1
|
Ouili AS, Mogmenga I, Ouattara A, Tidiane Compaoré CO, Maiga Y, Nikiema M, Ouattara AS. Assessment of the Probiotic Properties of Pediococcus acidilactici, Pediococcus pentosaceus, and Lactiplantibacillus plantarum Strains Isolated From Fermented Maize Grains. J Food Prot 2025; 88:100514. [PMID: 40268120 DOI: 10.1016/j.jfp.2025.100514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/21/2025] [Accepted: 04/16/2025] [Indexed: 04/25/2025]
Abstract
This study aimed to evaluate the probiotic properties of 11 lactic acid bacteria (LAB) strains isolated from corn kernels. After phenotypic and biochemical characterization confirmed by 16S rRNA gene sequencing, the results revealed that eight isolates (AA1, AA4, AA5, AA7, AA8, BB1, Z3, and Z4) belonged to Pediococcus acidilactici, two (Z2 and Z5) to Pediococcus pentosaceus, and one (AA6) to Lactiplantibacillus plantarum. Antibiotic sensitivity analysis showed general resistance to ciprofloxacin, gentamicin, and colistin, but strains such as AA4, AA6, Z2, and AA1 were sensitive to ampicillin, amoxicillin/clavulanic acid, and ceftriaxone. No signs of hemolytic activity were observed, confirming the safety of the strains. Simulated gastrointestinal tolerance tests demonstrated high survival rates: between 55.64% and 96.61% under 0.3% pepsin at pH 2.5, between 91.24% and 96.67% with bile salts (0.3%), and between 72.95% and 99.66% with phenol (0.4%). Autoaggregation capacities ranged from 54.87% to 90.57%, and coaggregation rates with E. coli and S. enterica were also significant. The strains exhibited hydrophobicity rates between 46.65% and 77.17%, notable antioxidant capacities (58.46-69.6%), and inhibited the growth of foodborne pathogens. Finally, enzymatic profiles revealed proteolytic and lipolytic activities. The isolates Z2 and Z3 stand out due to their wide range of probiotic characteristics, making them promising candidates for future research.
Collapse
Affiliation(s)
- Amidou S Ouili
- Laboratoire de Microbiologie et de Biotechnologies Microbiennes, Université Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso.
| | - Iliassou Mogmenga
- Laboratoire de Microbiologie et de Biotechnologies Microbiennes, Université Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso; Centre Universitaire de Banfora, Université Nazi BONI, Bobo-Dioulasso 01 BP 1091, Burkina Faso
| | - Assiètta Ouattara
- Laboratoire de Microbiologie et de Biotechnologies Microbiennes, Université Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso
| | - Cheik Omar Tidiane Compaoré
- Laboratoire de Microbiologie et de Biotechnologies Microbiennes, Université Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso
| | - Ynoussa Maiga
- Laboratoire de Microbiologie et de Biotechnologies Microbiennes, Université Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso
| | - Mahamadi Nikiema
- Laboratoire de Microbiologie et de Biotechnologies Microbiennes, Université Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso; Institut Supérieur de Développement Durable (ISDD), Université Yembila Abdoulaye Toguyeni, BP 54 Fada N'Gourma, Burkina Faso
| | - Aboubakar Sidiki Ouattara
- Laboratoire de Microbiologie et de Biotechnologies Microbiennes, Université Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso
| |
Collapse
|
2
|
Sliti A, Kim RH, Lee D, Shin JH. Whole genome sequencing and In silico analysis of the safety and probiotic features of Lacticaseibacillus paracasei FMT2 isolated from fecal microbiota transplantation (FMT) capsules. Microb Pathog 2025; 202:107405. [PMID: 40024538 DOI: 10.1016/j.micpath.2025.107405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/13/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Lacticaseibacillus paracasei is widely used as a probiotic supplement and food additive in the medicinal and food industries. However, its application requires careful evaluation of safety traits associated with probiotic pathogenesis, including the transfer of antibiotic-resistance genes, the presence of virulence and pathogenicity factors, and the potential disruptions of the gut microbiome and immune system. In this study, we conducted whole genome sequencing (WGS) of L. paracasei FMT2 isolated from fecal microbiota transplantation (FMT) capsules and performed genome annotation to assess its probiotic and safety attributes. Our comparative genomic analysis assessed this novel strain's genetic attributes and functional diversity and unraveled its evolutionary relationships with other L. paracasei strains. The assembly yielded three contigs: one corresponding to the chromosome and two corresponding to plasmids. Genome annotation revealed the presence of 2838 DNA-coding sequences (CDS), 78 ribosomal RNAs (rRNAs), 60 transfer RNAs (tRNAs), three non-coding RNAs (ncRNAs), and 126 pseudogenes. The strain lacked antibiotic resistance genes and pathogenicity factors. Two intact prophages, one Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) region, and three antimicrobial peptide gene clusters were identified, highlighting the genomic stability and antimicrobial potential of the strain. Furthermore, genes linked to probiotic functions, such as mucosal colonization, stress resistance, and biofilm formation, were characterized. The pan-genome analysis identified 3358 orthologous clusters, including 1775 single-copy clusters, across all L. paracasei strains. Notably, L. paracasei FMT2 contained many unique singleton genes, potentially contributing to its distinctive probiotic properties. Our findings confirm the potential of L. paracasei FMT2 for food and therapeutic applications based on its probiotic profile and safety.
