1
|
Liu Y, Shi A, Chen Y, Xu Z, Liu Y, Yao Y, Wang Y, Jia B. Beneficial microorganisms: Regulating growth and defense for plant welfare. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:986-998. [PMID: 39704146 PMCID: PMC11869181 DOI: 10.1111/pbi.14554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/23/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024]
Abstract
Beneficial microorganisms (BMs) promote plant growth and enhance stress resistance. This review summarizes how BMs induce growth promotion by improving nutrient uptake, producing growth-promoting hormones and stimulating root development. How BMs enhance disease resistance and help protect plants from abiotic stresses has also been explored. Growth-defense trade-offs are known to affect the ability of plants to survive under unfavourable conditions. This review discusses studies demonstrating that BMs regulate growth-defense trade-offs through microbe-associated molecular patterns and multiple pathways, including the leucine-rich repeat receptor-like kinase pathway, abscisic acid signalling pathway and specific transcriptional factor regulation. This multifaceted relationship underscores the significance of BMs in sustainable agriculture. Finally, the need for integration of artificial intelligence to revolutionize biofertilizer research has been highlighted. This review also elucidates the cutting-edge advancements and potential of plant-microbe synergistic microbial agents.
Collapse
Affiliation(s)
- Yan Liu
- Xianghu LaboratoryHangzhouChina
- Jiangsu Provincial Key Lab of Solid Organic Waste UtilizationNanjing Agricultural UniversityNanjingChina
| | | | - Yue Chen
- Xianghu LaboratoryHangzhouChina
- Horticulture Research InstituteZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Zhihui Xu
- Jiangsu Provincial Key Lab of Solid Organic Waste UtilizationNanjing Agricultural UniversityNanjingChina
| | - Yongxin Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Yanlai Yao
- Xianghu LaboratoryHangzhouChina
- Institute of Environment, Resource, Soil and FertiliserZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Yiming Wang
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing Agricultural UniversityNanjingChina
| | | |
Collapse
|
2
|
Zhou H, Yang Y, Jia T, Yu Y, Chen S, Qiu Y, Zhang R, Chen H. Controlling mildew of tobacco leaf by Bacillus amyloliquefaciens ZH-2 and its effect on storage quality of tobacco leaf. Sci Rep 2025; 15:5304. [PMID: 39939685 PMCID: PMC11821844 DOI: 10.1038/s41598-025-90058-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 02/10/2025] [Indexed: 02/14/2025] Open
Abstract
Tobacco mildew is a common fungal disease that reduces tobacco quality, resulting in serious economic losses in the tobacco industry. In this study, the pathogens Aspergillus niger, Aspergillus flavus, and Rhizopus arrhizus were isolated from infected leaves. Furthermore, five plant endophytic bacteria isolated from healthy tobacco leaves were found to possess strong antifungal activity against these pathogens. Among these strains, Bacillus amyloliquefaciens ZH-2 exerted the strongest antagonistic effect against all mildew types (bacteriosphere diameter > 22 mm). The antagonistic action of ZH-2 was further observed using scanning electron microscopy, which revealed signs of contraction, deformation, and dissolution of the treated mycelia compared with that seen in the control group. The ZH-2 strain was found to produce high levels of proteases, chitinases, and β-1,3-glucanase, contributing to its antifungal activity via fungal cell wall rupture. The antifungal activity of ZH-2 was also demonstrated in the application test, as indicated by the significant reduction in mildew disease severity in tobacco leaves treated with this strain. Fermentation tests showed that the quality of ZH-2-treated, solid-state fermented tobacco leaves was superior to that of the control. Specifically, the alkaloid content significantly decreased by 10.62%, whereas the total and reduced sugar contents increased by 12.9 and 55.75%, respectively. Furthermore, macromolecular starch, cellulose, and protein contents significantly decreased by 25.85, 12.77, and 10.04%, respectively. These results indicate that the Bacillus amyloliquefaciens ZH-2 strain is effective against tobacco mildew and can improve tobacco quality upon solid-state fermentation.
Collapse
Affiliation(s)
- Hang Zhou
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yongfeng Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, 450000, China
| | - Tao Jia
- Tianchang International Co., Ltd., Baofeng Tobacco Redrying Factory, zhengzhou, 467400, China
| | - Yangyang Yu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Siyuan Chen
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yao Qiu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ruina Zhang
- Deyang City Company Sichuan, Provincial Tobacco Company, Deyang, 618000, China
| | - Hongli Chen
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
3
|
Ku Y, Liao Y, Chiou S, Lam H, Chan C. From trade-off to synergy: microbial insights into enhancing plant growth and immunity. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2461-2471. [PMID: 38735054 PMCID: PMC11331785 DOI: 10.1111/pbi.14360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/27/2024] [Accepted: 04/06/2024] [Indexed: 05/14/2024]
Abstract
The reduction in crop yield caused by pathogens and pests presents a significant challenge to global food security. Genetic engineering, which aims to bolster plant defence mechanisms, emerges as a cost-effective solution for disease control. However, this approach often incurs a growth penalty, known as the growth-defence trade-off. The precise molecular mechanisms governing this phenomenon are still not completely understood, but they generally fall under two main hypotheses: a "passive" redistribution of metabolic resources, or an "active" regulatory choice to optimize plant fitness. Despite the knowledge gaps, considerable practical endeavours are in the process of disentangling growth from defence. The plant microbiome, encompassing both above- and below-ground components, plays a pivotal role in fostering plant growth and resilience to stresses. There is increasing evidence which indicates that plants maintain intimate associations with diverse, specifically selected microbial communities. Meta-analyses have unveiled well-coordinated, two-way communications between plant shoots and roots, showcasing the capacity of plants to actively manage their microbiota for balancing growth with immunity, especially in response to pathogen incursions. This review centers on successes in making use of specific root-associated microbes to mitigate the growth-defence trade-off, emphasizing pivotal advancements in unravelling the mechanisms behind plant growth and defence. These findings illuminate promising avenues for future research and practical applications.
