1
|
Tan Y, Ren W, Zhou W, Qin X, Lei G, Zhou W, Liu B, Li Y, Hou Y, Kang J, Li X, Hong Y, He Z, Wei G, Zhu X. C19orf66 restricts Coxsackievirus B infection by inducing lysosomal degradation of the viral proteins 3D pol and 2A pro and exhibits neuroprotective effects in CVB-challenged mice. Int Immunopharmacol 2025; 151:114343. [PMID: 40024214 DOI: 10.1016/j.intimp.2025.114343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
Coxsackievirus B (CVB) represents one of the significant human pathogens that have been linked to several central nervous system disorders, particularly common among newborns and children. The annual outbreaks of CVB infection, pose a significant public health challenge and burden due to the absence of specific antiviral drugs and vaccines. However, the neuropathology of CVB infection remains elusive. The type I interferon response is well characterized for its role in controlling virus-induced neuropathogenesis. C19orf66 is known to be a potent interferon-stimulated gene with broad-spectrum antiviral activity, exerting its effects through diverse underlying molecular mechanisms. In this work, our study demonstrated that CVB induces the upregulation of C19orf66 both in host cells and in mice. Knockdown and overexpression of C19orf66 in CVB3-infected cells suggested that this factor could significantly suppress CVB3 replication. Our findings further revealed an intriguing mechanism by which C19orf66 could interact with the non-structural proteins 3Dpol and 2Apro of CVB3, and promote the degradation of the viral 3Dpol and 2Apro through a lysosome-dependent pathway. Furthermore, the zinc finger domain and amino acids 164-199 of C19orf66 were crucial for the interaction between C19orf66 and 3Dpol and 2Apro of CVB3. In a mouse model of CVB neurological infection, C19orf66 knockout mice exhibited reduced survival, exacerbated neuropathological outcomes, and increased viral replication in the brain. Collectively, these findings demonstrated that C19orf66 is an important antiviral effector that contributes to host protection against CVB infection and CVB-induced neuropathological disease.
Collapse
Affiliation(s)
- Yongyao Tan
- Key Laboratory of Tropical Disease Control, (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; Research Center for Clinical Laboratory Standard, Department of Immunology and Microbiology, Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Weishu Ren
- Key Laboratory of Tropical Disease Control, (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; Research Center for Clinical Laboratory Standard, Department of Immunology and Microbiology, Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Weiwei Zhou
- Key Laboratory of Tropical Disease Control, (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; Research Center for Clinical Laboratory Standard, Department of Immunology and Microbiology, Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xingliang Qin
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Gewen Lei
- Key Laboratory of Tropical Disease Control, (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; Research Center for Clinical Laboratory Standard, Department of Immunology and Microbiology, Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenle Zhou
- Key Laboratory of Tropical Disease Control, (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; Research Center for Clinical Laboratory Standard, Department of Immunology and Microbiology, Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Baichen Liu
- Key Laboratory of Tropical Disease Control, (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; Research Center for Clinical Laboratory Standard, Department of Immunology and Microbiology, Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yangfan Li
- Key Laboratory of Tropical Disease Control, (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; Research Center for Clinical Laboratory Standard, Department of Immunology and Microbiology, Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuming Hou
- Key Laboratory of Tropical Disease Control, (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; Research Center for Clinical Laboratory Standard, Department of Immunology and Microbiology, Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiaqi Kang
- Key Laboratory of Tropical Disease Control, (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; Research Center for Clinical Laboratory Standard, Department of Immunology and Microbiology, Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xinyan Li
- Key Laboratory of Tropical Disease Control, (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; Research Center for Clinical Laboratory Standard, Department of Immunology and Microbiology, Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yu Hong
- Key Laboratory of Tropical Disease Control, (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; Research Center for Clinical Laboratory Standard, Department of Immunology and Microbiology, Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Neurosurgery, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, China.
