1
|
Pei H, Wang Y, He W, Deng L, Lan Q, Zhang Y, Yang L, Hu K, Li J, Liu A, Ao X, Teng H, Liu S, Zou L, Li R, Yang Y. Research of Multicopper Oxidase and Its Degradation of Histamine in Lactiplantibacillus plantarum LPZN19. Microorganisms 2023; 11:2724. [PMID: 38004736 PMCID: PMC10672810 DOI: 10.3390/microorganisms11112724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
In order to explore the structural changes and products of histamine degradation by multicopper oxidase (MCO) in Lactiplantibacillus plantarum LPZN19, a 1500 bp MCO gene in L. plantarum LPZN19 was cloned, and the recombinant MCO was expressed in E. coli BL21 (DE3). After purification by Ni2+-NTA affinity chromatography, the obtained MCO has a molecular weight of 58 kDa, and it also has the highest enzyme activity at 50 °C and pH 3.5, with a relative enzyme activity of 100%, and it maintains 57.71% of the relative enzyme activity at 5% salt concentration. The secondary structure of MCO was determined by circular dichroism, in which the proportions of the α-helix, β-sheet, β-turn and random coil were 2.9%, 39.7%, 21.2% and 36.1%, respectively. The 6xj0.1.A with a credibility of 68.21% was selected as the template to predict the tertiary structure of MCO in L. plantarum LPZN19, and the results indicated that the main components of the tertiary structure of MCO were formed by the further coiling and folding of a random coil and β-sheet. Histamine could change the spatial structure of MCO by increasing the content of the α-helix and β-sheet. Finally, the LC-MS/MS identification results suggest that the histamine was degraded into imidazole acetaldehyde, hydrogen peroxide and ammonia.
Collapse
Affiliation(s)
- Huijie Pei
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (H.P.); (Y.W.); (W.H.); (L.D.); (Q.L.); (Y.Z.); (L.Y.); (K.H.); (J.L.); (X.A.); (H.T.); (S.L.); (R.L.)
| | - Yilun Wang
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (H.P.); (Y.W.); (W.H.); (L.D.); (Q.L.); (Y.Z.); (L.Y.); (K.H.); (J.L.); (X.A.); (H.T.); (S.L.); (R.L.)
| | - Wei He
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (H.P.); (Y.W.); (W.H.); (L.D.); (Q.L.); (Y.Z.); (L.Y.); (K.H.); (J.L.); (X.A.); (H.T.); (S.L.); (R.L.)
| | - Lin Deng
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (H.P.); (Y.W.); (W.H.); (L.D.); (Q.L.); (Y.Z.); (L.Y.); (K.H.); (J.L.); (X.A.); (H.T.); (S.L.); (R.L.)
| | - Qinjie Lan
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (H.P.); (Y.W.); (W.H.); (L.D.); (Q.L.); (Y.Z.); (L.Y.); (K.H.); (J.L.); (X.A.); (H.T.); (S.L.); (R.L.)
| | - Yue Zhang
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (H.P.); (Y.W.); (W.H.); (L.D.); (Q.L.); (Y.Z.); (L.Y.); (K.H.); (J.L.); (X.A.); (H.T.); (S.L.); (R.L.)
| | - Lamei Yang
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (H.P.); (Y.W.); (W.H.); (L.D.); (Q.L.); (Y.Z.); (L.Y.); (K.H.); (J.L.); (X.A.); (H.T.); (S.L.); (R.L.)
| | - Kaidi Hu
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (H.P.); (Y.W.); (W.H.); (L.D.); (Q.L.); (Y.Z.); (L.Y.); (K.H.); (J.L.); (X.A.); (H.T.); (S.L.); (R.L.)
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (H.P.); (Y.W.); (W.H.); (L.D.); (Q.L.); (Y.Z.); (L.Y.); (K.H.); (J.L.); (X.A.); (H.T.); (S.L.); (R.L.)
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (H.P.); (Y.W.); (W.H.); (L.D.); (Q.L.); (Y.Z.); (L.Y.); (K.H.); (J.L.); (X.A.); (H.T.); (S.L.); (R.L.)
| | - Xiaolin Ao
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (H.P.); (Y.W.); (W.H.); (L.D.); (Q.L.); (Y.Z.); (L.Y.); (K.H.); (J.L.); (X.A.); (H.T.); (S.L.); (R.L.)
| | - Hui Teng
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (H.P.); (Y.W.); (W.H.); (L.D.); (Q.L.); (Y.Z.); (L.Y.); (K.H.); (J.L.); (X.A.); (H.T.); (S.L.); (R.L.)