Collapse
Affiliation(s)
- Amani Sliti
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ryeong-Hui Kim
- NGS Core Facility, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Dokyung Lee
- Department of Integrative Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Livestock Microbial Ecology, University of Hohenheim, Emil-Wolff-Straße 8, 70599, Stuttgart, Germany
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea; NGS Core Facility, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Integrative Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
3
|
Gao W, Jing H, Qiu B, Zhang S, Zhang J, Xu L, Ba F, Xie S, Liu X, Li L, Yao M. Effects of Biofilm Formation on Gastrointestinal Tolerance, Mucoadhesion and Transcriptomic Responses of Probiotics. Food Sci Nutr 2025; 13:e70206. [PMID: 40370418 PMCID: PMC12076125 DOI: 10.1002/fsn3.70206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/18/2025] [Accepted: 04/14/2025] [Indexed: 05/16/2025] Open
Abstract
Probiotic health benefits may be affected by decreased viability during food storage and gastrointestinal transit. Although microencapsulation is an effective protective strategy, its application to probiotics is limited. Currently, research on probiotic biofilms is expanding, with these biofilms being recognized as the fourth generation of probiotics. This study aimed to investigate the effects of biofilm formation on gastrointestinal tolerance and mucoadhesion of three different probiotics: Ligilactobacillus salivarius Li01 (L. salivarius Li01), Bifidobacterium longum (B. longum), and Bifidobacterium pseudocatenulatum (B. pseudocatenulatum). Biofilm growth was markedly inhibited by low pH and high bile salt concentrations. The formation of biofilms greatly improved the survival of all three strains under simulated gastrointestinal conditions. The biofilms increased intestinal adhesion and surface hydrophobicity in B. longum and L. salivarius Li01, while reducing adhesion in B. pseudocatenulatum due to decreased hydrophobicity. Moreover, transcriptomic analysis of L. salivarius Li01 identified 157 differentially expressed genes, enriched in pathways including ABC transporters, quorum sensing, purine metabolism, arginine biosynthesis, the phosphotransferase system (PTS), RNA polymerase, and the NOD-like receptor signaling pathway. In conclusion, the formation of biofilms enhances gastrointestinal tolerance and intestinal adhesion of probiotics, presenting great applied potential in increasing the efficacy of probiotics.