| | - Zhenjian He
- Key Laboratory of Tropical Disease Control, (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; Research Center for Clinical Laboratory Standard, Department of Immunology and Microbiology, Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Guohong Wei
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.
| | - Xun Zhu
- Key Laboratory of Tropical Disease Control, (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; Research Center for Clinical Laboratory Standard, Department of Immunology and Microbiology, Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
2
|
Han S, Ji W, Duan G, Chen S, Yang H, Jin Y. Emerging concerns of blood-brain barrier dysfunction caused by neurotropic enteroviral infections. Virology 2024; 591:109989. [PMID: 38219371 DOI: 10.1016/j.virol.2024.109989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/11/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Enteroviruses (EVs), comprise a genus in the Picornaviridae family, which have been shown to be neurotropic and can cause various neurological disorders or long-term neurological condition, placing a huge burden on society and families. The blood-brain barrier (BBB) is a protective barrier that prevents dangerous substances from entering the central nervous system (CNS). Recently, numerous EVs have been demonstrated to have the ability to disrupt BBB, and further lead to severe neurological damage. However, the precise mechanisms of BBB disruption associated with these EVs remain largely unknown. In this Review, we focus on the molecular mechanisms of BBB dysfunction caused by EVs, emphasizing the invasiveness of enterovirus A71 (EVA71), which will provide a research direction for further treatment and prevention of CNS disorders.
Collapse
Affiliation(s)
- Shujie Han
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
3
|
Amen Y, Selim MA, Suef RA, Sayed AM, Othman A. Unveiling the Antiviral Efficacy of Forskolin: A Multifaceted In Vitro and In Silico Approach. Molecules 2024; 29:704. [PMID: 38338448 PMCID: PMC10856047 DOI: 10.3390/molecules29030704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Coleus forskohlii (Willd.) Briq. is a medicinal herb of the Lamiaceae family. It is native to India and widely present in the tropical and sub-tropical regions of Egypt, China, Ethiopia, and Pakistan. The roots of C. forskohlii are edible, rich with pharmaceutically bioactive compounds, and traditionally reported to treat a variety of diseases, including inflammation, respiratory disorders, obesity, and viral ailments. Notably, the emergence of viral diseases is expected to quickly spread; consequently, these data impose a need for various approaches to develop broad active therapeutics for utilization in the management of future viral infectious outbreaks. In this study, the naturally occurring labdane diterpenoid derivative, Forskolin, was obtained from Coleus forskohlii. Additionally, we evaluated the antiviral potential of Forskolin towards three viruses, namely the herpes simplex viruses 1 and 2 (HSV-1 and HSV-2), hepatitis A virus (HAV), and coxsackievirus B4 (COX-B4). We observed that Forskolin displayed antiviral activity against HAV, COX-B4, HSV-1, and HSV-2 with IC50 values of 62.9, 73.1, 99.0, and 106.0 μg/mL, respectively. Furthermore, we explored the Forskolin's potential antiviral target using PharmMapper, a pharmacophore-based virtual screening platform. Forskolin's modeled structure was analyzed to identify potential protein targets linked to its antiviral activity, with results ranked based on Fit scores. Cathepsin L (PDB ID: 3BC3) emerged as a top-scoring hit, prompting further exploration through molecular docking and MD simulations. Our analysis revealed that Forskolin's binding mode within Cathepsin L's active site, characterized by stable hydrogen bonding and hydrophobic interactions, mirrors that of a co-crystallized inhibitor. These findings, supported by consistent RMSD profiles and similar binding free energies, suggest Forskolin's potential in inhibiting Cathepsin L, highlighting its promise as an antiviral agent.
