resistant phenotypes in infections caused by A. baumannii, creating an urgent need to find a substitute way to combat these resistant isolates. Quorum sensing inhibition, also known as quorum quenching, is an efficient alternative way of reversing resistance in different Gram-negative bacteria. Quorum sensing is a mechanism used by bacteria to communicate with each other by secreting signal molecules. When the population of bacteria increases and the concentration of signal molecules reaches a certain threshold, bacteria can implement mechanisms to adapt to a hostile environment, such as biofilm formation. Biofilms have many advantages for pathogens, such as antibiotic resistance. Different studies have revealed that disrupting the biofilm of A. baumannii makes it more susceptible to antibiotics. Although very few studies have been conducted on the biofilm disruption through quorum quenching in Colistin-resistant A. baumannii, these studies and similar studies bring hope in finding an alternative way of treating the Colistin-resistant isolates. In conclusion, quorum quenching has the potential to be used against Colistin-resistant A. baumannii.
Collapse
Affiliation(s)
- Reza Khoshbakht
- Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Susan Panahi
- Department of Microbiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alireza Neshani
- Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdis Ghavidel
- Shahid Hasheminejad Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
22
|
Seifert H, Müller C, Stefanik D, Higgins PG, Wohlfarth E, Kresken M. In Vitro Activity of Cefiderocol against a Global Collection of Carbapenem-Resistant Acinetobacter baumannii Isolates. Antibiotics (Basel) 2023; 12:1172. [PMID: 37508268 PMCID: PMC10376869 DOI: 10.3390/antibiotics12071172] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Background: Cefiderocol is a novel siderophore cephalosporin with potent activity against multi-drug-resistant Gram-negative pathogens including carbapenem-resistant Acinetobacter baumannii (CRAB). Methods: The susceptibility of 313 non-duplicate CRAB isolates with defined carbapenem resistance mechanisms from a global collection to cefiderocol, ceftazidime, ceftazidime/avibactam, ceftolozane/tazobactam, ciprofloxacin, colistin, imipenem/relebactam, meropenem, meropenem/vaborbactam, minocycline, and piperacillin/tazobactam was determined using the broth microdilution method. Isolates were obtained from various body sites from patients in 47 countries in five world regions between 2012 and 2016. The identification of carbapenem resistance mechanisms and assignment to A. baumannii international clonal lineages were based on whole genome sequencing. Results: Cefiderocol showed greater activity than comparator antimicrobials of the β-lactam class, including novel β-lactams combined with β-lactamase inhibitors, ciprofloxacin, and minocycline. Cefiderocol MIC50 and MIC90 values were 0.5 mg/L and 4 mg/L, respectively, while colistin had comparable activity with a higher MIC50 at 1 mg/L and a lower MIC90 value of 2 mg/L. Many isolates with elevated cefiderocol MICs ≥ 4 mg/L represented A. baumannii international clone (IC) 1 and harbored a metallo-β-lactamase. Conclusions: While cefiderocol is a useful addition to the limited armamentarium of drugs targeting this problematic pathogen, a considerable part of CRAB isolates had elevated MIC values in a range of 4 -> 32 mg/L, including all isolates with a metallo-β-lactamase.
Collapse
Affiliation(s)
- Harald Seifert
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935 Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 38124 Braunschweig, Germany
| | - Carina Müller
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935 Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 38124 Braunschweig, Germany
| | - Danuta Stefanik
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935 Cologne, Germany
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935 Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 38124 Braunschweig, Germany
| | | | - Michael Kresken
- Antiinfectives Intelligence GmbH, 51105 Cologne, Germany
- Rheinische Fachhochschule gGmbH, 50676 Cologne, Germany
| |
Collapse
|
23
|
Lei EK, Ryan S, van Faassen H, Foss M, Robotham A, Baltat I, Fulton K, Henry KA, Chen W, Hussack G. Isolation and characterization of a VHH targeting the Acinetobacter baumannii cell surface protein CsuA/B. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12594-1. [PMID: 37284893 DOI: 10.1007/s00253-023-12594-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/18/2023] [Accepted: 05/15/2023] [Indexed: 06/08/2023]
Abstract
Acinetobacter baumannii is a Gram-negative bacterial pathogen that exhibits high intrinsic resistance to antimicrobials, with treatment often requiring the use of last-resort antibiotics. Antibiotic-resistant strains have become increasingly prevalent, underscoring a need for new therapeutic interventions. The aim of this study was to use A. baumannii outer membrane vesicles as immunogens to generate single-domain antibodies (VHHs) against bacterial cell surface targets. Llama immunization with the outer membrane vesicle preparations from four A. baumannii strains (ATCC 19606, ATCC 17961, ATCC 17975, and LAC-4) elicited a strong heavy-chain IgG response, and VHHs were selected against cell surface and/or extracellular targets. For one VHH, OMV81, the target antigen was identified using a combination of gel electrophoresis, mass spectrometry, and binding studies. Using these techniques, OMV81 was shown to specifically recognize CsuA/B, a protein subunit of the Csu pilus, with an equilibrium dissociation constant of 17 nM. OMV81 specifically bound to intact A. baumannii cells, highlighting its potential use as a targeting agent. We anticipate the ability to generate antigen-specific antibodies against cell surface A. baumannii targets could provide tools for further study and treatment of this pathogen. KEY POINTS: •Llama immunization with bacterial OMV preparations for VHH generation •A. baumannii CsuA/B, a pilus subunit, identified by mass spectrometry as VHH target •High-affinity and specific VHH binding to CsuA/B and A. baumannii cells.
Collapse
Affiliation(s)
- Eric K Lei
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Shannon Ryan
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Henk van Faassen
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Mary Foss
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Anna Robotham
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Isabel Baltat
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Kelly Fulton
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Kevin A Henry
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Wangxue Chen
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
- Department of Biology, Brock University, St. Catharines, Ontario, Canada
| | - Greg Hussack
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada.
| |
Collapse
|
24
|
Colistin Resistance in Acinetobacter baumannii: Molecular Mechanisms and Epidemiology. Antibiotics (Basel) 2023; 12:antibiotics12030516. [PMID: 36978383 PMCID: PMC10044110 DOI: 10.3390/antibiotics12030516] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/17/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Acinetobacter baumannii is recognized as a clinically significant pathogen causing a wide spectrum of nosocomial infections. Colistin was considered a last-resort antibiotic for the treatment of infections caused by multidrug-resistant A. baumannii. Since the reintroduction of colistin, a number of mechanisms of colistin resistance in A. baumannii have been reported, including complete loss of LPS by inactivation of the biosynthetic pathway, modifications of target LPS driven by the addition of phosphoethanolamine (PEtN) moieties to lipid A mediated by the chromosomal pmrCAB operon and eptA gene-encoded enzymes or plasmid-encoded mcr genes and efflux of colistin from the cell. In addition to resistance to colistin, widespread heteroresistance is another feature of A. baumannii that leads to colistin treatment failure. This review aims to present a critical assessment of relevant published (>50 experimental papers) up-to-date knowledge on the molecular mechanisms of colistin resistance in A. baumannii with a detailed review of implicated mutations and the global distribution of colistin-resistant strains.