Collapse
Affiliation(s)
- Wang Gao
- Jinan Microecological Biomedicine Shandong LaboratoryJinanChina
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Shandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Huijuan Jing
- Jinan Microecological Biomedicine Shandong LaboratoryJinanChina
| | - Bo Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Shuobo Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Jingyi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Lvwan Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Furong Ba
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Siyuan Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Xiao‐Man Liu
- Shandong First Medical University & Shandong Academy of Medical SciencesJinanChina
- Central LaboratoryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongPeople's Republic of China
| | - Lanjuan Li
- Jinan Microecological Biomedicine Shandong LaboratoryJinanChina
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Mingfei Yao
- Jinan Microecological Biomedicine Shandong LaboratoryJinanChina
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|
4
|
Iliev I, Yahubyan G, Apostolova-Kuzova E, Gozmanova M, Mollova D, Iliev I, Ilieva L, Marhova M, Gochev V, Baev V. Characterization and Probiotic Potential of Levilactobacillus brevis DPL5: A Novel Strain Isolated from Human Breast Milk with Antimicrobial Properties Against Biofilm-Forming Staphylococcus aureus. Microorganisms 2025; 13:160. [PMID: 39858927 PMCID: PMC11767307 DOI: 10.3390/microorganisms13010160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Lactobacillus is a key genus of probiotics commonly utilized for the treatment of oral infections The primary aim of our research was to investigate the probiotic potential of the newly isolated Levilactobacillus brevis DPL5 strain from human breast milk, focusing on its ability to combat biofilm-forming pathogens such as Staphylococcus aureus. Employing in vitro approaches, we demonstrate L. brevis DPL5's ability to endure at pH 3 with survival rates above 30%, and withstand the osmotic stress often found during industrial processes like fermentation and freeze drying, retaining over 90% viability. The lyophilized cell-free supernatant of L. brevis DPL5 had a significant antagonistic effect against biofilm-producing nasal strains of Staphylococcus aureus, and it completely eradicated biofilms at subinhibitory concentrations of 20 mg·mL-1. Higher concentrations of 69 mg·mL-1 were found to have a 99% bactericidal effect, based on the conducted probability analysis, indicating the production of bactericidal bioactive extracellular compounds capable of disrupting the biofilm formation of pathogens like S. aureus. Furthermore, genome-wide sequencing and analysis of L. brevis DPL5 with cutting-edge Nanopore technology has uncovered over 50 genes linked to probiotic activity, supporting its ability to adapt and thrive in the harsh gut environment. The genome also contains multiple biosynthetic gene clusters such as lanthipeptide class IV, Type III polyketide synthase (T3PKS), and ribosomally synthesized, and post-translationally modified peptides (RiPP-like compounds), all of which are associated with antibacterial properties. Our study paves the way for the further exploration of DPL5, setting the stage for innovative, nature-inspired solutions to combat stubborn bacterial infections.
Collapse
Affiliation(s)
- Ivan Iliev
- Department of Biochemistry and Microbiology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Galina Yahubyan
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Elena Apostolova-Kuzova
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Mariyana Gozmanova
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Daniela Mollova
- Department of Biochemistry and Microbiology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Iliya Iliev
- Department of Biochemistry and Microbiology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Lena Ilieva
- Department of Biochemistry and Microbiology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Mariana Marhova
- Department of Biochemistry and Microbiology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Velizar Gochev
- Department of Biochemistry and Microbiology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Vesselin Baev
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| |
Collapse
|
5
|
Kang JY, Kim S, Kim JM. Changes in aggregation properties and the metabolite production of probiotics following treatment with polysaccharides derived from the edible mushroom Cordyceps militaris. Lebensm Wiss Technol 2024; 210:116845. [DOI: 10.1016/j.lwt.2024.116845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Algburi AR, Jassim SM, Popov IV, Weeks R, Chikindas ML. Lactobacillus acidophilus VB1 co-aggregates and inhibits biofilm formation of chronic otitis media-associated pathogens. Braz J Microbiol 2024; 55:2581-2592. [PMID: 38789905 PMCID: PMC11405553 DOI: 10.1007/s42770-024-01363-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
This study aims to evaluate the antibacterial activity of Lactobacillus acidophilus, alone and in combination with ciprofloxacin, against otitis media-associated bacteria. L. acidophilus cells were isolated from Vitalactic B (VB), a commercially available probiotic product containing two lactobacilli species, L. acidophilus and Lactiplantibacillus (formerly Lactobacillus) plantarum. The pathogenic bacterial samples were provided by Al-Shams Medical Laboratory (Baqubah, Iraq). Bacterial identification and antibiotic susceptibility testing for 16 antibiotics were performed using the VITEK2 system. The minimum inhibitory concentration of ciprofloxacin was also determined. The antimicrobial activity of L. acidophilus VB1 cell-free supernatant (La-CFS) was evaluated alone and in combination with ciprofloxacin using a checkerboard assay. Our data showed significant differences in the synergistic activity when La-CFS was combined with ciprofloxacin, in comparison to the use of each compound alone, against Pseudomonas aeruginosa SM17 and Proteus mirabilis SM42. However, an antagonistic effect was observed for the combination against Staphylococcus aureus SM23 and Klebsiella pneumoniae SM9. L. acidophilus VB1 was shown to significantly co-aggregate with the pathogenic bacteria, and the highest co-aggregation percentage was observed after 24 h of incubation. The anti-biofilm activities of CFS and biosurfactant (BS) of L. acidophilus VB1 were evaluated, and we found that the minimum biofilm inhibitory concentration that inhibits 50% of bacterial biofilm (MBIC50) of La-CFS was significantly lower than MBIC50 of La-BS against the tested pathogenic bacterial species. Lactobacillus acidophilus, isolated from Vitane Vitalactic B capsules, demonstrated promising antibacterial and anti-biofilm activities against otitis media pathogens, highlighting its potential as an effective complementary/alternative therapeutic strategy to control bacterial ear infections.
