1
|
Zhang Z, Shi W, Gu J, Song S, Xiao M, Yao J, Liu Y, Jiang J, Miao M. Short day promotes gall swelling by a CONSTANS-FLOWERING LOCUS T pathway in Zizania latifolia. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1014-1031. [PMID: 39292875 DOI: 10.1111/tpj.17033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/24/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
"Jiaobai" is a symbiont of Zizania latifolia and Ustilago esculenta, producing fleshy galls as a popular vegetable in South and East Asia. Current "Jiaobai" cultivars exhibit abundant variation in their gall formation date; however, the underlying mechanism is not clear. In this study, a strict short-day (SD) "Jiaobai" line "YD-3" was used. Plants were treated with two day-length regimes [14 h/10 h (day/night) (control) and 8 h/16 h (day/night) (SD)] from 100 to 130 days after planting. The gall swelling rate of the two treatments and another early SD treatment (from 60 to 90 days after planting), together with the contingent flowering plants in the experiment population, revealed that SD can improve both gall enlargement and flowering of "Jiaobai" plants. Comparison of RNA sequencing data among control, SD swelling, and SD flowering treatments of leaves and meristems indicated that SD promotion of "Jiaobai" swelling is conducted by the CONSTANS (CO)-FLOWERING LOCUS T (FT) pathway, similar but not identical to the SD-induced flowering pathway in Z latifolia and rice. "Virus-induced gene silencing", "Yeast one-hybrid assay" and "Dual-luciferase assay" showed that a FT gene, ZlGsd1, is critical in SD promotion of gall formation and is positively regulated by a CO gene, ZlCOL1. Our study elucidated how photoperiod affects the formation of a unique organ produced by plant-fungus symbiosis. The difference in SD response between "Jiaobai" and rice, as well as their potential applications in breeding of "Jiaobai" and rice, were also discussed.
Collapse
Affiliation(s)
- Zhiping Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Wangjie Shi
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Jiawen Gu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Sixiao Song
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Meng Xiao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Junchi Yao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Yancheng Liu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Jiezeng Jiang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Minmin Miao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| |
Collapse
|
2
|
Zhao Y, Gu M, Jiang P, Fang S, Yan N, Kong F, Ma D, Ren D, Pang X, Qiu J. Characterisation of aroma compounds, sensory characteristics, and bioactive components of a new type of huangjiu fermented with Chinese wild rice (Zizania latifolia). Food Chem 2024; 452:139524. [PMID: 38703742 DOI: 10.1016/j.foodchem.2024.139524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/17/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Chinese wild rice (CWR) is a nutritious and healthy whole grain, worth developing. To develop and use its value, a new type of huangjiu was brewed with CWR, and the flavour characteristics, sensory quality, functional and bioactive components were evaluated. CWR (67 flavour substances) and glutinous rice (GR)-CWR huangjiu (62 flavour substances) had a better flavour than GR huangjiu (54 flavour substances), and the overall style of GR-CWR huangjiu was more skewed towards GR. The fruity, honey, caramel-like, herb and smoky aroma attributes of CWR huangjiu were higher than those of GR huangjiu (P < 0.05), while only the alcoholic was weaker (P < 0.05) due to the lower alcohol content. The huangjiu brewed using CWR had a better taste than that brewed using only GR. Furthermore, CWR huangjiu had the highest content of total dietary fiber (732.0 ± 15.2 mg/100 g), followed by GR-CWR (307.0 ± 8.5 mg/100 g), and GR (127.0 ± 2.3 mg/100 g). CWR huangjiu also had the highest total phenolic compounds (3.32 ± 0.05 mg/100 g/%vol) and total saponins (2.46 ± 0.03 mg/100 g/%vol) contents, followed by GR-CWR and GR. This study provides guidance for exploring further possibilities for CWR in the future.