Collapse
|
25
|
Occurrence of Multidrug-Resistant Strains of Acinetobacter spp.: An Emerging Threat for Nosocomial-Borne Infection in Najran Region, KSA. Trop Med Infect Dis 2023; 8:tropicalmed8020108. [PMID: 36828524 PMCID: PMC9963463 DOI: 10.3390/tropicalmed8020108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Multidrug-resistant strains are frequent causes of nosocomial infections. The majority of nosocomial infections, particularly in critical care units (ICU), have been linked to A. baumannii, which has major clinical significance. The current paper attempts to identify the potential risk and prognosis factors for acquiring an infection due to A. baumannii compared to that of other nosocomial bacteria. In our study, we employed antibiotics generally prescribed for the initial course of treatment such as colistin, meropenem, amikacin, trimethoprime-sulfamethoxazole, levofloxacin, gentamicin, ciprofloxacin, and piperacillin-tazobactam. We found that the isolated A. baumannii were resistant at a high rate to meropenem, piperacillin-tazobactam, amikacin, levofloxacin, and ciprofloxacin, while they were partially susceptible to trimethoprim-sulfamethoxazole. Our study revealed that A. baumannii was most susceptible to gentamicin and colistin at 85.8% and 92.9%, respectively, whereas the combination of colistin and trimethoprim/sulfamethoxazole was 100% active. The patients were the primary source of infection with A. baumannii, followed by inanimate objects present in the ICU and hospital premises, and then the hospital staff who were taking care of the ICU patients. Gentamicin and colistin were the most sensitive antibiotics; of the 13 tested in total, the rate of drug resistance was above 50%. The very high rate of antibiotic resistance is alarming.
Collapse
|
26
|
Mantzana P, Protonotariou E, Kassomenaki A, Meletis G, Tychala A, Keskilidou E, Arhonti M, Katsanou C, Daviti A, Vasilaki O, Kagkalou G, Skoura L. In Vitro Synergistic Activity of Antimicrobial Combinations against Carbapenem- and Colistin-Resistant Acinetobacter baumannii and Klebsiella pneumoniae. Antibiotics (Basel) 2023; 12:antibiotics12010093. [PMID: 36671295 PMCID: PMC9855173 DOI: 10.3390/antibiotics12010093] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023] Open
Abstract
Polymyxins are commonly used as the last resort for the treatment of MDR Acinetobacter baumannii and Klebsiella pneumoniae nosocomial infections; however, apart from the already known toxicity issues, resistance to these agents is emerging. In the present study, we assessed the in vitro synergistic activity of antimicrobial combinations against carbapenem-resistant and colistin-resistant A. baumannii and K. pneumoniae in an effort to provide more options for their treatment. Two hundred A. baumannii and one hundred and six K. pneumoniae single clinical isolates with resistance to carbapenems and colistin, recovered between 1 January 2021 and 31 July 2022,were included. A. baumannii were tested by the MIC test strip fixed-ratio method for combinations of colistin with either meropenem or rifampicin or daptomycin. K. pneumoniae were tested for the combinations of colistin with meropenem and ceftazidime/avibactam with aztreonam. Synergy was observed at: 98.99% for colistin and meropenem against A. baumannii; 91.52% for colistin and rifampicin; and 100% for colistin and daptomycin. Synergy was also observed at: 73.56% for colistin and meropenem against K. pneumoniae and; and 93% for ceftazidime/avibactam with aztreonam. The tested antimicrobial combinations presented high synergy rates, rendering them valuable options against A. baumannii and K. pneumoniae infections.
Collapse
|
27
|
Kabic J, Novovic K, Kekic D, Trudic A, Opavski N, Dimkic I, Jovcic B, Gajic I. Comparative genomics and molecular epidemiology of colistin-resistant Acinetobacter baumannii. Comput Struct Biotechnol J 2022; 21:574-585. [PMID: 36659926 PMCID: PMC9816908 DOI: 10.1016/j.csbj.2022.12.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022] Open
Abstract
This study aimed to investigate the prevalence and resistance mechanisms of colistin-resistant Acinetobacter baumannii (ColRAB) isolates in Serbia, assess their genetic relatedness to other circulating A. baumannii isolates in the neighbouring European countries, and analyse the global genomic epidemiology of ColRAB isolates. A total of 784 isolates of A. baumannii were recovered from hospitalised patients in Serbia between 2018 and 2021. The antimicrobial susceptibility testing was performed using disk diffusion and broth microdilution. All ColRAB isolates were subjected to DNA isolation and whole-genome sequencing (WGS). Overall, 3.94 % (n = 30) isolates were confirmed as ColRAB. Results of mutational and transcriptional analysis of genes associated with colistin resistance indicate the central role of the two-component regulating system, PmrAB, and increased expression of the pmrC gene in ColRAB. Most of the isolates (n = 29, 96.6 %) belonged to international clone II, with the most common sequence type being STPas2 (n = 23, 76.6 %). Based on the WGS analysis, ColRAB isolates belonging to the same ST isolated in various countries were grouped into the same clusters, indicating the global dissemination of several high-risk clonal lineages. Phylogenomic analysis of ColRAB isolates, together with all previously published A. baumannii genomes from South-Eastern European countries, showed that colistin resistance arose independently in several clonal lineages. Comparative genomic analysis revealed multiple genes with various roles (transcriptional regulation, transmembrane transport, outer membrane assembly, etc.), which might be associated with colistin resistance in A. baumannii. The obtained findings serve as the basis for further studies, contributing to a better understanding of colistin resistance mechanisms in A. baumannii.
Collapse
Affiliation(s)
- Jovana Kabic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Katarina Novovic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000, Belgrade, Serbia
| | - Dusan Kekic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Anika Trudic
- Department of Microbiology, Faculty of Medicine, University of Novi Sad, 21000, Novi Sad, Serbia
- Institute for Pulmonary Diseases of Vojvodina, 21204, Sremska Kamenica, Serbia
| | - Natasa Opavski
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Ivica Dimkic
- Faculty of Biology, University of Belgrade, 11000, Belgrade, Serbia
| | - Branko Jovcic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000, Belgrade, Serbia
- Faculty of Biology, University of Belgrade, 11000, Belgrade, Serbia
- Correspondence to: Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Faculty of Biology, University of Belgrade Studentski trg 16, 11000 Belgrade, Serbia.
| | - Ina Gajic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
- Correspondence to: Institute of Microbiology and Immunology, Medical Faculty, University of Belgrade Dr Subotica 1, 11000 Belgrade, Serbia.
| |
Collapse
|
28
|
Zahra N, Zeshan B, Ishaq M. Carbapenem resistance gene crisis in A. baumannii: a computational analysis. BMC Microbiol 2022; 22:290. [PMID: 36463105 PMCID: PMC9719202 DOI: 10.1186/s12866-022-02706-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
Acinetobacter baumannii (A. baumannii) is one of the members of ESKAPE bacteria which is considered multidrug resistant globally. The objective of this study is to determine the protein docking of different antibiotic resistance gene (ARGs) in A. baumannii. In silico analysis of antibiotic resistance genes against carbapenem are the blaOXA-51, blaOXA-23, blaOXA-58, blaOXA-24, blaOXA-143, NMD-1 and IMP-1 in A. baumannii. The doripenem, imipenem and meropenem were docked to blaOXA-51 and blaOXA-23 using PyRx. The top docking energy was -5.5 kcal/mol by imipenem and doripenem and meropenem showed a binding score of -5. 2 kcal/mol each and blaOXA-23 energy was -4.3 kcal/mol by imipenem and meropenem showed a binding score of -2.3 kcal/mol, while doripenem showed the binding score of -3.4 kcal/mol. Similarly, doripenem imipenem and meropenem were docked to blaOXA-58, IMP-1, Rec A and blaOXA-143, with docking energy was -8.8 kcal/mol by doripenem and meropenem each while imipenem showed a binding score of -4.2 kcal/mol and with IMP-1 demonstrated their binding energies. was -5.7 kcal/mol by meropenem and doripenem showed a binding score of -5.3 kcal/mol, while imipenem showed a binding score of -4.5 kcal/mol. And docking energy was -4.9 kcal/mol by imipenem and meropenem showed binding energy of -3.6 kcal/mol each while doripenem showed a binding score of -3.9 kcal/mol in RecA and with blaOXA-143 docking energy was -3.0 kcal/mol by imipenem and meropenem showed a binding score of -1.9 kcal/mol, while doripenem showed the binding score of -2.5 kcal/mol respectively. Doripenem, imipenem, and meropenem docking findings with blaOXA-24 confirmed their binding energies. Doripenem had the highest docking energy of -5.5 kcal/mol, meropenem had a binding score of -4.0 kcal/mol, and imipenem had a binding score of -3.9 kcal/mol. PyRx was used to dock the doripenem, imipenem, and meropenem to NMD-1. Docking energies for doripenem were all - 4.0 kcal/mol, whereas meropenem had docking energy of -3.3 kcal/mol and imipenem was -1.50 kcal/mol. To the best of our knowledge the underlying mechanism of phenotypic with genotypic resistance molecular docking regarding carbapenem resistance A. baumannii is unclear. Our molecular docking finds the possible protein targeting mechanism for carbapenem-resistant A.baumannii.