Collapse
Affiliation(s)
- Ammar R Algburi
- Department of Microbiology, Veterinary Medicine College, University of Diyala, Baqubah, Iraq
| | - Shireen M Jassim
- Alkhalis Section for Primary Care/Thoracic and Respiratory Diseases Unit, Alkhalis, Iraq
| | - Igor V Popov
- Centre for Healthy Eating and Food Innovation, Maastricht University-Campus Venlo, Venlo, The Netherlands.
- Agrobiotechnology Center and Faculty "Bioengineering and Veterinary Medicine", Don State Technical University, Rostov-On-Don, Russia.
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Federal Territory Sirius, Sirius University of Science and Technology, Sochi, Russian Federation.
| | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA
| | - Michael L Chikindas
- Agrobiotechnology Center and Faculty "Bioengineering and Veterinary Medicine", Don State Technical University, Rostov-On-Don, Russia
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
7
|
Fernandes N, Loforte Y, Cadavez V, Gonzales-Barron U. Susceptibility of Foodborne Pathogens to Milk-Origin Lactic Acid Bacteria Supernatants: A Comprehensive Meta-Regression Study. Foods 2024; 13:2635. [PMID: 39200561 PMCID: PMC11353683 DOI: 10.3390/foods13162635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/02/2024] [Accepted: 08/19/2024] [Indexed: 09/02/2024] Open
Abstract
This systematic review and meta-analysis compile the in vitro antimicrobial efficacy of lactic acid bacteria (LAB) supernatants against three common pathogenic bacteria found in dairy products: Salmonella spp., L. monocytogenes, and Staphylococcus aureus. After screening and analysis of full papers, identified by searches in PubMed, Scopus, and Web of Science databases, thirty-nine studies were regarded as relevant, and a total of 510 observations were recorded. The effects of moderators on inhibition diameters were assessed by adjusting three pathogen-specific meta-regression models. Results showed that, in general terms, strains from the Enterococcus genus displayed the highest inhibition values against L. monocytogenes (15.90 ± 2.138 mm), whereas Lacticaseibacillus strains were more effective against S. aureus (11.89 ± 0.573 mm). The well diffusion test outperformed the spot and disk diffusion tests, and more acidic LAB supernatants resulted in higher measurements of inhibition diameters (p < 0.001). Meta-regression models incorporating LAB genus, pathogen concentration, and incubation time explained 33.8%, 52.3%, and 19.8% of the total variance in inhibition diameters for L. monocytogenes, Salmonella spp., and S. aureus, respectively. None of the three models showed evidence of publication bias. This meta-regression study demonstrated that LAB strains present in dairy products possess a variable capacity to inhibit any of the three foodborne pathogens. Overall, L. monocytogenes was found to exhibit greater susceptibility than Salmonella spp. and S. aureus; thus, the antilisterial capacity of the selected LAB strains could be exploited in developing biocontrol strategies for cheese-making.
Collapse
Affiliation(s)
- Nathália Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (N.F.); (Y.L.); (V.C.)