Collapse
Affiliation(s)
- Yhiya Amen
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed A Selim
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt; (M.A.S.); (R.A.S.)
| | - Reda A. Suef
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt; (M.A.S.); (R.A.S.)
| | - Ahmed M. Sayed
- Department of Pharmacognosy, Collage of Pharmacy, Almaaqal University, Basrah 61014, Iraq;
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt
| | - Ahmed Othman
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| |
Collapse
|
4
|
Akade E, Bahadoram M. The missing link in the study of group B Coxsackievirus encephalitis. Rev Neurol (Paris) 2023; 179:1145-1147. [PMID: 37863717 DOI: 10.1016/j.neurol.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 10/22/2023]
Affiliation(s)
- E Akade
- Department of Medical Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Golestan Blvd., Esfand St., Ahvaz, Khuzestan province 1579461357, Iran.
| | - M Bahadoram
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
5
|
Wang C, Li J, Liu Y, Sun Q, Liu Z. Pathogenesis of enterovirus infection in central nervous system. BIOSAFETY AND HEALTH 2023; 5:233-239. [PMID: 40078226 PMCID: PMC11894963 DOI: 10.1016/j.bsheal.2023.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 03/14/2025] Open
Abstract
Enteroviruses (EVs) are classified into 15 species according to their sequence diversity. They include four human EV (A, B, C, and D) and three rhinoviruses (A, B, and C), and cause diseases in millions of people worldwide. Generally, individuals with enteroviral infections have mild clinical symptoms, including respiratory illness, vomiting, diarrhea, dizziness, and fever. More importantly, some members of the human EV family are neurotropic pathogens that may cause a wide range of clinical diseases, such as aseptic meningitis and encephalitis. Previously, the EV that caused the most severe neurotropic symptoms was poliovirus (PV), a member of the EV C group. Poliovirus has been eliminated in most countries through a global vaccination campaign. Non-PV EVs infect the central nervous system (CNS) and are the major EVs causing neurological diseases. These human non-PV EVs include EV A (e.g., EV-A71, CVA6, and CVA16), B (e.g., CVA9 and CVB3, CVB5, echovirus 11 [E11], E30, and E7), C (e.g., CVA24), and D (e.g., EV-D68). Here, we review the relationship between EV infection and CNS diseases and advance in the use of cellular receptors and host immune responses during viral infection.
Collapse
Affiliation(s)
- Congcong Wang
- Department of Medical Microbiology, Weifang Medical University, Weifang 261053, China
- National Polio Laboratory and WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jichen Li
- National Polio Laboratory and WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Ying Liu
- National Polio Laboratory and WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Qiang Sun
- National Polio Laboratory and WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Zhijun Liu
- Department of Medical Microbiology, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
6
|
Raber J, Rhea EM, Banks WA. The Effects of Viruses on Insulin Sensitivity and Blood-Brain Barrier Function. Int J Mol Sci 2023; 24:2377. [PMID: 36768699 PMCID: PMC9917142 DOI: 10.3390/ijms24032377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
In this review manuscript, we discuss the effects of select common viruses on insulin sensitivity and blood-brain barrier (BBB) function and the potential overlapping and distinct mechanisms involved in these effects. More specifically, we discuss the effects of human immunodeficiency virus (HIV), herpes, hepatitis, influenza, respiratory syncytial virus (RSV), and SARS-CoV-2 viruses on insulin sensitivity and BBB function and the proposed underlying mechanisms. These viruses differ in their ability to be transported across the BBB, disrupt the BBB, and/or alter the function of the BBB. For RSV and SARS-CoV-2, diabetes increases the risk of infection with the virus, in addition to viral infection increasing the risk for development of diabetes. For HIV and hepatitis C and E, enhanced TNF-a levels play a role in the detrimental effects. The winter of 2022-2023 has been labeled as a tridemic as influenza, RSV, and COVID-19 are all of concern during this flu season. There is an ongoing discussion about whether combined viral exposures of influenza, RSV, and COVID-19 have additive, synergistic, or interference effects. Therefore, increased efforts are warranted to determine how combined viral exposures affect insulin sensitivity and BBB function.