Collapse
Affiliation(s)
- Nureen Zahra
- grid.444936.80000 0004 0608 9608Department of Microbiology, Faculty of Science & Technology, University of Central Punjab, Lahore, Pakistan ,grid.440564.70000 0001 0415 4232Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Basit Zeshan
- grid.444936.80000 0004 0608 9608Department of Microbiology, Faculty of Science & Technology, University of Central Punjab, Lahore, Pakistan ,grid.265727.30000 0001 0417 0814Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, 90905 Sandakan, Sabah Malaysia
| | - Musarat Ishaq
- grid.1073.50000 0004 0626 201XLymphatics and Regenerative Surgery Laboratory, Obrien Institute and St Vincent’s Institute, Fitzroy, Australia
| |
Collapse
|
29
|
Wang Z, Fan X, Wang S, Li S, Gao Y, Wang H, Li H. Emergence of Colistin-Resistant Acinetobacter junii in China. Antibiotics (Basel) 2022; 11:antibiotics11121693. [PMID: 36551350 PMCID: PMC9774529 DOI: 10.3390/antibiotics11121693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
The increasing number of multidrug-resistant Gram-negative bacteria presents a serious threat to global health. However, colistin-resistant Acinetobacter junii has rarely been reported. We identified a colistin-resistant A. junii clinical isolate, AJ6079, in blood. The colony of AJ6079 presented a dry phenotype, and it was difficult to form a bacterial suspension, whilst transmission electron microscopy revealed that AJ6079 possessed a thick outer membrane. The phenotypic and genomic comparisons were conducted with one colistin-susceptible A. junii, which had the same antibiotic susceptibility profile except for colistin, and had the same KL25 capsule biosynthesis locus. The AJ6079 exhibited a slower growth rate, indicating that colistin-resistant A. junii possesses a higher fitness cost. The genome of AJ6079 had a G+C content of 38.7% and contained one 3,362,966 bp circular chromosome with no plasmid or mobile colistin resistance (mcr) gene. Comparative genomic analysis revealed that the AJ6079 contained several previously unreported point mutations in colistin-resistance-related genes involving amino acid substitutions in PmrB (N5K, G147C), LpxA (I107F, H131Y), and LpxD (F20I, K263R), which might be correlated with colistin resistance in A. junii. Further research is needed for verification as the genetic background was not exactly the same between the two isolates.
Collapse
|
30
|
Soontarach R, Nwabor OF, Voravuthikunchai SP. Interaction of lytic phage T1245 with antibiotics for enhancement of antibacterial and anti-biofilm efficacy against multidrug-resistant Acinetobacter baumannii. BIOFOULING 2022; 38:994-1005. [PMID: 36606321 DOI: 10.1080/08927014.2022.2163479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/15/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Biofilms associated with multidrug-resistant (MDR) Acinetobacter baumannii on medical devices remain a big clinical problem. Antibiotic susceptibility tests were performed with eight commonly employed antibiotics against clinical isolates. The effects of antibiotics in combination with well-characterized lytic phage T1245 were studied to assess their antibacterial and anti-biofilm efficacy. Ceftazidime, colistin, imipenem, and meropenem significantly reduced bacterial density up to approximately 80% when combined with phage T1245, compared with control. Phage T1245 in combination with ceftazidime, colistin, and meropenem at subinhibitory concentrations demonstrated significant reduction in biomass and bacterial viability of 3-day established biofilms, compared with antibiotic alone. In addition, electron microscopy further confirmed the disruption of biofilm structure and cell morphology upon treatment with phage T1245 and antibiotics, including ceftazidime, colistin, and meropenem. Combined treatment of phage T1245 with these antibiotics could be employed for the management of A. baumannii infections and eradication of the bacterial biofilms.
Collapse
Affiliation(s)
- Rosesathorn Soontarach
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Songkhla, Thailand
| | - Ozioma Forstinus Nwabor
- Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Supayang Piyawan Voravuthikunchai
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
31
|
Kamoshida G, Yamada N, Nakamura T, Yamaguchi D, Kai D, Yamashita M, Hayashi C, Kanda N, Sakaguchi M, Morimoto H, Sawada T, Okada T, Kaya Y, Takemoto N, Yahiro K. Preferential Selection of Low-Frequency, Lipopolysaccharide-Modified, Colistin-Resistant Mutants with a Combination of Antimicrobials in Acinetobacter baumannii. Microbiol Spectr 2022; 10:e0192822. [PMID: 36173297 PMCID: PMC9602988 DOI: 10.1128/spectrum.01928-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/13/2022] [Indexed: 12/31/2022] Open
Abstract
Colistin, which targets lipopolysaccharide (LPS), is used as a last-resort drug against severe infections caused by drug-resistant Acinetobacter baumannii. However, A. baumannii possesses two colistin-resistance mechanisms. LPS modification caused by mutations in pmrAB genes is often observed in clinical isolates of multidrug-resistant Gram-negative pathogens. In addition to LPS modification, A. baumannii has a unique colistin resistance mechanism, a complete loss of LPS due to mutations in the lpxACD genes, which are involved in LPS biosynthesis. This study aimed to elucidate the detailed mechanism of the emergence of colistin-resistant A. baumannii using strains with the same genetic background. Various colistin-resistant strains were generated experimentally using colistin alone and in combination with other antimicrobials, such as meropenem and ciprofloxacin, and the mutation spectrum was analyzed. In vitro selection of A. baumannii in the presence of colistin led to the emergence of strains harboring mutations in lpxACD genes, resulting in LPS-deficient colistin-resistant strains. However, combination of colistin with other antimicrobials led to the selection of pmrAB mutant strains, resulting in strains with modified LPS (LPS-modified strains). Further, the LPS-deficient strains showed decreased fitness and increased susceptibility to many antibiotics and disinfectants. As LPS-deficient strains have a higher biological cost than LPS-modified strains, our findings suggested that pmrAB mutants are more likely to be isolated in clinical settings. We provide novel insights into the mechanisms of resistance to colistin and provide substantial solutions along with precautions for facilitating current research and treatment of colistin-resistant A. baumannii infections. IMPORTANCE Acinetobacter baumannii has developed resistance to various antimicrobial drugs, and its drug-resistant strains cause nosocomial infections. Controlling these infections has become a global clinical challenge. Carbapenem antibiotics are the frontline treatment drugs for infectious diseases caused by A. baumannii. For patients with infections caused by carbapenem-resistant A. baumannii, colistin-based therapy is often the only treatment option. However, A. baumannii readily acquires resistance to colistin. Many patients infected with colistin-resistant A. baumannii undergo colistin treatment before isolation of the colistin-resistant strain, and it is hypothesized that colistin resistance predominantly emerges under selective pressure during colistin therapy. Although the concomitant use of colistin and carbapenems has been reported to have a synergistic effect in vitro against carbapenem-resistant A. baumannii strains, our observations strongly suggest the need for attention to the emergence of strains with a modified lipopolysaccharide during treatment.