Collapse
Affiliation(s)
- Yee‐Shan Ku
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongShatinHong Kong
| | - Yi‐Jun Liao
- Department of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | - Shian‐Peng Chiou
- Department of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | - Hon‐Ming Lam
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongShatinHong Kong
- Institute of Environment, Energy and SustainabilityThe Chinese University of Hong KongShatinHong Kong
| | - Ching Chan
- Department of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| |
Collapse
|
4
|
Agbodjato NA, Babalola OO. Promoting sustainable agriculture by exploiting plant growth-promoting rhizobacteria (PGPR) to improve maize and cowpea crops. PeerJ 2024; 12:e16836. [PMID: 38638155 PMCID: PMC11025545 DOI: 10.7717/peerj.16836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/04/2024] [Indexed: 04/20/2024] Open
Abstract
Maize and cowpea are among the staple foods most consumed by most of the African population, and are of significant importance in food security, crop diversification, biodiversity preservation, and livelihoods. In order to satisfy the growing demand for agricultural products, fertilizers and pesticides have been extensively used to increase yields and protect plants against pathogens. However, the excessive use of these chemicals has harmful consequences on the environment and also on public health. These include soil acidification, loss of biodiversity, groundwater pollution, reduced soil fertility, contamination of crops by heavy metals, etc. Therefore, essential to find alternatives to promote sustainable agriculture and ensure the food and well-being of the people. Among these alternatives, agricultural techniques that offer sustainable, environmentally friendly solutions that reduce or eliminate the excessive use of agricultural inputs are increasingly attracting the attention of researchers. One such alternative is the use of beneficial soil microorganisms such as plant growth-promoting rhizobacteria (PGPR). PGPR provides a variety of ecological services and can play an essential role as crop yield enhancers and biological control agents. They can promote root development in plants, increasing their capacity to absorb water and nutrients from the soil, increase stress tolerance, reduce disease and promote root development. Previous research has highlighted the benefits of using PGPRs to increase agricultural productivity. A thorough understanding of the mechanisms of action of PGPRs and their exploitation as biofertilizers would present a promising prospect for increasing agricultural production, particularly in maize and cowpea, and for ensuring sustainable and prosperous agriculture, while contributing to food security and reducing the impact of chemical fertilizers and pesticides on the environment. Looking ahead, PGPR research should continue to deepen our understanding of these microorganisms and their impact on crops, with a view to constantly improving sustainable agricultural practices. On the other hand, farmers and agricultural industry players need to be made aware of the benefits of PGPRs and encouraged to adopt them to promote sustainable agricultural practices.
Collapse
Affiliation(s)
- Nadège Adoukè Agbodjato
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North West University, Mafikeng, North West, South Africa
- Laboratoire de Biologie et de Typage Moléculaire en Microbiologie (LBTMM), Département de Biochimie et de Biologie Cellulaire, Université d’Abomey-Calavi, Calavi, Benin
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North West University, Mafikeng, North West, South Africa
| |
Collapse
|
5
|
Zhou F, Pan Y, Zhang X, Deng G, Li X, Xiong Y, Tang L. Accumulation patterns of tobacco root allelopathicals across different cropping durations and their correlation with continuous cropping challenges. FRONTIERS IN PLANT SCIENCE 2024; 15:1326942. [PMID: 38533406 PMCID: PMC10963442 DOI: 10.3389/fpls.2024.1326942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/26/2024] [Indexed: 03/28/2024]
Abstract
Introduction Continuous cropping challenges have gradually emerged as pivotal factors limiting the sustainable development of agricultural production. Allelopathicals are considered to be the primary obstacles. However, there is limited information on allelopathic accumulation across various continuous cropping years and its correlation with the associated challenges. Methods Tobacco was subjected to varying planting durations: 1 year (CR), 5 years (CC5), 10 years (CC10), and 15 years (CC15). Results Our findings unveiled discernible disparities in tobacco growth patterns across diverse continuous cropping periods. Notably, the most pronounced challenges were observed in the CC5 category, characterized by yield reduction, tobacco black shank outbreaks, and a decline in beneficial flora. Conversely, CC15 exhibited a substantial reduction in challenges as the continuous cropping persisted with no significant differences when compared to CR. Within the tobacco rhizosphere, we identified 14 distinct allelopathic compounds, with 10 of these compounds displaying noteworthy variations among the four treatments. Redundancy analysis (RDA) revealed that eight allelopathic compounds exhibited autotoxic effects on tobacco growth, with MA, heptadecanoic acid, and VA ranking as the most potent inhibitors. Interaction network highlighted the pivotal roles of VA and EA in promoting pathogen proliferation and impeding the enrichment of 13 beneficial bacterial genera. Furthermore, a structural equation model elucidated that MA and EA primarily exert direct toxic effects on tobacco, whereas VA fosters pathogen proliferation, inhibits the enrichment of beneficial bacteria, and synergistically exacerbates the challenges associated with continuous cropping alongside EA. Discussion These findings suggested discernible disparities in tobacco growth patterns across the various continuous cropping periods. The most pronounced challenges were observed in CC5, whereas CC15 exhibited a substantial reduction in challenges as continuous cropping persisted. VA may play a pivotal role in this phenomenon by interacting with pathogens, beneficial bacterial genera, and EA.