Collapse
Affiliation(s)
- Jacob Raber
- Departments of Behavioral Neuroscience, Neurology and Radiation Medicine; Affiliate Scientist, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR 97239, USA
| | - Elizabeth M. Rhea
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Department of Medicine, University of Washington, Seattle, WA 98108, USA
| | - William A. Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Department of Medicine, University of Washington, Seattle, WA 98108, USA
| |
Collapse
|
7
|
Löscher W, Howe CL. Molecular Mechanisms in the Genesis of Seizures and Epilepsy Associated With Viral Infection. Front Mol Neurosci 2022; 15:870868. [PMID: 35615063 PMCID: PMC9125338 DOI: 10.3389/fnmol.2022.870868] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/05/2022] [Indexed: 12/16/2022] Open
Abstract
Seizures are a common presenting symptom during viral infections of the central nervous system (CNS) and can occur during the initial phase of infection ("early" or acute symptomatic seizures), after recovery ("late" or spontaneous seizures, indicating the development of acquired epilepsy), or both. The development of acute and delayed seizures may have shared as well as unique pathogenic mechanisms and prognostic implications. Based on an extensive review of the literature, we present an overview of viruses that are associated with early and late seizures in humans. We then describe potential pathophysiologic mechanisms underlying ictogenesis and epileptogenesis, including routes of neuroinvasion, viral control and clearance, systemic inflammation, alterations of the blood-brain barrier, neuroinflammation, and inflammation-induced molecular reorganization of synapses and neural circuits. We provide clinical and animal model findings to highlight commonalities and differences in these processes across various neurotropic or neuropathogenic viruses, including herpesviruses, SARS-CoV-2, flaviviruses, and picornaviruses. In addition, we extensively review the literature regarding Theiler's murine encephalomyelitis virus (TMEV). This picornavirus, although not pathogenic for humans, is possibly the best-characterized model for understanding the molecular mechanisms that drive seizures, epilepsy, and hippocampal damage during viral infection. An enhanced understanding of these mechanisms derived from the TMEV model may lead to novel therapeutic interventions that interfere with ictogenesis and epileptogenesis, even within non-infectious contexts.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Charles L. Howe
- Division of Experimental Neurology, Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
8
|
Wang Q, Wei Y, Li W, Luo X, Zhang X, Di J, Wang G, Yu J. Polarity-Dominated Stable N97 Respirators for Airborne Virus Capture Based on Nanofibrous Membranes. Angew Chem Int Ed Engl 2021; 60:23756-23762. [PMID: 34448329 PMCID: PMC8652953 DOI: 10.1002/anie.202108951] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Indexed: 11/07/2022]
Abstract
The longevity and reusability of N95-grade filtering facepiece respirators (N95 FFRs) are limited by consecutive donning and disinfection treatments. Herein, we developed stable N97 nanofibrous respirators based on chemically modified surface to enable remarkable filtration characteristics via polarity driven interaction. This was achieved by a thin-film coated polyacrylonitrile nanofibrous membrane (TFPNM), giving an overall long-lasting filtration performance with high quality factor at 0.42 Pa-1 (filtration efficiency: over 97 %; pressure drop: around 10 Pa), which is higher than that of the commercial N95 FFRs (0.10-0.41 Pa-1 ) tested with a flow rate of 5 L min-1 and the 0.26 μm NaCl aerosol. A coxsackie B4 virus filtration test demonstrated that TFPNM also had strong virus capture capacity of 97.67 %. As compared with N95 FFRs, the TFPNM was more resistant to a wider variety of disinfection protocols, and the overall filtration characteristics remained N97 standard.