Collapse
Affiliation(s)
- Go Kamoshida
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Noriteru Yamada
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Tomoka Nakamura
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Daiki Yamaguchi
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Daichi Kai
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Maho Yamashita
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Chiaki Hayashi
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Nana Kanda
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Moe Sakaguchi
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hitoshi Morimoto
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Teppei Sawada
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Tomoko Okada
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yuki Kaya
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Norihiko Takemoto
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kinnosuke Yahiro
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
32
|
Segatore B, Piccirilli A, Cherubini S, Principe L, Alloggia G, Mezzatesta ML, Salmeri M, Di Bella S, Migliavacca R, Piazza A, Meroni E, Fazii P, Visaggio D, Visca P, Cortazzo V, De Angelis G, Pompilio A, Perilli M. In Vitro Activity of Sulbactam-Durlobactam against Carbapenem-Resistant Acinetobacter baumannii Clinical Isolates: A Multicentre Report from Italy. Antibiotics (Basel) 2022; 11:antibiotics11081136. [PMID: 36010006 PMCID: PMC9404735 DOI: 10.3390/antibiotics11081136] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
In the present study, the in vitro activity of the sulbactam-durlobactam (SUL-DUR) combination was evaluated against 141 carbapenem-resistant A. baumannii (CRAb) clinical strains collected from six Italian laboratories. Over half (54.6%) of these isolates were resistant to colistin. The SUL-DUR combination was active against these CRAb isolates with MIC50 and MIC90 values of 0.5 mg/L and 4 mg/L, respectively. Only eleven isolates were resistant to SUL-DUR with MIC values ranging from 8 to 128 mg/L. The SUL-DUR resistant A. baumannii exhibited several antimicrobial resistance genes (ARGs) such as blaOXA-20, blaOXA-58, blaOXA-66, blaADC-25, aac(6')-Ib3 and aac(6')-Ib-cr and mutations in gyrA (S81L) and parC (V104I, D105E). However, in these isolates, mutations Q488K and Y528H were found in PBP3. Different determinants were also identified in these CRAb isolates, including adeABC, adeFGH, adeIJK, abeS, abaQ and abaR, which encode multidrug efflux pumps associated with resistance to multiple antibacterial agents. This is the first report on the antimicrobial activity of SUL-DUR against carbapenem-resistant A. baumannii isolates selected from multiple regions in Italy.
Collapse
Affiliation(s)
- Bernardetta Segatore
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Alessandra Piccirilli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Sabrina Cherubini
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Luigi Principe
- Clinical Pathology and Microbiology Unit, “S. Giovanni di Dio” Hospital, 88900 Crotone, Italy
- Correspondence:
| | - Giovanni Alloggia
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Maria Lina Mezzatesta
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, 95131 Catania, Italy
| | - Mario Salmeri
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, 95131 Catania, Italy
| | - Stefano Di Bella
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, 34129 Trieste, Italy
| | - Roberta Migliavacca
- Unit of Microbiology and Clinical Microbiology, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Aurora Piazza
- Unit of Microbiology and Clinical Microbiology, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Elisa Meroni
- Clinical Microbiology and Virology Unit, “A. Manzoni” Hospital, 23900 Lecco, Italy
| | - Paolo Fazii
- Clinical Microbiology and Virology Unit, Spirito Santo Hospital, 65122 Pescara, Italy
| | - Daniela Visaggio
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
- Santa Lucia Foundation IRCCS, 00179 Rome, Italy
| | - Paolo Visca
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
- Santa Lucia Foundation IRCCS, 00179 Rome, Italy
| | - Venere Cortazzo
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giulia De Angelis
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Arianna Pompilio
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Center of Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Mariagrazia Perilli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
33
|
Fida M, Cunningham SA, Beisken S, Posch AE, Chia N, Jeraldo PR, Murphy MP, Zinsmaster NM, Patel R. Acinetobacter baumannii Genomic Sequence-Based Core Genome Multilocus Sequence Typing Using Ridom SeqSphere+ and Antimicrobial Susceptibility Prediction in ARESdb. J Clin Microbiol 2022; 60:e0053322. [PMID: 35862760 PMCID: PMC9383114 DOI: 10.1128/jcm.00533-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/22/2022] [Indexed: 01/14/2023] Open
Abstract
Whole-genome sequencing (WGS) is rapidly replacing traditional typing methods for the investigation of infectious disease outbreaks. Additionally, WGS data are being used to predict phenotypic antimicrobial susceptibility. Acinetobacter baumannii, which is often multidrug-resistant, is a significant culprit in outbreaks in health care settings. A well-characterized collection of A. baumannii was studied using core genome multilocus sequence typing (cgMLST). Seventy-two isolates previously typed by PCR-electrospray ionization mass spectrometry (PCR/ESI-MS) provided by the Antimicrobial Resistance Leadership Group (ARLG) were analyzed using a clinical microbiology laboratory developed workflow for cgMLST with genomic susceptibility prediction performed using the ARESdb platform. Previously performed PCR/ESI-MS correlated with cgMLST using relatedness thresholds of allelic differences of ≤9 and ≤200 allelic differences in 78 and 94% of isolates, respectively. Categorical agreement between genotypic and phenotypic antimicrobial susceptibility across a panel of 11 commonly used drugs was 89%, with minor, major, and very major error rates of 8%, 11%, and 1%, respectively.
Collapse
Affiliation(s)
- Madiha Fida
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | - Nicholas Chia
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Patricio R. Jeraldo
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew P. Murphy
- Division of Clinical Microbiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Robin Patel
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Division of Clinical Microbiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
34
|
Liu C, Chen K, Wu Y, Huang L, Fang Y, Lu J, Zeng Y, Xie M, Chi Chan EW, Chen S, Zhang R. Epidemiological and Genetic Characteristics of Clinical Carbapenem-Resistant Acinetobacter baumannii Strains Collected Countrywide from Hospital Intensive Care Units (ICUs) in China. Emerg Microbes Infect 2022; 11:1730-1741. [PMID: 35730377 PMCID: PMC9258068 DOI: 10.1080/22221751.2022.2093134] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Acinetobacter baumannii is one of the key Gram-negative pathogens that can cause serious nosocomial infections. In China, a large proportion of clinical A. baumannii strains are multidrug resistant, among which strains resistant to carbapenems are particularly worrisome, as infections caused by such strains may limit the choice of existing antibiotics. We conducted a nationwide and genome-based surveillance on the prevalence and antibiotic susceptibility profile of carbapenem-resistant A. baumannii (CRAB) strains collected from intensive care units (ICUs) in hospitals in different provinces and investigated the routes of transmission and mechanism of resistance by whole-genome sequencing and phylogenetic analysis. We found that CRAB strains were prevalent in 71.4% (55/77) of the ICUs surveyed. Clonal spread of CRAB was found in 37.6% (29/77) of ICUs and a total of 22 different clones were identified. Most clones were transmissible within one ICU, but up to six clones could be detected in at least three hospitals. In addition, carbapenem-hydrolysing class D β-lactamases (CHDL) were found to be mainly responsible for carbapenem-resistance in A. baumannii and the ST2 global-clone is the predominant type of CRAB in China. Importantly, we found that CRAB isolates currently exhibited extremely low rate of resistance to colistin (0.4%) and tigecycline (2.5%), but a high rate of resistance to ceftazidime-avibactam (70.2%). Findings in this work shall facilitate development of appropriate antimicrobial regimens for treatment of CRAB infections. Further surveillance and research on the evolutionary and epidemiological features of clinical CRAB strains are necessary.