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Yara Loforte
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (N.F.); (Y.L.); (V.C.)
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Divisão de Agricultura, Instituto Superior Politécnico de Manica, Campus de Matsinho, Manica 417, Mozambique
| | - Vasco Cadavez
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (N.F.); (Y.L.); (V.C.)
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ursula Gonzales-Barron
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (N.F.); (Y.L.); (V.C.)
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
8
|
Ortiz Moyano R, Dentice Maidana S, Imamura Y, Elean M, Namai F, Suda Y, Nishiyama K, Melnikov V, Kitazawa H, Villena J. Antagonistic Effects of Corynebacterium pseudodiphtheriticum 090104 on Respiratory Pathogens. Microorganisms 2024; 12:1295. [PMID: 39065064 PMCID: PMC11278748 DOI: 10.3390/microorganisms12071295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/04/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
In previous studies, it was demonstrated that Corynebacterium pseudodiphtheriticum 090104, isolated from the human nasopharynx, modulates respiratory immunity, improving protection against infections. Here, the antagonistic effect of the 090104 strain on respiratory pathogens, including Streptococcus pneumoniae, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii, was explored. In a series of in vitro studies, the capacity of C. pseudodiphtheriticum 090104, its bacterium-like particles, and its culture supernatants to coaggregate, inhibit the growth, and change the virulent phenotype of pathogenic bacteria was evaluated. The results showed that the 090104 strain was able to exert a bacteriostatic effect on K. pneumoniae and S. pneumoniae growth. In addition, C. pseudodiphtheriticum 090104 coaggregated, inhibited biofilm formation, and induced phenotypic changes in all the respiratory pathogens evaluated. In conclusion, this work demonstrated that, in addition to its beneficial effects exerted by host-microbe interactions, C. pseudodiphtheriticum 090104 can enhance protection against respiratory pathogens through its microbe-microbe interactions. The mechanisms involved in such interactions should be evaluated in future research.
Collapse
Affiliation(s)
- Ramiro Ortiz Moyano
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (R.O.M.); (S.D.M.); (M.E.)
| | - Stefania Dentice Maidana
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (R.O.M.); (S.D.M.); (M.E.)
| | - Yoshiya Imamura
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.I.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Mariano Elean
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (R.O.M.); (S.D.M.); (M.E.)
| | - Fu Namai
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.I.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Yoshihito Suda
- Department of Food, Agriculture and Environment, Miyagi University, Sendai 980-8572, Japan;
| | - Keita Nishiyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.I.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Vyacheslav Melnikov
- Gabrichevsky Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.I.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (R.O.M.); (S.D.M.); (M.E.)
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.I.); (F.N.); (K.N.)
| |
Collapse
|
9
|
Kostelac D, Dolenec F, Markovinović AB, Markov K, Bursać Kovačević D, Frece J. The Application of Probiotic Bacteria from Strawberry ( Fragaria ananassa × Duch.) in the Fermentation of Strawberry Tree Fruit ( Arbutus unedo L.) Extract. Microorganisms 2024; 12:1000. [PMID: 38792829 PMCID: PMC11124331 DOI: 10.3390/microorganisms12051000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
The search for unexplored plant resources that would provide a good basis for the development of novel probiotic functional foods is rapidly increasing. In this context, the strawberry tree fruit (Arbutus unedo L.) is particularly interesting, as it is rich in numerous antioxidant bioactive compounds that have been shown to be beneficial to health, but have not yet found industrial applications. In this work, the probiotic characterization of lactic acid bacteria strain Lactiplantibacillus plantarum DB2, isolated from strawberries (Fragaria ananassa × Duch.), was performed. The tested strain proved to be safe to use, displaying no antibiotic resistance or hemolytic activity. Due to its proven probiotic potential during simulated gastrointestinal transit, its antimicrobial activity, and its coaggregation with pathogens, it was selected for fermentation of an aqueous Arbutus unedo L. extract, which was subsequently microencapsulated and freeze-dried to extend its shelf life and preserve its functional properties. The antioxidant activity of the ferment obtained was maintained (80%), while after microencapsulation and freeze-drying, about 50% and 20% of the antioxidant activity was retained, respectively. In conclusion, this study demonstrates for the first time the application of probiotics isolated from strawberries in the fermentation of strawberry tree extract and monitors the antioxidant activity during post-fermentation formulation, paving the way for a potential industrial application of this underutilized plant.