Collapse
Affiliation(s)
- Fangfang Zhou
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Yihong Pan
- College of Materials and Chemical Engineering, Southwest Forestry University, Kunming, China
| | | | - Guobing Deng
- College of Materials and Chemical Engineering, Southwest Forestry University, Kunming, China
| | - Xiaoting Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Yubin Xiong
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Li Tang
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
6
|
Fu L, Wang YF, Long PL, Xiao Y, Jiang MG, Gao J. Streptomyces koelreuteriae sp. nov., isolated from the rhizosphere soil of Koelreuteria paniculata and healthy leaves of Xanthium sibiricum. Int J Syst Evol Microbiol 2023; 73. [PMID: 38054463 DOI: 10.1099/ijsem.0.006196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
Two actinomycete strains, designated MG62T and CRLD-Y-1, were isolated from rhizosphere soil of Koelreuteria paniculata and healthy leaves of Xanthium sibiricum, respectively, in Hunan province, PR China. They could produce abundant aerial mycelia that generated rod-shaped spores with spiny surfaces. Morphological features of the two strains are typical of the genus Streptomyces. Strains MG62T and CRLD-Y-1 exhibited 99.93 % 16S rRNA gene sequence similarity. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between them were 99.99 and 100 %, respectively, suggesting that they belonged to the same species. 16S rRNA gene sequences analysis revealed that the two strains belonged to the genus Streptomyces and showed highest similarities to Streptomyces violarus NBRC 13104T (99.07-99.29 %) and Streptomyces arenae ISP 5293T (99.21-99.35 %). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strains MG62T and CRLD-Y-1 were closely related to S. violarus NBRC 13104T and S. arenae ISP 5293T. However, the ANI, dDDH and multilocus sequence analysis evolutionary distance values between the two strains and their relatives provide a robust basis upon which to verify strains MG62T and CRLD-Y-1 as representing a novel species. Moreover, a comprehensive comparison of phenotypic and chemotaxonomic characteristics further confirmed that the two strains were distinct from their relatives. Based on all these data above, strains MG62T and CRLD-Y-1 should represent a novel Streptomyces species, for which the name Streptomyces koelreuteriae sp. nov. is proposed. The type strain is MG62T (=JCM 34747T=MCCC 1K06175T).
Collapse
Affiliation(s)
- Li Fu
- School of Life and Health Sciences, Hunan University of Science and technology, Xiangtan 411201, PR China
| | - Yin-Feng Wang
- School of Life and Health Sciences, Hunan University of Science and technology, Xiangtan 411201, PR China
| | - Pei-Lan Long
- School of Life and Health Sciences, Hunan University of Science and technology, Xiangtan 411201, PR China
| | - Yan Xiao
- School of Life and Health Sciences, Hunan University of Science and technology, Xiangtan 411201, PR China
| | - Ming-Guo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, PR China
| | - Jian Gao
- School of Life and Health Sciences, Hunan University of Science and technology, Xiangtan 411201, PR China
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Hunan Province, Xiangtan 411201, PR China
| |
Collapse
|
7
|
Khan S, Ambika, Rani K, Sharma S, Kumar A, Singh S, Thapliyal M, Rawat P, Thakur A, Pandey S, Thapliyal A, Pal M, Singh Y. Rhizobacterial mediated interactions in Curcuma longa for plant growth and enhanced crop productivity: a systematic review. FRONTIERS IN PLANT SCIENCE 2023; 14:1231676. [PMID: 37692412 PMCID: PMC10484415 DOI: 10.3389/fpls.2023.1231676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/21/2023] [Indexed: 09/12/2023]
Abstract
Turmeric (Curcuma longa L.), a significant commercial crop of the Indian subcontinent is widely used as a condiment, natural dye, and as a cure for different ailments. Various bioactive compounds such as turmerones and curcuminoids have been isolated from C. longa that have shown remarkable medicinal activity against various ailments. However, reduced soil fertility, climatic variations, rapid urbanization, and enhanced food demand, pose a multifaceted challenge to the current agricultural practices of C. longa. Plant growth-promoting microbes play a vital role in plant growth and development by regulating primary and secondary metabolite production. Rhizospheric associations are complex species-specific interconnections of different microbiota with a plant that sustain soil health and promote plant growth through nutrient acquisition, nitrogen fixation, phosphate availability, phytohormone production, and antimicrobial activities. An elaborative study of microbiota associated with the roots of C. longa is essential for rhizospheric engineering as there is a huge potential to develop novel products based on microbial consortium formulations and elicitors to improve plant health, stress tolerance, and the production of secondary metabolites such as curcumin. Primarily, the purpose of this review is to implicate the rhizospheric microbial flora as probiotics influencing overall C. longa health, development, and survival for an increase in biomass, enhanced yield of secondary metabolites, and sustainable crop production.