Collapse
Affiliation(s)
- Congcong Liu
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, China
| | - Kaichao Chen
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, China.,Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Yuchen Wu
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, China
| | - Ling Huang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, China.,Department of Clinical Laboratory Medicine, The women's and children's hospital of Linping District, Hangzhou, China
| | - Yinfei Fang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, China.,Department of Clinical Laboratory, Jinhua Municipal Central Hospital, Jinhua, China
| | - Jiayue Lu
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, China
| | - Yu Zeng
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, China
| | - Miaomiao Xie
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Edward Wai Chi Chan
- State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, China
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Rong Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, China
| |
Collapse
|
35
|
Performance Evaluation of the VITEK2 and Sensititre Systems to Determine Colistin Resistance and MIC for Acinetobacter baumannii. Diagnostics (Basel) 2022; 12:diagnostics12061487. [PMID: 35741297 PMCID: PMC9221671 DOI: 10.3390/diagnostics12061487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 11/26/2022] Open
Abstract
Performances of the colistin antimicrobial susceptibility testing (AST) systems of Acinetobacter baumannii vary depending on the manufacturer, and data on colistin-resistant A. baumannii are limited. We evaluated the VITEK2 and Sensititre systems to determine colistin resistance and minimum inhibitory concentration (MIC) for A. baumannii isolated from a clinical microbiology laboratory. A total of 213 clinical A. baumannii isolates were tested, including 81 colistin-resistant A. baumannii. ASTs were performed using the VITEK2 and Sensititre systems according to the manufacturer’s instructions. Reference MICs for colistin were determined using the manual broth microdilution method (BMD). The results of the two AST methods were compared with the BMD results. VITEK2 and Sensititre systems showed category agreements of 95.3% and 99.1%, respectively. VITEK2 had a relatively high very major error (VME) rate (9.9%). Sensititre reported higher MICs than the reference method for the susceptible isolates and showed low essential agreement. In conclusion, the automated systems investigated in this study showed good category agreements for colistin AST of A. baumannii. However, VITEK2 had a high VME rate, and Sensititre had differences in MIC results. Colistin AST remains a challenging task in the clinical laboratory.
Collapse
|
36
|
In-vitro susceptibility testing methods for the combination of ceftazidime-avibactam with aztreonam in metallobeta-lactamase producing organisms: Role of combination drugs in antibiotic resistance era. J Antibiot (Tokyo) 2022; 75:454-462. [PMID: 35715617 PMCID: PMC9204069 DOI: 10.1038/s41429-022-00537-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/30/2022]
Abstract
Resistance in Gram-negative organisms has become one of the leading threats in recent years. Of the different mechanisms described in the literature, resistance due to beta-lactamases genes have been overcomed by the use of a beta-lactamase inhibitor in combination with a beta-lactam antibiotic. When this combination is insufficient to counter metallo-beta-lactamases, a third antibiotic, has been added to restore susceptibility. One such recent combination is ceftazidime-avibactam with aztreonam. In this study, 60 isolates of multidrug-resistant organisms producing metallo-beta-lactamases were included to perform in-vitro antibiotic susceptibility testing against ceftazidime-avibactam and aztreonam alone and in combination using three different methods. Individual testing revealed 100% (60/60) resistance to both ceftazidime-avibactam and aztreonam in all the isolates. The disk diffusion method showed an inhibition zone size of 21 mm in all the isolates, with 16 isolates showing an increase in inhibition zone size of >16 mm. In the E-test fixed ratio method, MICs of ceftazidime-avibactam and aztreonam when used alone ranged from 8/4 µg l−1 to ≥256/4 µg l−1 and 16 µg l−1 to 256 µg l−1, respectively, but in combination, these MICs were reduced to 0.016/4 µg l−1 to 2/4 µg l−1 with FIC < 0.5 in all the isolates. Similar results were obtained with the E-test agar dilution method with more than a 16-fold reduction in MIC in all the isolates when avibactam concentration was fixed at 4 µg l−1. All three methods showed a 100% correlation with each other. The current study depicted the usefulness of combining ceftazidime-avibactam with aztreonam against organisms producing metallo-beta-lactamases and that disk diffusion methods can be used as a method for performing in-vitro antibiotic susceptibility testing of this combination.
Collapse
|
37
|
Acinetobacter Baumannii: More Ways to Die. Microbiol Res 2022; 261:127069. [DOI: 10.1016/j.micres.2022.127069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022]
|
38
|
Nogbou ND, Ramashia M, Nkawane GM, Allam M, Obi CL, Musyoki AM. Whole-Genome Sequencing of a Colistin-Resistant Acinetobacter baumannii Strain Isolated at a Tertiary Health Facility in Pretoria, South Africa. Antibiotics (Basel) 2022; 11:594. [PMID: 35625238 PMCID: PMC9138137 DOI: 10.3390/antibiotics11050594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Acinetobacter baumannii's (A. baumannii) growing resistance to all available antibiotics is of concern. The study describes a colistin-resistant A. baumannii isolated at a clinical facility from a tracheal aspirate sample. Furthermore, it determines the isolates' niche establishment ability within the tertiary health facility. METHODS An antimicrobial susceptibility test, conventional PCR, quantitative real-time PCR, phenotypic evaluation of the efflux pump, and whole-genome sequencing and analysis were performed on the isolate. RESULTS The antimicrobial susceptibility pattern revealed a resistance to piperacillin/tazobactam, ceftazidime, cefepime, cefotaxime/ceftriaxone, imipenem, meropenem, gentamycin, ciprofloxacin, trimethoprim/sulfamethoxazole, tigecycline, and colistin. A broth microdilution test confirmed the colistin resistance. Conventional PCR and quantitative real-time PCR investigations revealed the presence of adeB, adeR, and adeS, while mcr-1 was not detected. A MIC of 0.38 µg/mL and 0.25 µg/mL was recorded before and after exposure to an AdeABC efflux pump inhibitor. The whole-genome sequence analysis of antimicrobial resistance-associated genes detected beta-lactam: blaOXA-66; blaOXA-23; blaADC-25; blaADC-73; blaA1; blaA2, and blaMBL; aminoglycoside: aph(6)-Id; aph(3″)-Ib; ant(3″)-IIa and armA) and a colistin resistance-associated gene lpsB. The whole-genome sequence virulence analysis revealed a biofilm formation system and cell-cell adhesion-associated genes: bap, bfmR, bfmS, csuA, csuA/B, csuB, csuC, csuD, csuE, pgaA, pgaB, pgaC, and pgaD; and quorum sensing-associated genes: abaI and abaR and iron acquisition system associated genes: barA, barB, basA, basB, basC, basD, basF, basG, basH, basI, basJ, bauA, bauB, bauC, bauD, bauE, bauF, and entE. A sequence type classification based on the Pasteur scheme revealed that the isolate belongs to sequence type ST2. CONCLUSIONS The mosaic of the virulence factors coupled with the resistance-associated genes and the phenotypic resistance profile highlights the risk that this strain is at this South African tertiary health facility.
Collapse
Affiliation(s)
- Noel-David Nogbou
- Microbiological Pathology Department, School of Medicine, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa; (N.-D.N.); (M.R.); (G.M.N.)
| | - Mbudzeni Ramashia
- Microbiological Pathology Department, School of Medicine, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa; (N.-D.N.); (M.R.); (G.M.N.)
| | - Granny Marumo Nkawane
- Microbiological Pathology Department, School of Medicine, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa; (N.-D.N.); (M.R.); (G.M.N.)
| | - Mushal Allam
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
| | - Chikwelu Lawrence Obi
- School of Sciences and Technology, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa;
| | - Andrew Munyalo Musyoki
- Microbiological Pathology Department, School of Medicine, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa; (N.-D.N.); (M.R.); (G.M.N.)
| |
Collapse
|
39
|
Almihyawi RAH, Naman ZT, Al-Hasani HMH, Muhseen ZT, Zhang S, Chen G. Integrated computer-aided drug design and biophysical simulation approaches to determine natural anti-bacterial compounds for Acinetobacter baumannii. Sci Rep 2022; 12:6590. [PMID: 35449379 PMCID: PMC9023527 DOI: 10.1038/s41598-022-10364-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
Acinetobacter baumannii is a nosocomial bacterial pathogen and is responsible for a wide range of diseases including pneumonia, necrotizing fasciitis, meningitis, and sepsis. The enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase (encoded by aroA gene) in ESKAPE pathogens catalyzes the sixth step of shikimate pathway. The shikimate pathway is an attractive drug targets pathway as it is present in bacteria but absent in humans. As EPSP is essential for the A. baumannii growth and needed during the infection process, therefore it was used as a drug target herein for high-throughput screening of a comprehensive marine natural products database (CMNPD). The objective was to identify natural molecules that fit best at the substrate binding pocket of the enzyme and interact with functionally critical residues. Comparative assessment of the docking scores allowed selection of three compounds namely CMNPD31561, CMNPD28986, and CMNPD28985 as best binding molecules. The molecules established a balanced network of hydrophobic and hydrophilic interactions, and the binding pose remained in equilibrium throughout the length of molecular simulation time. Radial distribution function (RDF) analysis projected key residues from enzyme active pocket which actively engaged the inhibitors. Further validation is performed through binding free energies estimation that affirms very low delta energy of <-22 kcal/mol in MM-GBSA method and <-12 kcal/mol in MM-PBSA method. Lastly, the most important active site residues were mutated and their ligand binding potential was re-investigated. The molecules also possess good druglike properties and better pharmacokinetics. Together, these findings suggest the potential biological potency of the leads and thus can be used by experimentalists in vivo and in vitro studies.