Collapse
Affiliation(s)
- Yuzong Zhao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266001, China
| | - Mingyue Gu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266001, China
| | - Peng Jiang
- Qingdao Agricultural Product Quality and Safety Center, Qingdao 266199, China
| | - Song Fang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266001, China
| | - Ning Yan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266001, China
| | - Fanyu Kong
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266001, China
| | - Donglin Ma
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Dongliang Ren
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Xueli Pang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266001, China.
| | - Jun Qiu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266001, China.
| |
Collapse
|
3
|
Wu W, Han Y, Niu B, Yang B, Liu R, Fang X, Chen H, Xiao S, Farag MA, Zheng S, Xiao J, Chen H, Gao H. Recent advances in Zizania latifolia: A comprehensive review on phytochemical, health benefits and applications that maximize its value. Crit Rev Food Sci Nutr 2024; 64:7535-7549. [PMID: 36908217 DOI: 10.1080/10408398.2023.2186125] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Zizania latifolia is an aquatic and medicinal plant with a long history of development in China and the East Asian region. The smut fungus "Ustilago esculenta" parasitizes Z. latifolia and induces culm expansion to form a vegetable named Jiaobai, which has a unique taste and nutritional attributes. However, the postharvest quality of water bamboo shoots is still a big challenge for farmers and merchants. This paper traced the origin, development process, and morphological characteristics of Z. latifolia. Subsequently, the compilation of the primary nutrients and bioactive substances are presented in context to their effects on ecology a postharvest storage and preservation methods. Furthermore, the industrial, environmental, and material science applications of Z. latifolia in the fields of industry were discussed. Finally, the primary objective of the review proposes future directions for research to support the development of Z. latifolia industry and aid in maximizing its value. To sum up, Z. latifolia, aside from its potential as material it can be utilized to make different productions and improve the existing applications. This paper provides an emerging strategy for researchers undertaking Z. latifolia.
Collapse
Affiliation(s)
- Weijie Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yanchao Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ben Niu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Baiqi Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ruiling Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiangjun Fang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Huizhi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shangyue Xiao
- Department of Analytical Chemistry and Food Science, University of Vigo, Vigo, Spain
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Shiqi Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, University of Vigo, Vigo, Spain
| | - Hangjun Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Haiyan Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
4
|
Xie YN, Qi QQ, Li WH, Li YL, Zhang Y, Wang HM, Zhang YF, Ye ZH, Guo DP, Qian Q, Zhang ZF, Yan N. Domestication, breeding, omics research, and important genes of Zizania latifolia and Zizania palustris. FRONTIERS IN PLANT SCIENCE 2023; 14:1183739. [PMID: 37324716 PMCID: PMC10266587 DOI: 10.3389/fpls.2023.1183739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Wild rice (Zizania spp.), an aquatic grass belonging to the subfamily Gramineae, has a high economic value. Zizania provides food (such as grains and vegetables), a habitat for wild animals, and paper-making pulps, possesses certain medicinal values, and helps control water eutrophication. Zizania is an ideal resource for expanding and enriching a rice breeding gene bank to naturally preserve valuable characteristics lost during domestication. With the Z. latifolia and Z. palustris genomes completely sequenced, fundamental achievements have been made toward understanding the origin and domestication, as well as the genetic basis of important agronomic traits of this genus, substantially accelerating the domestication of this wild plant. The present review summarizes the research results on the edible history, economic value, domestication, breeding, omics research, and important genes of Z. latifolia and Z. palustris over the past decades. These findings broaden the collective understanding of Zizania domestication and breeding, furthering human domestication, improvement, and long-term sustainability of wild plant cultivation.
Collapse
Affiliation(s)
- Yan-Ning Xie
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Qian-Qian Qi
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Wan-Hong Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Ya-Li Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yu Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Hui-Mei Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Ya-Fen Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Zi-Hong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - De-Ping Guo
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhong-Feng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Ning Yan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
5
|
Cittadino GM, Andrews J, Purewal H, Estanislao Acuña Avila P, Arnone JT. Functional Clustering of Metabolically Related Genes Is Conserved across Dikarya. J Fungi (Basel) 2023; 9:jof9050523. [PMID: 37233234 DOI: 10.3390/jof9050523] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/08/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Transcriptional regulation is vital for organismal survival, with many layers and mechanisms collaborating to balance gene expression. One layer of this regulation is genome organization, specifically the clustering of functionally related, co-expressed genes along the chromosomes. Spatial organization allows for position effects to stabilize RNA expression and balance transcription, which can be advantageous for a number of reasons, including reductions in stochastic influences between the gene products. The organization of co-regulated gene families into functional clusters occurs extensively in Ascomycota fungi. However, this is less characterized within the related Basidiomycota fungi despite the many uses and applications for the species within this clade. This review will provide insight into the prevalence, purpose, and significance of the clustering of functionally related genes across Dikarya, including foundational studies from Ascomycetes and the current state of our understanding throughout representative Basidiomycete species.