Collapse
Affiliation(s)
- Sonam Khan
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, India
| | - Ambika
- Forest Pathology Discipline, Forest Protection Division, ICFRE-Forest Research Institute, Dehradun, India
| | - Komal Rani
- Genetics and Tree Improvement Division, ICFRE-Forest Research Institute, Dehradun, India
| | - Sushant Sharma
- Genetics and Tree Improvement Division, ICFRE-Forest Research Institute, Dehradun, India
| | - Abhishek Kumar
- Forest Ecology and Climate Change Division, ICFRE-Forest Research Institute, Dehradun, India
| | - Seema Singh
- Forest Pathology Discipline, Forest Protection Division, ICFRE-Forest Research Institute, Dehradun, India
| | - Madhu Thapliyal
- Department of Zoology, Ram Chandra Uniyal Government Post Graduate College College, Uttarkashi, India
| | - Pramod Rawat
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, India
| | - Ajay Thakur
- Genetics and Tree Improvement Division, ICFRE-Forest Research Institute, Dehradun, India
| | - Shailesh Pandey
- Forest Pathology Discipline, Forest Protection Division, ICFRE-Forest Research Institute, Dehradun, India
| | - Ashish Thapliyal
- Department of Microbiology, Graphic Era Deemed to be University, Dehradun, India
| | - Manoj Pal
- Department of Microbiology, Graphic Era Deemed to be University, Dehradun, India
| | - Yashaswi Singh
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, India
| |
Collapse
|
8
|
Karamchandani BM, Pawar AA, Pawar SS, Syed S, Mone NS, Dalvi SG, Rahman PKSM, Banat IM, Satpute SK. Biosurfactants' multifarious functional potential for sustainable agricultural practices. Front Bioeng Biotechnol 2022; 10:1047279. [PMID: 36578512 PMCID: PMC9792099 DOI: 10.3389/fbioe.2022.1047279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Increasing food demand by the ever-growing population imposes an extra burden on the agricultural and food industries. Chemical-based pesticides, fungicides, fertilizers, and high-breeding crop varieties are typically employed to enhance crop productivity. Overexploitation of chemicals and their persistence in the environment, however, has detrimental effects on soil, water, and air which consequently disturb the food chain and the ecosystem. The lower aqueous solubility and higher hydrophobicity of agrochemicals, pesticides, metals, and hydrocarbons allow them to adhere to soil particles and, therefore, continue in the environment. Chemical pesticides, viz., organophosphate, organochlorine, and carbamate, are used regularly to protect agriculture produce. Hydrophobic pollutants strongly adhered to soil particles can be solubilized or desorbed through the usage of biosurfactant/s (BSs) or BS-producing and pesticide-degrading microorganisms. Among different types of BSs, rhamnolipids (RL), surfactin, mannosylerythritol lipids (MELs), and sophorolipids (SL) have been explored extensively due to their broad-spectrum antimicrobial activities against several phytopathogens. Different isoforms of lipopeptide, viz., iturin, fengycin, and surfactin, have also been reported against phytopathogens. The key role of BSs in designing and developing biopesticide formulations is to protect crops and our environment. Various functional properties such as wetting, spreading, penetration ability, and retention period are improved in surfactant-based formulations. This review emphasizes the use of diverse types of BSs and their source microorganisms to challenge phytopathogens. Extensive efforts seem to be focused on discovering the innovative antimicrobial potential of BSs to combat phytopathogens. We discussed the effectiveness of BSs in solubilizing pesticides to reduce their toxicity and contamination effects in the soil environment. Thus, we have shed some light on the use of BSs as an alternative to chemical pesticides and other agrochemicals as sparse literature discusses their interactions with pesticides. Life cycle assessment (LCA) and life cycle sustainability analysis (LCSA) quantifying their impact on human activities/interventions are also included. Nanoencapsulation of pesticide formulations is an innovative approach in minimizing pesticide doses and ultimately reducing their direct exposures to humans and animals. Some of the established big players and new entrants in the global BS market are providing promising solutions for agricultural practices. In conclusion, a better understanding of the role of BSs in pesticide solubilization and/or degradation by microorganisms represents a valuable approach to reducing their negative impact and maintaining sustainable agricultural practices.
Collapse
Affiliation(s)
| | - Ameya A. Pawar
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sujit S. Pawar
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sahil Syed
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Nishigandha S. Mone
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sunil G. Dalvi
- Tissue Culture Section, Vasantdada Sugar Institute, Pune, India
| | - Pattanathu K. S. M. Rahman
- Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Ibrahim M. Banat
- School of Biomedical Sciences, Faculty of Life and Health Sciences, University of Ulster, Coleraine, United Kingdom,*Correspondence: Surekha K. Satpute, ; Ibrahim M. Banat,
| | - Surekha K. Satpute
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India,*Correspondence: Surekha K. Satpute, ; Ibrahim M. Banat,
| |
Collapse
|
9
|
Khan AR, Mustafa A, Hyder S, Valipour M, Rizvi ZF, Gondal AS, Yousuf Z, Iqbal R, Daraz U. Bacillus spp. as Bioagents: Uses and Application for Sustainable Agriculture. BIOLOGY 2022; 11:biology11121763. [PMID: 36552272 PMCID: PMC9775066 DOI: 10.3390/biology11121763] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Food security will be a substantial issue in the near future due to the expeditiously growing global population. The current trend in the agriculture industry entails the extravagant use of synthesized pesticides and fertilizers, making sustainability a difficult challenge. Land degradation, lower production, and vulnerability to both abiotic and biotic stresses are problems caused by the usage of these pesticides and fertilizers. The major goal of sustainable agriculture is to ameliorate productivity and reduce pests and disease prevalence to such a degree that prevents large-scale damage to crops. Agriculture is a composite interrelation among plants, microbes, and soil. Plant microbes play a major role in growth promotion and improve soil fertility as well. Bacillus spp. produces an extensive range of bio-chemicals that assist in plant disease control, promote plant development, and make them suitable for agricultural uses. Bacillus spp. support plant growth by N fixation, P and K solubilization, and phytohormone synthesis, in addition to being the most propitious biocontrol agent. Moreover, Bacilli excrete extracellular metabolites, including antibiotics, lytic enzymes, and siderophores, and demonstrate antagonistic activity against phytopathogens. Bacillus spp. boosts plant resistance toward pathogens by inducing systemic resistance (ISR). The most effective microbial insecticide against insects and pests in agriculture is Bacillus thuringiensis (Bt). Additionally, the incorporation of toxin genes in genetically modified crops increases resistance to insects and pests. There is a constant increase in the identified Bacillus species as potential biocontrol agents. Moreover, they have been involved in the biosynthesis of metallic nanoparticles. The main objective of this review article is to display the uses and application of Bacillus specie as a promising biopesticide in sustainable agriculture. Bacillus spp. strains that are antagonistic and promote plant yield attributes could be valuable in developing novel formulations to lead the way toward sustainable agriculture.