Collapse
Affiliation(s)
- Raed A H Almihyawi
- College of Life Sciences, Jilin Agricultural University, Jilin, China
- Department of Quality Control, Baghdad Water Authority, Mayoralty of Baghdad, Baghdad, Iraq
| | - Ziad Tareq Naman
- Department of Medical Laboratory Techniques, Al Mamoon University College, Baghdad, Iraq
| | - Halah M H Al-Hasani
- Department of Biotechnology, College of Science, University of Diyala, Baqubah, Iraq
| | - Ziyad Tariq Muhseen
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| | - Sitong Zhang
- College of Life Sciences, Jilin Agricultural University, Jilin, China.
- Key Laboratory of Straw Biology and Utilization, Ministry of Education, Jilin, China.
| | - Guang Chen
- College of Life Sciences, Jilin Agricultural University, Jilin, China.
- Key Laboratory of Straw Biology and Utilization, Ministry of Education, Jilin, China.
| |
Collapse
|
40
|
Soontarach R, Srimanote P, Enright MC, Blundell-Hunter G, Dorman MJ, Thomson NR, Taylor PW, Voravuthikunchai SP. Isolation and Characterisation of Bacteriophage Selective for Key Acinetobacter baumannii Capsule Chemotypes. Pharmaceuticals (Basel) 2022; 15:443. [PMID: 35455440 PMCID: PMC9027227 DOI: 10.3390/ph15040443] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Nineteen bacteriophages against five main capsular types of multidrug-resistant Acinetobacter baumannii were isolated from tertiary care hospital sewage. Eight representative phages from each capsular type were characterized and tested for their biological properties. The biological features revealed that phages T1245, T444, and T515 had a large burst size of more than 420 pfu/mL, together with a short latent period lasting less than 6 min, and were readily adsorbed to a bacterial host within 10 min. Moreover, these phages demonstrated host specificity and stability over a broad range of temperatures (-20 to 60 °C) and pH (5.0-9.0). A whole-genome analysis of six lytic and two temperate phages revealed high genomic similarity with double-stranded DNA between 40 and 50 kb and G + C content of 38-39%. The protein compositions disclosed the absence of toxin-coding genes. The phylogenic results, together with morphological micrographs, confirmed that three selected phages (T1245, T444, and T515) belong to the Podoviridae family within the order Caudovirales. The biological data and bioinformatics analysis indicated that these novel A. baumannii phages possess important enzymes, including depolymerase and endolysin, which could be further developed as promising alternative antibacterial agents to control A. baumannii infections.
Collapse
Affiliation(s)
- Rosesathorn Soontarach
- Division of Biological Science, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Songkhla 90110, Thailand;
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Songkhla 90110, Thailand
| | - Potjanee Srimanote
- Graduate Program, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani 12121, Thailand;
| | - Mark C. Enright
- Department of Life Sciences, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK;
| | | | - Matthew J. Dorman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK; (M.J.D.); (N.R.T.)
| | - Nicholas R. Thomson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK; (M.J.D.); (N.R.T.)
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Peter W. Taylor
- School of Pharmacy, University College London, London WC1N 1AX, UK; (G.B.-H.); (P.W.T.)
| | - Supayang P. Voravuthikunchai
- Division of Biological Science, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Songkhla 90110, Thailand;
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
41
|
Zhang C, Yang M. Antimicrobial Peptides: From Design to Clinical Application. Antibiotics (Basel) 2022; 11:349. [PMID: 35326812 PMCID: PMC8944448 DOI: 10.3390/antibiotics11030349] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
Infection of multidrug-resistant (MDR) bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), carbapenem-resistant Enterobacteriaceae (CRE), and extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli, brings public health issues and causes economic burden. Pathogenic bacteria develop several methods to resist antibiotic killing or inhibition, such as mutation of antibiotic function sites, activation of drug efflux pumps, and enzyme-mediated drug degradation. Antibiotic resistance components can be transferred between bacteria by mobile genetic elements including plasmids, transposons, and integrons, as well as bacteriophages. The development of antibiotic resistance limits the treatment options for bacterial infection, especially for MDR bacteria. Therefore, novel or alternative antibacterial agents are urgently needed. Antimicrobial peptides (AMPs) display multiple killing mechanisms against bacterial infections, including directly bactericidal activity and immunomodulatory function, as potential alternatives to antibiotics. In this review, the development of antibiotic resistance, the killing mechanisms of AMPs, and especially, the design, optimization, and delivery of AMPs are reviewed. Strategies such as structural change, amino acid substitution, conjugation with cell-penetration peptide, terminal acetylation and amidation, and encapsulation with nanoparticles will improve the antimicrobial efficacy, reduce toxicity, and accomplish local delivery of AMPs. In addition, clinical trials in AMP studies or applications of AMPs within the last five years were summarized. Overall, AMPs display diverse mechanisms of action against infection of pathogenic bacteria, and future research studies and clinical investigations will accelerate AMP application.
Collapse
Affiliation(s)
- Chunye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65212, USA;
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
42
|
Hahm C, Chung HS, Lee M. Whole-genome sequencing for the characterization of resistance mechanisms and epidemiology of colistin-resistant Acinetobacter baumannii. PLoS One 2022; 17:e0264335. [PMID: 35245298 PMCID: PMC8896714 DOI: 10.1371/journal.pone.0264335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
Background Multidrug-resistant Acinetobacter baumannii is an important causal pathogen of healthcare-associated infections, and colistin-resistant strains have recently emerged owing to the increased use of colistin. Using next-generation sequencing (NGS), a single whole-genome sequencing (WGS) protocol can identify and type pathogens, analyze genetic relationships among different pathogens, predict pathogenic transmissions, and detect antibiotic resistance genes. However, only a few studies have applied NGS in studying the resistance mechanism and epidemiology of colistin-resistant A. baumannii. This study aimed to elucidate the resistance mechanism of colistin-resistant A. baumannii and analyze its molecular epidemiology through WGS. Materials and methods The subjects in this study were patients who visited a university hospital between 2014 and 2018. Thirty colistin-resistant strains with high minimum inhibitory concentrations were selected from various patient samples, and WGS was performed. Comparative genomic analysis was performed for the 27 colistin-resistant A. baumannii strains using a colistin-susceptible strain as the reference genome. Results The WGS analysis found no mutation for lpxA, lpxC, lpx D, pmrA, pmrB, and mcr1, the genes known to be associated with colistin resistance. Fifty-seven coding sequences (CDS) showed differences; they included 13 CDS with known names and functions that contained 21 genes. From the whole-genome multi-locus sequence typing (wgMLST) and single nucleotide polymorphism (SNP) analyses, two major clusters were found for the colistin-resistant A. baumannii strains. However, no differences were observed by the time of detection for each cluster, the samples, the pattern of antibiotic resistance, or the patient characteristics. In the conventional MLST following the Oxford scheme, the typing result showed ST1809, ST451, ST191, ST1837, and ST369 in the global clone 2 (GC2), without any relation with the results of wgMLST and SNP analyses. Conclusion Based on the findings of the resistance gene analysis through WGS and comparative genomic analysis, the potential genes associated with colistin-resistance or CDS were examined. Furthermore, the analysis of molecular epidemiology through WGS regarding colistin-resistant A. baumannii may prove helpful in preventing infection by multidrug-resistant bacteria and controlling healthcare-associated infections.