Collapse
Affiliation(s)
- Gina M Cittadino
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | - Johnathan Andrews
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | - Harpreet Purewal
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | | | - James T Arnone
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| |
Collapse
|
6
|
Transcriptome Comparison between Two Strains of Ustilago esculenta during the Mating. J Fungi (Basel) 2022; 9:jof9010032. [PMID: 36675853 PMCID: PMC9862937 DOI: 10.3390/jof9010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Ustilago esculenta is a smut fungus that obligately infects Zizania latifolia and stimulates tissue swelling to form galls. Unlike T-type, MT-type U. esculenta can only proliferate within plant tissues and infect the offspring of their host. Production of telispores, haploid life, and plant cuticle penetration are not essential for it, which may lead to the degeneration in these processes. Transcriptome changes during the mating of T- and MT-type U. esculenta were studied. The functions of several secreted proteins were further confirmed by knock-out mutants. Our results showed that MT-type U. esculenta can receive environmental signals in mating and circumstance sensing as T-type does. However, MT-type U. esculenta takes a longer time for conjunction tube formation and cytoplasmic fusion. A large number of genes encoding secreted proteins are enriched in the purple co-expression module. They are significantly up-regulated in the late stage of mating in T-type U. esculenta, indicating their relationship with infecting. The knock-out of g6161 (xylanase) resulted in an attenuated symptom. The knock-out of g943 or g4344 (function unidentified) completely blocked the infection at an early stage. This study provides a comprehensive comparison between T- and MT-type during mating and identifies two candidate effectors for further study.
Collapse
|
7
|
Li F, Zhang J, Zhong H, Chen J. Germicide Fenaminosulf Promots Gall Formation of Zizania latifolia without directly affecting the growth of endophytic fungus Ustilago esculenta. BMC PLANT BIOLOGY 2022; 22:418. [PMID: 36042398 PMCID: PMC9426258 DOI: 10.1186/s12870-022-03803-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Zizania latifolia is a popular aquatic vegetable in China because of its enlarged edible stems resulting from persistent infection by a fungal endophyte, Ustilago esculenta. Fenaminosulf (FM) is a germicide that can be used to improve agricultural crop yields. In Z. latifolia fields, appropriate spraying of FM not just controls diseases, but also promotes an earlier harvest of Z. latifolia. In this study, we show that the timing of gall formation was advanced and the plant's yield was increased significantly under a high concentration treatment of FM. Yet FM had a strong inhibitory effect on the growth of U. esculenta in vitro, while the transcript levels of mating-type alleles, cell metabolism-related genes and chitin synthase genes were all substantially downregulated. Through a transcriptome analysis, we investigated changes in gene expression of the host Z. latifolia and fungal endophyte U. esculenta in response to FM. FM directly affected the growth of Z. latifolia by altering the expression level of genes involved in plant-pathogen interactions, plant hormone signal transduction and some metabolism pathways. By contrast, FM had little effect on U. esculenta growing inside of Z. latifolia. Collectively, our results provide a more in-depth understanding of the molecular processes that promote gall formation in Z. latifolia, while also identifying potential targets for genetic manipulation to improve the yield and quality of Z. latifolia, in a safer and more effective way.
Collapse
Affiliation(s)
- Fang Li
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Juefeng Zhang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Haiying Zhong
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jianming Chen
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
8
|
Yan N, Yang T, Yu XT, Shang LG, Guo DP, Zhang Y, Meng L, Qi QQ, Li YL, Du YM, Liu XM, Yuan XL, Qin P, Qiu J, Qian Q, Zhang ZF. Chromosome-level genome assembly of Zizania latifolia provides insights into its seed shattering and phytocassane biosynthesis. Commun Biol 2022; 5:36. [PMID: 35017643 PMCID: PMC8752815 DOI: 10.1038/s42003-021-02993-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 12/21/2021] [Indexed: 12/25/2022] Open
Abstract
Chinese wild rice (Zizania latifolia; family: Gramineae) is a valuable medicinal homologous grain in East and Southeast Asia. Here, using Nanopore sequencing and Hi-C scaffolding, we generated a 547.38 Mb chromosome-level genome assembly comprising 332 contigs and 164 scaffolds (contig N50 = 4.48 Mb; scaffold N50 = 32.79 Mb). The genome harbors 38,852 genes, with 52.89% of the genome comprising repetitive sequences. Phylogenetic analyses revealed close relation of Z. latifolia to Leersia perrieri and Oryza species, with a divergence time of 19.7-31.0 million years. Collinearity and transcriptome analyses revealed candidate genes related to seed shattering, providing basic information on abscission layer formation and degradation in Z. latifolia. Moreover, two genomic blocks in the Z. latifolia genome showed good synteny with the rice phytocassane biosynthetic gene cluster. The updated genome will support future studies on the genetic improvement of Chinese wild rice and comparative analyses between Z. latifolia and other plants.