Collapse
Affiliation(s)
- Aimen Razzaq Khan
- Department of Botany, Government College Women University Sialkot, Sialkot 51310, Pakistan
| | - Adeena Mustafa
- Department of Botany, Government College Women University Sialkot, Sialkot 51310, Pakistan
| | - Sajjad Hyder
- Department of Botany, Government College Women University Sialkot, Sialkot 51310, Pakistan
- Correspondence: (S.H.); (M.V.)
| | - Mohammad Valipour
- Department of Engineering and Engineering Technology, Metropolitan State University of Denver, Denver, CO 80217, USA
- Correspondence: (S.H.); (M.V.)
| | - Zarrin Fatima Rizvi
- Department of Botany, Government College Women University Sialkot, Sialkot 51310, Pakistan
| | - Amjad Shahzad Gondal
- Department of Plant Pathology, Bahauddin Zakariya University Multan, Multan 60000, Pakistan
| | - Zubaida Yousuf
- Department of Botany, Lahore College for Women University, Lahore 54000, Pakistan
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Umar Daraz
- State Key Laboratory of Grassland Agroecosystem, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
10
|
Karthika S, Remya M, Varghese S, Dhanraj ND, Sali S, Rebello S, Jose SM, Jisha MS. Bacillus tequilensis PKDN31 and Bacillus licheniformis PKDL10 -As double headed swords to combat Fusarium oxysporum f. sp. lycopersici induced tomato wilt. Microb Pathog 2022; 172:105784. [PMID: 36122853 DOI: 10.1016/j.micpath.2022.105784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 10/31/2022]
Abstract
Wilt disease, caused by Fusarium oxysporum. f. sp. lycopersici, is a global threat to tomato production that needs to be addressed seriously. The current research envisages the use of two self-compatible Bacillus strains, Bacillus tequilensis PKDN31 and Bacillus licheniformis PKDL10, in a combinatorial approach. The spent supernatant of liquid cultures from strains PKDN31 and PKDL10 showed in vitro antifungal activity against Fusarium sp. attaining an inhibition percentage of 95.33% and 96.54%, respectively. The bacterial isolates lytic activity against Fusarium oxysporum was evaluated by scanning electron microscopic analysis and lytic enzyme production of amylase, lipase, protease and β-1,3 glucanase. Furthermore, PKDN31 and PKDL10 produced siderophores and had root colonizing ability that enhanced the biocontrol efficiency. Combined in vivo inoculation of Bacillus tequilensis PKDN31 and Bacillus licheniformis PKDL10 on tomato seeds revealed that the strains could induce systemic resistance in tomato against Fusarium oxysporum. f. sp. lycopersici by increasing defence enzymes such as β-1,3 glucanase, polyphenol oxidase, peroxidase, phenylalanine ammonia-lyase, chitinase, and total phenol accumulations. Pot culture experiments also proved the biocontrol efficacy of the above dual culture supplementation as this treatment displayed a better growth as well as defense against Fusarium challenge compared to the controls. The obtained results suggest that rhizobacterial isolates could be employed as systemic resistance inducers and biocontrol agents in tomato plants to protect against Fusarium wilt disease.
Collapse
Affiliation(s)
- S Karthika
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - M Remya
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Sherin Varghese
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - N D Dhanraj
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Sangeeta Sali
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Sharrel Rebello
- National Institute of Plant Science Technology, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | | | - M S Jisha
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India; National Institute of Plant Science Technology, Mahatma Gandhi University, Kottayam, Kerala, 686560, India; School of Food Science and Technology, Mahatma Gandhi University, Kottayam, Kerala, 686560, India.
| |
Collapse
|
11
|
F. Ajilogba C, Babalola OO, Adebola P, Adeleke R. Bambara Groundnut Rhizobacteria Antimicrobial and Biofertilization Potential. FRONTIERS IN PLANT SCIENCE 2022; 13:854937. [PMID: 35909751 PMCID: PMC9326403 DOI: 10.3389/fpls.2022.854937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Bambara groundnut, an underutilized crop has been proved to be an indigenous crop in Africa with the potential for food security. The rhizosphere of Bambara groundnut contains Rhizobacteria, with the ability to grow, adapt, and colonize their surroundings even in unfavorable conditions and have not been explored for their plant growth-promoting properties. The aim of this research was to determine the potential of rhizobacteria from Bambara groundnut soil samples as either biofertilizers or biocontrol agents or both to help provide sustainable agriculture in Africa and globally. Bambara groundnut rhizospheric soil samples were collected and analyzed for their chemical composition. Rhizobacteria isolates were cultured from the soil samples. Plant growth-promoting, antifungal activities and phylogenetic analysis using 16S rRNA were carried out on the isolates to identify the rhizobacteria. A 2-year field study planting was carried out to determine the effect of these rhizobacteria as biofertilizers for Bambara groundnut (Vigna subterranean). The study was carried out in a complete randomized block experimental design with three replications. All the isolates were able to produce ammonia and 1-aminocyclopropane-1-carboxylate, while 4.65, 12.28, and 27.91% produced hydrogen cyanide, indole acetic acid, and solubilized phosphate, respectively, making them important targets as biocontrol and biofertilizer agents. The field results revealed that treatment with rhizobacteria had significant results compared with the control. Characterization of selected isolates reveals their identity as B. amyloliquefaciens, B. thuringiensis, and Bacillus sp. These Bacillus isolates have proved to be plant growth-promoting agents that can be used as biofertilizers to enhance the growth of crops and consequent improved yield. This is the first time the rhizobacteria from the Bambara groundnut rhizosphere are applied as biofertilizer.