Collapse
Affiliation(s)
- Chorong Hahm
- Department of Laboratory Medicine, College of Medicine, Ewha Womans University, Seoul, Korea
- Department of Laboratory Medicine, Eone Laboratories, Incheon, Korea
| | - Hae-Sun Chung
- Department of Laboratory Medicine, College of Medicine, Ewha Womans University, Seoul, Korea
- EWHA Education and Research Center for Infection, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Miae Lee
- Department of Laboratory Medicine, College of Medicine, Ewha Womans University, Seoul, Korea
- EWHA Education and Research Center for Infection, College of Medicine, Ewha Womans University, Seoul, Korea
- * E-mail:
| |
Collapse
|
43
|
Singh R, Capalash N, Sharma P. Vaccine development to control the rising scourge of antibiotic-resistant Acinetobacter baumannii: a systematic review. 3 Biotech 2022; 12:85. [PMID: 35261870 PMCID: PMC8890014 DOI: 10.1007/s13205-022-03148-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/11/2022] [Indexed: 03/02/2023] Open
Abstract
Acinetobacter baumannii has emerged as one of major nosocomial pathogen and global emergence of multidrug-resistant strains has become a challenge for developing effective treatment options. A. baumannii has developed resistance to almost all the antibiotics viz. beta-lactams, carbapenems, tigecycline and now colistin, a last resort of antibiotics. The world is on the cusp of post antibiotic era and the evolution of multi-, extreme- and pan–drug-resistant A. baumannii strains is its obvious harbinger. Various combinations of antibiotics have been investigated but no successful treatment option is available. All these failed efforts have led researchers to develop and implement prophylactic vaccination for the prevention of infections caused by this pathogen. In this review, the advantages and disadvantages of active and passive immunization, the types of sub-unit and multi-component vaccine candidates investigated against A. baumannii viz. whole cell organism, outer membrane vesicles, outer membrane complexes, conjugate vaccines and sub-unit vaccines have been discussed. In addition, the benefits of Reverse vaccinology are emphasized here in which the potential vaccine candidates are predicted using bioinformatic online tools prior to in vivo validations.
Collapse
|
44
|
The Antimicrobial Peptide Esc(1-21) Synergizes with Colistin in Inhibiting the Growth and in Killing Multidrug Resistant Acinetobacter baumannii Strains. Antibiotics (Basel) 2022; 11:antibiotics11020234. [PMID: 35203836 PMCID: PMC8868345 DOI: 10.3390/antibiotics11020234] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Multidrug-resistant microbial infections and the scarce availability of new antibiotics capable of eradicating them are posing a serious problem to global health security. Among the microorganisms that easily acquire resistance to antibiotics and that are the etiological cause of severe infections, there is Acinetobacter baumannii. Carbapenems are the principal agents used to treat A. baumannii infections. However, when strains develop resistance to this class of antibiotics, colistin is considered one of the last-resort drugs. However, the appearance of resistance to colistin also makes treatment of the Acinetobacter infections very difficult. Antimicrobial peptides (AMP) from the innate immunity hold promise as new alternative antibiotics due to their multiple biological properties. In this study, we characterized the activity and the membrane-perturbing mechanism of bactericidal action of a derivative of a frog-skin AMP, namely Esc(1-21), when used alone or in combination with colistin against multidrug-resistant A. baumannii clinical isolates. We found that the mixture of the two compounds had a synergistic effect in inhibiting the growth and killing of all of the tested strains. When combined at dosages below the minimal inhibitory concentration, the two drugs were also able to slow down the microbial growth and to potentiate the membrane-perturbing effect. To the best of our knowledge, this is the first report showing a synergistic effect between AMPs, i.e., Esc(1-21), and colistin against colistin-resistant A. baumannii clinical isolates, highlighting the potential clinical application of such combinational therapy.
Collapse
|
45
|
Ledger EVK, Sabnis A, Edwards AM. Polymyxin and lipopeptide antibiotics: membrane-targeting drugs of last resort. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001136. [PMID: 35118938 PMCID: PMC8941995 DOI: 10.1099/mic.0.001136] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
Abstract
The polymyxin and lipopeptide classes of antibiotics are membrane-targeting drugs of last resort used to treat infections caused by multi-drug-resistant pathogens. Despite similar structures, these two antibiotic classes have distinct modes of action and clinical uses. The polymyxins target lipopolysaccharide in the membranes of most Gram-negative species and are often used to treat infections caused by carbapenem-resistant species such as Escherichia coli, Acinetobacter baumannii and Pseudomonas aeruginosa. By contrast, the lipopeptide daptomycin requires membrane phosphatidylglycerol for activity and is only used to treat infections caused by drug-resistant Gram-positive bacteria such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci. However, despite having distinct targets, both antibiotic classes cause membrane disruption, are potently bactericidal in vitro and share similarities in resistance mechanisms. Furthermore, there are concerns about the efficacy of these antibiotics, and there is increasing interest in using both polymyxins and daptomycin in combination therapies to improve patient outcomes. In this review article, we will explore what is known about these distinct but structurally similar classes of antibiotics, discuss recent advances in the field and highlight remaining gaps in our knowledge.
Collapse
Affiliation(s)
- Elizabeth V. K. Ledger
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Rd, London, SW7 2AZ, UK
| | - Akshay Sabnis
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Rd, London, SW7 2AZ, UK
| | - Andrew M. Edwards
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Rd, London, SW7 2AZ, UK
| |
Collapse
|
46
|
Petropoulou D, Siopi M, Vourli S, Pournaras S. Activity of Sulbactam-Durlobactam and Comparators Against a National Collection of Carbapenem-Resistant Acinetobacter baumannii Isolates From Greece. Front Cell Infect Microbiol 2022; 11:814530. [PMID: 35127562 PMCID: PMC8812809 DOI: 10.3389/fcimb.2021.814530] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/28/2021] [Indexed: 02/01/2023] Open
Abstract
Background Acinetobacter baumannii is a leading cause of healthcare-associated infections worldwide, due to both its persistence in the hospital setting and ability to acquire high levels of antibiotic resistance. Carbapenem-resistant A. baumannii isolates (CRAB) limit the activity of current antimicrobial regimens and new alternatives or adjuncts to traditional antibiotics are urgently needed. Durlobactam is a novel broad-spectrum inhibitor of serine-type β-lactamases that restores sulbactam (SUL) activity against A. baumannii. The sulbactam-durlobactam (SD) combination has recently completed Phase 3 testing in the global ATTACK trial. Objectives The aim of this study is to evaluate the in vitro activity of SD versus comparators against a representative nationwide collection of CRAB isolates. Methods One hundred ninety CRAB isolates were collected from clinical samples of patients hospitalized in 11 hospitals throughout Greece during 2015. In vitro activities of SD and comparators (SUL alone, amikacin, minocycline, imipenem, meropenem, colistin, SD and imipenem combined with SD) were determined by broth microdilution. Results Durlobactam restored sulbactam activity against the majority of the strains tested, with SD exhibiting the lowest MIC90 (8 μg/ml) relative to the other single comparators tested; 87.9% of the isolates had SD MICs ≤4/4 µg/ml. The most active comparator was colistin (MIC90 = 16 μg/ml). The addition of imipenem further lowered the MIC90 of SD by one two-fold dilution. Conclusions This study demonstrated the potential utility of SD for the treatment of infections caused by A. baumannii. If its clinical efficacy is confirmed, SD may be an important therapeutic option for CRAB infections.