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (H.P.); (Y.W.); (W.H.); (L.D.); (Q.L.); (Y.Z.); (L.Y.); (K.H.); (J.L.); (X.A.); (H.T.); (S.L.); (R.L.)
| | - Likou Zou
- College of Resource, Sichuan Agricultural University, Chengdu 611130, China;
| | - Ran Li
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (H.P.); (Y.W.); (W.H.); (L.D.); (Q.L.); (Y.Z.); (L.Y.); (K.H.); (J.L.); (X.A.); (H.T.); (S.L.); (R.L.)
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (H.P.); (Y.W.); (W.H.); (L.D.); (Q.L.); (Y.Z.); (L.Y.); (K.H.); (J.L.); (X.A.); (H.T.); (S.L.); (R.L.)
| |
Collapse
|
2
|
Abstract
Acinetobacter infections have high rates of mortality due to an increasing incidence of infections by multidrug-resistant (MDR) and extensively-drug-resistant (XDR) strains. Therefore, new therapeutic strategies for the treatment of Acinetobacter infections are urgently needed. Acinetobacter spp. are Gram-negative coccobacilli that are obligate aerobes and can utilize a wide variety of carbon sources. Acinetobacter baumannii is the main cause of Acinetobacter infections, and recent work has identified multiple strategies A. baumannii uses to acquire nutrients and replicate in the face of host nutrient restriction. Some host nutrient sources also serve antimicrobial and immunomodulatory functions. Hence, understanding Acinetobacter metabolism during infection may provide new insights into novel infection control measures. In this review, we focus on the role of metabolism during infection and in resistance to antibiotics and other antimicrobial agents and discuss the possibility that metabolism may be exploited to identify novel targets to treat Acinetobacter infections.
Collapse
Affiliation(s)
- Xiaomei Ren
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Lauren D. Palmer
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
3
|
Sharma KK, Singh D, Mohite SV, Williamson PR, Kennedy JF. Metal manipulators and regulators in human pathogens: A comprehensive review on microbial redox copper metalloenzymes "multicopper oxidases and superoxide dismutases". Int J Biol Macromol 2023; 233:123534. [PMID: 36740121 DOI: 10.1016/j.ijbiomac.2023.123534] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
The chemistry of metal ions with human pathogens is essential for their survival, energy generation, redox signaling, and niche dominance. To regulate and manipulate the metal ions, various enzymes and metal chelators are present in pathogenic bacteria. Metalloenzymes incorporate transition metal such as iron, zinc, cobalt, and copper in their reaction centers to perform essential metabolic functions; however, iron and copper have gained more importance. Multicopper oxidases have the ability to perform redox reaction on phenolic substrates with the help of copper ions. They have been reported from Enterobacteriaceae, namely Salmonella enterica, Escherichia coli, and Yersinia enterocolitica, but their role in virulence is still poorly understood. Similarly, superoxide dismutases participate in reducing oxidative stress and allow the survival of pathogens. Their role in virulence and survival is well established in Salmonella typhimurium and Mycobacterium tuberculosis. Further, to ensure survival against stress, like metal starvation or metal toxicity, redox metalloenzymes and metal transportation systems of pathogens actively participate in metal homeostasis. Recently, the omics and protein structure biology studies have helped to predict new targets for regulation the colonization potential of the pathogenic strains. The current review is focused on the major roles of redox metalloenzymes, especially MCOs and SODs of human pathogenic bacteria.
Collapse
Affiliation(s)
- Krishna Kant Sharma
- Laboratory of Enzymology and Gut Microbiology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| | - Deepti Singh
- Laboratory of Enzymology and Gut Microbiology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Shreya Vishwas Mohite
- Laboratory of Enzymology and Gut Microbiology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Peter R Williamson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John F Kennedy
- Chembiotech Laboratories, Advanced Science and Technology Institute, 5 the Croft, Buntsford Drive, Stoke Heath, Bromsgrove, Worcs B60 4JE, UK
| |
Collapse
|