Collapse
Affiliation(s)
- Caroline F. Ajilogba
- Niche Area for Food Security and Safety, Faculty of Natural and Agricultural Science, North-West University, Mmabatho, South Africa
- Agricultural Research Council-Natural Resources and Engineering, Pretoria, South Africa
| | - Olubukola O. Babalola
- Niche Area for Food Security and Safety, Faculty of Natural and Agricultural Science, North-West University, Mmabatho, South Africa
| | - Patrick Adebola
- Agricultural Research Council-Vegetable and Ornamental Plants, Pretoria, South Africa
- International Institute of Tropical Agriculture, Abuja, Nigeria
| | - Rasheed Adeleke
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
12
|
Liu Q, Wang S, Li K, Qiao J, Guo Y, Liu Z, Guo X. Responses of soil bacterial and fungal communities to the long-term monoculture of grapevine. Appl Microbiol Biotechnol 2021; 105:7035-7050. [PMID: 34477939 DOI: 10.1007/s00253-021-11542-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 12/12/2022]
Abstract
Soil microorganisms are essential for the long-term sustainability of agricultural ecosystems. However, continuous grapevine replanting can disrupt the stability of soil microbial communities. We investigated the bacterial and fungal abundance, diversity, and community composition in rhizosphere soils with continuous grapevine replanting for 5, 6, 7 (Y5, Y6, and Y7; short-term), and 20 (Y20; long-term) years with high-throughput sequencing. Results showed that diversities and abundances of bacterial and fungal communities in Y20 were significantly lower than in other samples. The bacterial and fungal community compositions were markedly affected by the replanting time and planting year. After short-term grapevine replanting, relative abundances of potential beneficial bacteria and harmful fungi in rhizosphere soils were higher compared to long-term planting. Bacterial and fungal communities were significantly correlated with available nitrogen (AN), available phosphorus, available potassium (AK), and pH. AK and AN were the primary soil factors related to the shift of bacterial and fungal communities. Bacterial and fungal co-occurrence patterns were remarkably affected by replanting time, showing that fallow land harbored co-occurrence networks more complex than those in other groups, with the Y20 group showing the lowest complexity. Then, we isolated the dominant fungi in grapevine rhizosphere soil after continuous replanting and verified the harmful effects of three candidate strains through pot experiments. The results showed that 12 days post-treating the soil with fungal spore suspensions significantly inhibited grapevine seedlings' growth, whereas Fusarium solani inhibited plant growth. Overall, we showed that F. solani might be a potentially harmful fungus related to grapevine replant diseases. KEY POINTS: • Continuous grapevine planting reduced soil microbe diversities/abundances. • Beneficial bacteria and harmful fungi increased after short-term replanting. • F. solani may be a harmful fungus related to grapevine replant diseases.
Collapse
Affiliation(s)
- Qianwen Liu
- Pomology Department, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning Province, China
| | - Shixi Wang
- Pomology Department, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning Province, China
| | - Kun Li
- Pomology Department, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning Province, China.
| | - Jun Qiao
- Liaoning Agricultural Technical College, Yingkou, 115009, Liaoning Province, China
| | - Yinshan Guo
- Pomology Department, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning Province, China
| | - Zhendong Liu
- Pomology Department, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning Province, China
| | - Xiuwu Guo
- Pomology Department, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning Province, China.
| |
Collapse
|
13
|
Jindo K, Evenhuis A, Kempenaar C, Pombo Sudré C, Zhan X, Goitom Teklu M, Kessel G. Review: Holistic pest management against early blight disease towards sustainable agriculture. PEST MANAGEMENT SCIENCE 2021; 77:3871-3880. [PMID: 33538396 PMCID: PMC8451811 DOI: 10.1002/ps.6320] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/22/2021] [Accepted: 02/04/2021] [Indexed: 05/24/2023]
Abstract
Alternaria species are well-known aggressive pathogens that are widespread globally and warmer temperatures caused by climate change might increase their abundance more drastically. Early blight (EB) disease, caused mainly by Alternaria solani, and brown spot, caused by Alternaria alternata, are major concerns in potato, tomato and eggplant production. The development of EB is strongly linked to varieties, crop development stages, environmental factors, cultivation and field management. Several forecasting models for pesticide application to control EB were created in the last century and more recent scientific advances have included modern breeding technology to detect resistant genes and precision agriculture with hyperspectral sensors to pinpoint damage locations on plants. This paper presents an overview of the EB disease and provides an evaluation of recent scientific advances to control the disease. First of all, we describe the outline of this disease, encompassing biological cycles of the Alternaria genus, favorite climate and soil conditions as well as resistant plant species. Second, versatile management practices to minimize the effect of this pathogen at field level are discussed, covering their limitations and pitfalls. A better understanding of the underlying factors of this disease and the potential of novel research can contribute to implementing integrated pest management systems for an ecofriendly farming system. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Keiji Jindo