Collapse
Affiliation(s)
| | | | | | | | | | - Jadranka Frece
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (D.K.); (F.D.); (A.B.M.); (K.M.); (D.B.K.)
| |
Collapse
|
10
|
Jeon JH, Kim JS, Kim ZH, Jung JY. Complete genome sequence of Levilactobacillus brevis NSMJ23, makgeolli isolate with antimicrobial activity. Microbiol Resour Announc 2024; 13:e0106023. [PMID: 38179912 PMCID: PMC10868170 DOI: 10.1128/mra.01060-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/15/2023] [Indexed: 01/06/2024] Open
Abstract
We report the complete genome sequence of Levilactobacillus brevis NSMJ23 with probiotic properties. The final genome assembly consisted of a 2,389,998-bp chromosome and seven plasmids with 45.59% GC content, which comprised 2,624 genes including 2,457 protein coding sequences.
Collapse
Affiliation(s)
- Ju-Hyung Jeon
- Microbial Research Department, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju-si, Gyeongsangbuk-do, South Korea
| | - Jun Sung Kim
- Microbial Research Department, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju-si, Gyeongsangbuk-do, South Korea
| | - Z-Hun Kim
- Hu evergreen Pharm Corp., Bupyeong-gu, Incheon, South Korea
| | - Ji Young Jung
- Microbial Research Department, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju-si, Gyeongsangbuk-do, South Korea
| |
Collapse
|
11
|
Lv L, Xiong F, Liu Y, Pei S, He S, Li S, Yang H. The rumen-derived Lact. mucosae LLK-XR1 exhibited greater free gossypol degradation capacity during solid-state fermentation of cottonseed meal and probiotic potential. BMC Microbiol 2024; 24:15. [PMID: 38183000 PMCID: PMC10768434 DOI: 10.1186/s12866-023-03156-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/12/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND This study aimed to isolate the rumen-derived bacteria with the ability to degrade free gossypol (FG), and to evaluate the probiotic potential in vitro for ensuring safe utilization. METHODS The strains were anaerobically isolated from fresh rumen fluid of sheep with long-term fed cottonseed meal (CSM) with the screening agar medium containing gossypol as the sole carbon source. Afterwards, the isolated strain incubated with CSM was subjected to the determination of the FG degradation and in vitro evaluation of probiotic characteristics. RESULTS The target strain labeled Lact. mucosae LLK-XR1 [Accession number: OQ652016.1] was obtained, and its growth on MRS Liquid medium exhibited degradation efficiency of FG up to 69.5% which was significantly greater than its growth on Man-Rogosa-Sharpe medium with glucose free for 24 h (p < 0.01). Meanwhile, LLK-XR1 showed 40.652% degradation rate of FG for unautoclaved, non-pulverized, and no additional nutrients supplementation CSM. Furthermore, LLK-XR1 presented good survivability at pH 3.0 (above 88.6%), and 0.3% bile (78.5%). LLK-XR1 showed sensitivity to broad-spectrum antibiotics except Sulfamethoxazole, Ciprofloxacin and Gentamycin and significantly inhibited E. coli CICC 10,899, Staph. aureus CICC 21,600, and Salmonella. Typhimurium CICC 21,483. LLK-XR1 demonstrated good cell surface hydrophobicity and auto-aggregation ability. CONCLUSIONS Taken together, this study for the first time noted that rumen-originated Lact. mucosae LLK-XR1 with probiotic properties exhibited substantial FG degradation capacity when it was applied to the solid-state fermentation of CSM.