Collapse
Affiliation(s)
- Qifei Wang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Yingzhen Wei
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Wenbo Li
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Xizi Luo
- Department of PathogenbiologyChinese Ministry of EducationCollege of Basic MedicineJilin UniversityChangchun130021P. R. China
| | - Xinyue Zhang
- Department of PathogenbiologyChinese Ministry of EducationCollege of Basic MedicineJilin UniversityChangchun130021P. R. China
| | - Jiancheng Di
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Guoqing Wang
- Department of PathogenbiologyChinese Ministry of EducationCollege of Basic MedicineJilin UniversityChangchun130021P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
- International Center of Future ScienceJilin UniversityChangchun130012P. R. China
| |
Collapse
|
9
|
Wang Q, Wei Y, Li W, Luo X, Zhang X, Di J, Wang G, Yu J. Polarity‐Dominated Stable N97 Respirators for Airborne Virus Capture Based on Nanofibrous Membranes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Qifei Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Yingzhen Wei
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Wenbo Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Xizi Luo
- Department of Pathogenbiology Chinese Ministry of Education College of Basic Medicine Jilin University Changchun 130021 P. R. China
| | - Xinyue Zhang
- Department of Pathogenbiology Chinese Ministry of Education College of Basic Medicine Jilin University Changchun 130021 P. R. China
| | - Jiancheng Di
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Guoqing Wang
- Department of Pathogenbiology Chinese Ministry of Education College of Basic Medicine Jilin University Changchun 130021 P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
- International Center of Future Science Jilin University Changchun 130012 P. R. China
| |
Collapse
|
10
|
Nath A, Johnson TP. Mechanisms of viral persistence in the brain and therapeutic approaches. FEBS J 2021; 289:2145-2161. [PMID: 33844441 DOI: 10.1111/febs.15871] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 12/16/2022]
Abstract
There is growing recognition of the diversity of viruses that can infect the cells of the central nervous system (CNS). While the majority of CNS infections are successfully cleared by the immune response, some viral infections persist in the CNS. As opposed to resolved infections, persistent viruses can contribute to ongoing tissue damage and neuroinflammatory processes. In this manuscript, we provide an overview of the current understanding of factors that lead to viral persistence in the CNS including how viruses enter the brain, how these pathogens evade antiviral immune system responses, and how viruses survive and transmit within the CNS. Further, as the CNS may serve as a unique viral reservoir, we examine the ways in which persistent viruses in the CNS are being targeted therapeutically.
Collapse
Affiliation(s)
- Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Tory P Johnson
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
11
|
Jmii H, Fisson S, Aouni M, Jaidane H. Type B coxsackieviruses and central nervous system disorders: critical review of reported associations. Rev Med Virol 2020; 31:e2191. [PMID: 33159700 DOI: 10.1002/rmv.2191] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/12/2020] [Accepted: 10/19/2020] [Indexed: 11/07/2022]
Abstract
Type B coxsackieviruses (CV-B) frequently infect the central nervous system (CNS) causing neurological diseases notably meningitis and encephalitis. These infections occur principally among newborns and children. Epidemiological studies of patients with nervous system disorders demonstrate the presence of infectious virus, its components, or anti-CV-B antibodies. Some experimental studies conducted in vitro and in vivo support the potential association between CV-B and idiopathic neurodegenerative diseases such as amyotrophic lateral sclerosis and psychiatric illness such as schizophrenia. However, mechanisms explaining how CV-B infections may contribute to the genesis of CNS disorders remain unclear. The proposed mechanisms focus on the immune response following the viral infection as a contributor to pathogenesis. This review describes these epidemiological and experimental studies, the modes of transmission of CV-B with an emphasis on congenital transmission, the routes used by CV-B to reach the brain parenchyma, and plausible mechanisms by which CV-B may induce CNS diseases, with a focus on potential immunopathogenesis.
Collapse
Affiliation(s)
- Habib Jmii
- Laboratory of Transmissible Diseases and Biologically Active Substances LR99ES27, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
- Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Sylvain Fisson
- Généthon, Inserm UMR_S951, Univ Evry, University Paris Saclay, Evry, France
- Sorbonne University, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Mahjoub Aouni
- Laboratory of Transmissible Diseases and Biologically Active Substances LR99ES27, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | - Hela Jaidane
- Laboratory of Transmissible Diseases and Biologically Active Substances LR99ES27, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| |
Collapse
|