- Agrosystems ResearchWageningen University & ResearchWageningenThe Netherlands
| | | | - Corné Kempenaar
- Agrosystems ResearchWageningen University & ResearchWageningenThe Netherlands
| | - Cláudia Pombo Sudré
- Laboratório de Melhoramento Genético VegetalUniversidade Estadual do Norte Fluminense Darcy Ribeiro, UENFCampos dos GoytacazesBrazil
| | - Xiaoxiu Zhan
- Department of Crop Cultivation and Farming SystemCollege of Agronomy, Sichuan Agricultural UniversityChengduChina
| | | | - Geert Kessel
- Field CropsWageningen University & ResearchLelystadThe Netherlands
| |
Collapse
|
14
|
Borker SS, Thakur A, Kumar S, Kumari S, Kumar R, Kumar S. Comparative genomics and physiological investigation supported safety, cold adaptation, efficient hydrolytic and plant growth-promoting potential of psychrotrophic Glutamicibacter arilaitensis LJH19, isolated from night-soil compost. BMC Genomics 2021; 22:307. [PMID: 33910515 PMCID: PMC8082909 DOI: 10.1186/s12864-021-07632-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/20/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Night-soil compost (NSC) has traditionally been conserving water and a source of organic manure in northwestern Himalaya. Lately, this traditional method is declining due to modernization, its unhygienic conditions, and social apprehensions. Reduction in the age-old traditional practice has led to excessive chemical fertilizers and water shortage in the eco-sensitive region. In the current study, a bacterium has been analyzed for its safety, cold-adaptation, efficient degradation, and plant growth-promoting (PGP) attributes for its possible application as a safe bioinoculant in psychrotrophic bacterial consortia for improved night-soil composting. RESULTS Glutamicibacter arilaitensis LJH19, a psychrotrophic bacterium, was isolated from the NSC of Lahaul valley in northwestern Himalaya. The strain exhibited amylase (186.76 ± 19.28 U/mg), cellulase (21.85 ± 0.7 U/mg), and xylanase (11.31 ± 0.51 U/mg) activities at 10 °C. Possessing efficient hydrolytic activities at low-temperature garners the capability of efficient composting to LJH19. Additionally, the strain possessed multiple PGP traits such as indole acetic acid production (166.11 ± 5.7 μg/ml), siderophore production (85.72 ± 1.06% psu), and phosphate solubilization (44.76 ± 1.5 μg/ml). Enhanced germination index and germination rate of pea seeds under the LJH19 inoculation further supported the bacterium's PGP potential. Whole-genome sequencing (3,602,821 bps) and genome mining endorsed the cold adaptation, degradation of polysaccharides, and PGP traits of LJH19. Biosynthetic gene clusters for type III polyketide synthase (PKS), terpene, and siderophore supplemented the endorsement of LJH19 as a potential PGP bacterium. Comparative genomics within the genus revealed 217 unique genes specific to hydrolytic and PGP activity. CONCLUSION The physiological and genomic evidence promotes LJH19 as a potentially safe bio-inoculant to formulate psychrotrophic bacterial consortia for accelerated degradation and improved night-soil compost.
Collapse
Affiliation(s)
- Shruti Sinai Borker
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Aman Thakur
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Sanjeet Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Palampur, Himachal Pradesh, 176061, India
| | - Sareeka Kumari
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Palampur, Himachal Pradesh, 176061, India
| | - Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Palampur, Himachal Pradesh, 176061, India.
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Palampur, Himachal Pradesh, 176061, India
| |
Collapse
|
15
|
Magotra S, Bhagat N, Ambardar S, Ali T, Hurek BR, Hurek T, Verma PK, Vakhlu J. Field evaluation of PGP Bacillus sp. strain D5 native to Crocus sativus, in traditional and non traditional areas, and mining of PGP genes from its genome. Sci Rep 2021; 11:5454. [PMID: 33750799 PMCID: PMC7943801 DOI: 10.1038/s41598-021-84585-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 12/11/2020] [Indexed: 01/31/2023] Open
Abstract
Native Bacillus sp. strain D5 coded as (Bar D5) has been isolated from the saffron corm that showed plant growth promotion (PGP) properties and also inhibits the growth of corm rot causing Fusarium oxysporum R1 (Fox R1) in-vitro. Bar D5 was more efficient PGP bacterium in comparison to earlier reported native bio-formulations by our group. Pot assays and field evaluation of Bar D5 confirmed its in-vivo efficacy for PGP traits and biocontrol activity as well. Pot trials were followed by field trials at traditional (Kishtwar) and non-traditional (R.S Pura) saffron cultivation areas in Jammu and Kashmir. At both places, Bar D5 bio-formulation treatment led to the increase in root number & length, shoot number & length, flower number and number & weight of daughter corms. Additionally, it also decreased the corm rot disease incidence significantly. Priming of corms with bio-formulation resulted in the reduction of pathogenic fungal load by three fold at the depth of corm sowing from ground level. The shelf life/viability of Bar D5 based bio-formulation was found to be 52% (viable spores) for one year at room temperature. Draft genome sequence of Bar D5 revealed the presence of genes necessary for PGP and biocontrol activity. Further, confirmation of gene sequences and annotation was done by amplification, re-sequencing and mapping of PGP and biocontrol genes on draft genome. Bar D5 based bio-formulation can be provided to companies/researchers interested in saffron cultivation or bio-formulation production for commercial exploitation, since saffron is grown as revenue crop across continents. The present study bridges the gap between genomics and its field application.