Collapse
|
47
|
Chukamnerd A, Singkhamanan K, Chongsuvivatwong V, Palittapongarnpim P, Doi Y, Pomwised R, Sakunrang C, Jeenkeawpiam K, Yingkajorn M, Chusri S, Surachat K. Whole-genome analysis of carbapenem-resistant Acinetobacter baumannii from clinical isolates in Southern Thailand. Comput Struct Biotechnol J 2022; 20:545-558. [PMID: 36284706 PMCID: PMC9582705 DOI: 10.1016/j.csbj.2021.12.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/25/2021] [Accepted: 12/30/2021] [Indexed: 12/15/2022] Open
Abstract
The worldwide spread of carbapenem-resistant Acinetobacter baumannii (CRAB) has become a healthcare challenge for some decades. To understand its molecular epidemiology in Southern Thailand, we conducted whole-genome sequencing (WGS) of 221 CRAB clinical isolates. A comprehensive bioinformatics analysis was performed using several tools to assemble, annotate, and identify sequence types (STs), antimicrobial resistance (AMR) genes, mobile genetic elements (MGEs), and virulence genes. ST2 was the most prevalent ST in the CRAB isolates. For the detection of AMR genes, almost all CRAB isolates carried the blaOXA-23 gene, while certain isolates harbored the blaNDM-1 or blaIMP-14 genes. Also, various AMR genes were observed in these CRAB isolates, particularly aminoglycoside resistance genes (e.g., armA, aph(6)-Id, and aph(3″)-Ib), fosfomycin resistance gene (abaF), and tetracycline resistance genes (tet(B) and tet(39)). For plasmid replicon typing, RepAci1 and RepAci7 were the predominant replicons found in the CRAB isolates. Many genes encoding for virulence factors such as the ompA, adeF, pgaA, lpxA, and bfmR genes were also identified in all CRAB isolates. In conclusion, most CRAB isolates contained a mixture of AMR genes, MGEs, and virulence genes. This study provides significant information about the genetic determinants of CRAB clinical isolates that could assist the development of strategies for improved control and treatment of these infections.
Collapse
Affiliation(s)
- Arnon Chukamnerd
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Kamonnut Singkhamanan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | | | - Prasit Palittapongarnpim
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology, Fujita Health University, Aichi, Japan
| | - Rattanaruji Pomwised
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Chanida Sakunrang
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Kongpop Jeenkeawpiam
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Mingkwan Yingkajorn
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Sarunyou Chusri
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- Corresponding authors at: Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand and Division of Computational Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand.
| | - Komwit Surachat
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Division of Computational Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Corresponding authors at: Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand and Division of Computational Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand.
| |
Collapse
|
48
|
Elucidation of molecular mechanism for colistin resistance among Gram-negative isolates from tertiary care hospitals. J Infect Chemother 2022; 28:602-609. [DOI: 10.1016/j.jiac.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 11/22/2022]
|
49
|
Chandra P, V R, M S, Cs S, Mk U. Multidrug-resistant Acinetobacter baumannii infections: looming threat in the Indian clinical setting. Expert Rev Anti Infect Ther 2021; 20:721-732. [PMID: 34878345 DOI: 10.1080/14787210.2022.2016393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The recent increase in multidrug-resistant strains of A. baumannii has increased the incidences of ventilator-associated pneumoniae, catheter-associated urinary tract infections, and central line-associated blood stream infections, together increasing hospital stay, treatment cost, and mortality. Resistance genes blaOXA and blaNDM are dominant in India. Carbapenem-resistant A. baumannii (CRAB) International clone-2 (IC-2) are rising in India. High dependency on carbapenems and last-resort combination of tigecycline and polymyxins have aggravated outcomes. Despite nursing barriers, ward closure, environmental disinfections etc for detecting and controlling transmission, MDR isolates and CRAB nosocomial outbreaks continue. Treatment cost overruns by AMR adversely affect 80% of Indians without insurance cover. AREA COVERED This narrative review will cover epidemiology, resistance pattern, genetic diversity, device-related infection, cost, and mortality due to multidrug-resistant and CRAB in India. A comprehensive literature search in PubMed and Google Scholar using appropriate keywords at different time points yielded relevant articles. EXPERT OPINION It is challenging to enforce policies to control MDR A. baumannii in India. Government and hospitals should enforce stringent infection control measures, surveillance, and antimicrobial stewardship to prevent further spread and emergence of more virulent and resistant strains. Knowledge on antibiotic resistance mechanisms can help design novel antibiotics that can evade, resistance.
Collapse
Affiliation(s)
- Prashant Chandra
- Department of Pharmacy Practice, Centre for Pharmaceutical care, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Rajesh V
- Department of Pharmacy Practice, Centre for Pharmaceutical care, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India.,Department of Pharmacy Practice, Nitte Gulabi Shetty Memorial Institute of Pharmaceutical Sciences, Nitte University, Mangaluru, India
| | - Surulivelrajan M
- Department of Pharmacy Practice, Centre for Pharmaceutical care, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Shastry Cs
- Department of Pharmacy Practice, Nitte Gulabi Shetty Memorial Institute of Pharmaceutical Sciences, Nitte University, Mangaluru, India
| | - Unnikrishnan Mk
- Department of Pharmacy Practice, Nitte Gulabi Shetty Memorial Institute of Pharmaceutical Sciences, Nitte University, Mangaluru, India
| |
Collapse
|
50
|
Saeed DK, Farooqi J, Shakoor S, Hasan R. Antimicrobial resistance among GLASS priority pathogens from Pakistan: 2006-2018. BMC Infect Dis 2021; 21:1231. [PMID: 34876041 PMCID: PMC8650393 DOI: 10.1186/s12879-021-06795-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/08/2021] [Indexed: 11/20/2022] Open
Abstract
Background In 2018 Pakistan initiated its national antimicrobial resistance (AMR) surveillance aligned with Global Antimicrobial Surveillance System (GLASS). To complement this surveillance, we conducted a situational analysis of AMR rates among GLASS organisms in the country. Data from published studies and from antibiograms was compared and role of antibiograms as potential contributors to national AMR surveillance explored. Methods AMR rates for GLASS specified pathogen/antimicrobials combination from Pakistan were reviewed. Data sources included published studies (2006–2018) providing AMR rates from Pakistan (n = 54) as well as antibiograms (2011–2018) available on the Pakistan Antimicrobial Resistance Network (PARN) website. Resistance rates were categorized as follows: Very low: 0–10%, Low: 11–30%, Moderate: 30–50% and High: > 50%. Results Published data from hospital and community/laboratory-based studies report resistance rates of > 50% and 30–50% respectively to 3rd generation cephalosporins, fluoroquinolones and cotrimoxazole amongst Klebsiella pneumoniae and Escherichia coli. Carbapenem resistance rates amongst these organisms remained below 30%. High (> 50%) resistance was reported in Acinetobacter species to aminoglycosides and carbapenems among hospitalized patients. The evolution of ceftriaxone resistant Salmonella Typhi and Shigella species is reported. The data showed > 50% to fluoroquinolones amongst Neisseria gonorrhoeae and the spread of methicillin resistant Staphylococcus aureus (< 30%; 2008) to (> 50%; 2010) in hospital settings. Resistance reported in published studies aligned well with antibiogram data. The latter also captured a clear picture of evolution of resistance over the study period. Conclusion Both published studies as well antibiograms suggest high rates of AMR in Pakistan. Antibiogram data demonstrating steady increase in AMR highlight its potential role towards supplementing national AMR surveillance efforts particularly in settings where reach of national surveillance may be limited. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06795-0.
Collapse
Affiliation(s)
- Dania Khalid Saeed
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, 74800, Pakistan
| | - Joveria Farooqi
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, 74800, Pakistan
| | - Sadia Shakoor
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, 74800, Pakistan
| | - Rumina Hasan
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, 74800, Pakistan. .,Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|