Collapse
Affiliation(s)
- Ning Yan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Ting Yang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xiu-Ting Yu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lian-Guang Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - De-Ping Guo
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yu Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Lin Meng
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Qian-Qian Qi
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ya-Li Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yong-Mei Du
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xin-Min Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xiao-Long Yuan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Peng Qin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jie Qiu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China.
| | - Zhong-Feng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
9
|
Zhang ZP, Song SX, Liu YC, Zhu XR, Jiang YF, Shi LT, Jiang JZ, Miao MM. Mixed Transcriptome Analysis Revealed the Possible Interaction Mechanisms between Zizania latifolia and Ustilago esculenta Inducing Jiaobai Stem-Gall Formation. Int J Mol Sci 2021; 22:ijms222212258. [PMID: 34830140 PMCID: PMC8618054 DOI: 10.3390/ijms222212258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 11/23/2022] Open
Abstract
The smut fungus Ustilago esculenta infects Zizania latifolia and induces stem expansion to form a unique vegetable named Jiaobai. Although previous studies have demonstrated that hormonal control is essential for triggering stem swelling, the role of hormones synthesized by Z. latifolia and U. esculenta and the underlying molecular mechanism are not yet clear. To study the mechanism that triggers swollen stem formation, we analyzed the gene expression pattern of both interacting organisms during the initial trigger of culm gall formation, at which time the infective hyphae also propagated extensively and penetrated host stem cells. Transcriptional analysis indicated that abundant genes involving fungal pathogenicity and plant resistance were reprogrammed to maintain the subtle balance between the parasite and host. In addition, the expression of genes involved in auxin biosynthesis of U. esculenta obviously decreased during stem swelling, while a large number of genes related to the synthesis, metabolism and signal transduction of hormones of the host plant were stimulated and showed specific expression patterns, particularly, the expression of ZlYUCCA9 (a flavin monooxygenase, the key enzyme in indole-3-acetic acid (IAA) biosynthesis pathway) increased significantly. Simultaneously, the content of IAA increased significantly, while the contents of cytokinin and gibberellin showed the opposite trend. We speculated that auxin produced by the host plant, rather than the fungus, triggers stem swelling. Furthermore, from the differently expressed genes, two candidate Cys2-His2 (C2H2) zinc finger proteins, GME3058_g and GME5963_g, were identified from U. esculenta, which may conduct fungus growth and infection at the initial stage of stem-gall formation.
Collapse
Affiliation(s)
- Zhi-Ping Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-P.Z.); (S.-X.S.); (Y.-C.L.); (X.-R.Z.); (Y.-F.J.); (L.-T.S.); (J.-Z.J.)
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College, Yangzhou University, Yangzhou 225009, China
| | - Si-Xiao Song
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-P.Z.); (S.-X.S.); (Y.-C.L.); (X.-R.Z.); (Y.-F.J.); (L.-T.S.); (J.-Z.J.)
| | - Yan-Cheng Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-P.Z.); (S.-X.S.); (Y.-C.L.); (X.-R.Z.); (Y.-F.J.); (L.-T.S.); (J.-Z.J.)
| | - Xin-Rui Zhu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-P.Z.); (S.-X.S.); (Y.-C.L.); (X.-R.Z.); (Y.-F.J.); (L.-T.S.); (J.-Z.J.)
| | - Yi-Feng Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-P.Z.); (S.-X.S.); (Y.-C.L.); (X.-R.Z.); (Y.-F.J.); (L.-T.S.); (J.-Z.J.)
| | - Ling-Tong Shi
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-P.Z.); (S.-X.S.); (Y.-C.L.); (X.-R.Z.); (Y.-F.J.); (L.-T.S.); (J.-Z.J.)
| | - Jie-Zeng Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-P.Z.); (S.-X.S.); (Y.-C.L.); (X.-R.Z.); (Y.-F.J.); (L.-T.S.); (J.-Z.J.)
| | - Min-Min Miao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-P.Z.); (S.-X.S.); (Y.-C.L.); (X.-R.Z.); (Y.-F.J.); (L.-T.S.); (J.-Z.J.)