Collapse
Affiliation(s)
- Shanu Magotra
- grid.412986.00000 0001 0705 4560Metagenomic Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006 India ,grid.448792.40000 0004 4678 9721University Institute of Biotechnology, Chandigarh University, Punjab, 140413 India
| | - Nancy Bhagat
- grid.412986.00000 0001 0705 4560Metagenomic Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006 India
| | - Sheetal Ambardar
- grid.22401.350000 0004 0502 9283National Center for Biological Sciences, Bellary Road, Bangalore, 560065 India
| | - Tahir Ali
- grid.412986.00000 0001 0705 4560Metagenomic Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006 India
| | - Barbara Reinhold Hurek
- grid.7704.40000 0001 2297 4381Department of Microbe-Plant Interactions, Faculty of Biology and Chemistry, University of Bremen, P.O. Box 33 04 40, Bremen, Germany
| | - Thomas Hurek
- grid.7704.40000 0001 2297 4381Department of Microbe-Plant Interactions, Faculty of Biology and Chemistry, University of Bremen, P.O. Box 33 04 40, Bremen, Germany
| | - Praveen Kumar Verma
- grid.419632.b0000 0001 2217 5846Plant Immunity Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, 110067 India
| | - Jyoti Vakhlu
- grid.412986.00000 0001 0705 4560Metagenomic Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006 India
| |
Collapse
|
16
|
Hakim S, Naqqash T, Nawaz MS, Laraib I, Siddique MJ, Zia R, Mirza MS, Imran A. Rhizosphere Engineering With Plant Growth-Promoting Microorganisms for Agriculture and Ecological Sustainability. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.617157] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The rhizosphere is undoubtedly the most complex microhabitat, comprised of an integrated network of plant roots, soil, and a diverse consortium of bacteria, fungi, eukaryotes, and archaea. The rhizosphere conditions have a direct impact on crop growth and yield. Nutrient-rich rhizosphere environments stimulate plant growth and yield and vice versa. Extensive cultivation exhaust most of the soils which need to be nurtured before or during the next crop. Chemical fertilizers are the major source of crop nutrients but their uncontrolled and widespread usage has posed a serious threat to the sustainability of agriculture and stability of an ecosystem. These chemicals are accumulated in the soil, drained in water, and emitted to the air where they persist for decades causing a serious threat to the overall ecosystem. Plant growth-promoting rhizobacteria (PGPR) present in the rhizosphere convert many plant-unavailable essential nutrients e.g., nitrogen, phosphorous, zinc, etc. into available forms. PGPR produces certain plant growth hormones (such as auxin, cytokinin, and gibberellin), cell lytic enzymes (chitinase, protease, hydrolases, etc.), secondary metabolites, and antibiotics, and stress alleviating compounds (e.g., 1-Aminocyclopropane-1- carboxylate deaminase), chelating agents (siderophores), and some signaling compounds (e.g., N-Acyl homoserine lactones) to interact with the beneficial or pathogenic counterparts in the rhizosphere. These multifarious activities of PGPR improve the soil structure, health, fertility, and functioning which directly or indirectly support plant growth under normal and stressed environments. Rhizosphere engineering with these PGPR has a wide-ranging application not only for crop fertilization but developing eco-friendly sustainable agriculture. Due to severe climate change effects on plants and rhizosphere biology, there is growing interest in stress-resilient PGPM and their subsequent application to induce stress (drought, salinity, and heat) tolerance mechanism in plants. This review describes the three components of rhizosphere engineering with an explicit focus on the broader perspective of PGPM that could facilitate rhizosphere engineering in selected hosts to serve as an efficient component for sustainable agriculture.
Collapse
|
17
|
Chaudhary T, Gera R, Shukla P. Deciphering the Potential of Rhizobium pusense MB-17a, a Plant Growth-Promoting Root Endophyte, and Functional Annotation of the Genes Involved in the Metabolic Pathway. Front Bioeng Biotechnol 2021; 8:617034. [PMID: 33537293 PMCID: PMC7848175 DOI: 10.3389/fbioe.2020.617034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) are root endophytic bacteria used for growth promotion, and they have broader applications in enhancing specific crop yield as a whole. In the present study, we have explored the potential of Rhizobium pusense MB-17a as an endophytic bacterium isolated from the roots of the mung bean (Vigna radiata) plant. Furthermore, this bacterium was sequenced and assembled to reveal its genomic potential associated with plant growth-promoting traits. Interestingly, the root endophyte R. pusense MB-17a showed all essential PGPR traits which were determined by biochemical and PGPR tests. It was noted that this root endophytic bacterium significantly produced siderophores, indole acetic acid (IAA), ammonia, and ACC deaminase and efficiently solubilized phosphate. The maximum IAA and ammonia produced were observed to be 110.5 and 81 μg/ml, respectively. Moreover, the PGPR potential of this endophytic bacterium was also confirmed by a pot experiment for mung bean (V. radiata), whose results show a substantial increase in the plant's fresh weight by 76.1% and dry weight by 76.5% on the 60th day after inoculation of R. pusense MB-17a. Also, there is a significant enhancement in the nodule number by 66.1% and nodule fresh weight by 162% at 45th day after inoculation with 100% field capacity after the inoculation of R. pusense MB-17a. Besides this, the functional genomic annotation of R. pusense MB-17a determined the presence of different proteins and transporters that are responsible for its stress tolerance and its plant growth-promoting properties. It was concluded that the unique presence of genes like rpoH, otsAB, and clpB enhances the symbiosis process during adverse conditions in this endophyte. Through Rapid Annotation using Subsystem Technology (RAST) analysis, the key genes involved in the production of siderophores, volatile compounds, indoles, nitrogenases, and amino acids were also predicted. In conclusion, the strain described in this study gives a novel idea of using such type of endophytes for improving plant growth-promoting traits under different stress conditions for sustainable agriculture.
Collapse
Affiliation(s)
- Twinkle Chaudhary
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Rajesh Gera
- Department of Microbiology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|