Collapse
Affiliation(s)
- Liangkang Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Fengliang Xiong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yingyi Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shiteng Pei
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shanshan He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hongjian Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
12
|
Xiao L, An Q, Xu R, Li C, Zhang C, Ma K, Ji F, Azarpazhooh E, Ajami M, Rui X, Li W. Roles of luxS in regulation of probiotic characteristics and inhibition of pathogens in Lacticaseibacillus paracasei S-NB. Microb Pathog 2023; 184:106379. [PMID: 37802157 DOI: 10.1016/j.micpath.2023.106379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023]
Abstract
Lactic acid bacteria (LAB) have excellent tolerance to the gastrointestinal environment and high adhesion ability to intestinal epithelial cells, which could be closely related to the LuxS/AI-2 Quorum sensing (QS) system. Here, the crucial enzymes involved in the synthesis of AI-2 was analyzed in Lacticaseibacillus paracasei S-NB, and the luxS deletion mutant was constructed by homologous recombination based on the Cre-lox system. Afterwards, the effect of luxS gene on the probiotic activities in L. paracasei S-NB was investigated. Notably, the tolerance of simulated gastrointestinal digestion, AI-2 production, ability of auto-aggregation and biofilm formation significantly decreased (p < 0.05 for all) in the S-NB△luxS mutant. Compared to the wild-type S-NB, the degree of reduction in the relative transcriptional level of the biofilm -related genes in Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923 was diminished when co-cultured with S-NB△luxS. Furthermore, the inhibitory effect of S-NB△luxS on the adhesion (competition, exclusion and displacement) of E. coli ATCC 25922 and S. aureus ATCC 25923 to Caco-2 cells markedly decreased. Therefore, comprehensive analysis of the role by luxS provides an insight into the LuxS/AI-2 QS system of L. paracasei S-NB in the regulation of strain characteristics and inhibition of pathogens.
Collapse
Affiliation(s)
- Luyao Xiao
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Qi An
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Ruiqi Xu
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Chen Li
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Changliang Zhang
- Jiangsu New-Bio Biotechnology Co., Ltd., Jiangyin, Jiangsu, 214400, PR China; Jiangsu Biodep Biotechnology Co., Ltd., Jiangyin, Jiangsu, 214400, PR China
| | - Kai Ma
- Jiangsu New-Bio Biotechnology Co., Ltd., Jiangyin, Jiangsu, 214400, PR China; Jiangsu Biodep Biotechnology Co., Ltd., Jiangyin, Jiangsu, 214400, PR China
| | - Feng Ji
- Jiangsu New-Bio Biotechnology Co., Ltd., Jiangyin, Jiangsu, 214400, PR China; Jiangsu Biodep Biotechnology Co., Ltd., Jiangyin, Jiangsu, 214400, PR China
| | - Elham Azarpazhooh
- Khorasan Razavi Agricultural and Natural Resources Research and Education Center, AREEO, Iran
| | - Marjan Ajami
- National Nutrition and Food Technology Research Institute, School of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Xin Rui
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Wei Li
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|
13
|
de Miranda NMZ, de Souza AC, de Souza Costa Sobrinho P, Dias DR, Schwan RF, Ramos CL. Novel yeasts with potential probiotic characteristics isolated from the endogenous ferment of artisanal Minas cheese. Braz J Microbiol 2023; 54:1021-1033. [PMID: 37162703 PMCID: PMC10235398 DOI: 10.1007/s42770-023-01002-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/16/2023] [Indexed: 05/11/2023] Open
Abstract
Artisanal Minas cheese (QMA) is traditionally elaborate using raw milk and endogenous ferment (pingo - whey or rala - grated ripened cheese). In the present study, 91 yeast strains were isolated and identified from pingo and rala. Eight yeast species were identified by the MALDI-TOF mass spectrometry and confirmed by sequencing of the ITS region. The yeasts' protease and lipase activities were evaluated in addition to probiotic properties such as tolerance to low pH and bile salts, hydrophobicity, autoaggregation, co-aggregation with pathogens, and antimicrobial susceptibility. The rala ferment showed a greater variety of species. Yarrowia lipolytica was the dominant specie (52.7% of isolates), followed by the Kluyveromyces lactis and Kodamaea ohmeri (9.9 and 6.6%, respectively). From the total yeasts evaluated, 74 strains showed positive enzymatic activity: 52 strains showed lipolytic (51 Y. lipolytica and one Trichosporon japonicum) and 44 proteolytic activities (18 Y. lipolytica, 13 K. ohmeri, 11 K. lactis, and 2 Wickerhamiella sp.). All evaluated isolates demonstrated tolerance to pH 2.0, and 69 isolates supported the presence of bile salts. From them, 12 isolates showed the capacity of autoaggregation (> 30%) and hydrophobicity (> 90.0%) and were then selected for co-aggregation and antibiotic resistance assays. All selected isolates showed co-aggregation with Salmonella Enteritidis, Escherichia coli, and Listeria monocytogenes greater than 30%. None of the yeast showed sensibility to the evaluated antibiotics and antagonistic activity against the evaluated pathogens. The results demonstrated that pingo and rala have different yeast composition with different enzymatic activity, which may affect the characteristics of the cheese. Furthermore, some yeast strains: Y. lipolytica (9 strains isolated from rala) and K. ohmeri (3 strains isolated from pingo) demonstrated attractive probiotic potential.