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
10
|
Wang ZH, Yan N, Luo X, Guo SS, Xue SQ, Liu JQ, Zhang SS, Zheng LW, Zhang JZ, Guo DP. Role of Long Noncoding RNAs ZlMSTRG.11348 and UeMSTRG.02678 in Temperature-Dependent Culm Swelling in Zizania latifolia. Int J Mol Sci 2021; 22:ijms22116020. [PMID: 34199611 PMCID: PMC8199642 DOI: 10.3390/ijms22116020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Temperature influences the physiological processes and ecology of both hosts and endophytes; however, it remains unclear how long noncoding RNAs (lncRNAs) modulate the consequences of temperature-dependent changes in host-pathogen interactions. To explore the role of lncRNAs in culm gall formation induced by the smut fungus Ustilago esculenta in Zizania latifolia, we employed RNA sequencing to identify lncRNAs and their potential cis-targets in Z. latifolia and U. esculenta under different temperatures. In Z. latifolia and U. esculenta, we identified 3194 and 173 lncRNAs as well as 126 and four potential target genes for differentially expressed lncRNAs, respectively. Further function and expression analysis revealed that lncRNA ZlMSTRG.11348 regulates amino acid metabolism in Z. latifolia and lncRNA UeMSTRG.02678 regulates amino acid transport in U. esculenta. The plant defence response was also found to be regulated by lncRNAs and suppressed in Z. latifolia infected with U. esculenta grown at 25 °C, which may result from the expression of effector genes in U. esculenta. Moreover, in Z. latifolia infected with U. esculenta, the expression of genes related to phytohormones was altered under different temperatures. Our results demonstrate that lncRNAs are important components of the regulatory networks in plant-microbe-environment interactions, and may play a part in regulating culm swelling in Z. latifolia plants.
Collapse
Affiliation(s)
- Zheng-Hong Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.-H.W.); (X.L.); (S.-S.G.); (S.-Q.X.); (J.-Q.L.); (S.-S.Z.); (L.-W.Z.)
| | - Ning Yan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China;
| | - Xi Luo
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.-H.W.); (X.L.); (S.-S.G.); (S.-Q.X.); (J.-Q.L.); (S.-S.Z.); (L.-W.Z.)
| | - Sai-Sai Guo
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.-H.W.); (X.L.); (S.-S.G.); (S.-Q.X.); (J.-Q.L.); (S.-S.Z.); (L.-W.Z.)
| | - Shu-Qin Xue
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.-H.W.); (X.L.); (S.-S.G.); (S.-Q.X.); (J.-Q.L.); (S.-S.Z.); (L.-W.Z.)
| | - Jiang-Qiong Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.-H.W.); (X.L.); (S.-S.G.); (S.-Q.X.); (J.-Q.L.); (S.-S.Z.); (L.-W.Z.)
| | - Shen-Shen Zhang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.-H.W.); (X.L.); (S.-S.G.); (S.-Q.X.); (J.-Q.L.); (S.-S.Z.); (L.-W.Z.)
| | - Li-Wen Zheng
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.-H.W.); (X.L.); (S.-S.G.); (S.-Q.X.); (J.-Q.L.); (S.-S.Z.); (L.-W.Z.)
| | - Jing-Ze Zhang
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Correspondence: (J.-Z.Z.); (D.-P.G.); Tel.: +86-571-88982796 (D.-P.G.)
| | - De-Ping Guo
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.-H.W.); (X.L.); (S.-S.G.); (S.-Q.X.); (J.-Q.L.); (S.-S.Z.); (L.-W.Z.)
- Correspondence: (J.-Z.Z.); (D.-P.G.); Tel.: +86-571-88982796 (D.-P.G.)
| |
Collapse
|
11
|
Whole and polysaccharide powdered Sporisorium reilianum improves DSS-induced colitis in BALB/c mice by modulating gut microbiota. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
12
|
Yu X, Chu M, Chu C, Du Y, Shi J, Liu X, Liu Y, Zhang H, Zhang Z, Yan N. Wild rice (Zizania spp.): A review of its nutritional constituents, phytochemicals, antioxidant activities, and health-promoting effects. Food Chem 2020; 331:127293. [DOI: 10.1016/j.foodchem.2020.127293] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/01/2020] [Accepted: 06/08/2020] [Indexed: 02/08/2023]
|