Collapse
Affiliation(s)
- Nayara Martins Zille de Miranda
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valeys, Rodovia MGT 367 - km 583, no. 5000 – Alto da Jacuba - Diamantina, Minas Gerais, 39100-000 Brazil
| | | | - Paulo de Souza Costa Sobrinho
- Department of Nutrition, Federal University of Jequitinhonha and Mucuri Valeys, Diamantina, Minas Gerais 39100-000 Brazil
| | - Disney Ribeiro Dias
- Department of Food Science, Federal University of Lavras, Lavras, Minas Gerais 37200-900 Brazil
| | - Rosane Freitas Schwan
- Department of Biology, Federal University of Lavras, Lavras, Minas Gerais 37200-900 Brazil
| | - Cíntia Lacerda Ramos
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valeys, Rodovia MGT 367 - km 583, no. 5000 – Alto da Jacuba - Diamantina, Minas Gerais, 39100-000 Brazil
| |
Collapse
|
14
|
Barzegar H, Alizadeh Behbahani B, Mirzaei A, Ghodsi Sheikhjan M. Assessing the protection mechanisms against Enterobacter aerogenes by analyzing aggregation, adherence, antagonistic activity, and safety properties of potentially probiotic strain Lactobacillus brevis G145. Microb Pathog 2023:106175. [PMID: 37244488 DOI: 10.1016/j.micpath.2023.106175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 05/29/2023]
Abstract
The aim of this study was to evaluate the probiotic potential of Lactobacillus brevis G145 isolated from traditional Khiki cheese, analyzing pH and bile resistance, physicochemical properties of the strain (hydrophobicity, auto- and co-aggregation), cholesterol removal, hydroxyl radical scavenging activity, adhesion ability to Caco-2 cells monolayer, and adhesion competition on Enterobacter aerogenes (competition, inhibition and replacement assays). Also, DNase, haemolytic activity, biogenic amine production and antibiotic susceptibility was investigated. L. brevis G145 was resistant to acidic pHs, bile salts, and simulated gastrointestinal conditions, and showed remarkable cell surface hydrophobicity (49.56%), co-aggregation (28.90%), auto-aggregation (34.10%), adhesion (9.40%), cholesterol removal (45.50%), and antioxidant (52.19%) properties. According to the results of well diffusion agar and disc diffusion agar tests, the highest and lowest inhibition zones were accounted for Staphylococcus aureus and Enterobacter aerogenes, respectively. The isolate did not show haemolytic, DNAse, and biogenic amine production properties. It was sensitive to antibiotics erythromycin, ciprofloxacin, and chloramphenicol, and semi-sensitive to imipenem, ampicillin, nalidixic acid, and nitrofurantoin. According to the findings of probiotic tests L. brevis G145 can be used as a in the food industry.
Collapse
Affiliation(s)
- Hassan Barzegar
- Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, P.O. Box: 6341773637, Mollasani, Iran.
| | - Behrooz Alizadeh Behbahani
- Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, P.O. Box: 6341773637, Mollasani, Iran
| | - Abbas Mirzaei
- Department of Agricultural Economics, Faculty of Agricultural Engineering and Rural Development, Agricultural Sciences and Natural Resources University of Khuzestan, P.O. Box: 6341773637, Mollasani, Iran
| | - Mitra Ghodsi Sheikhjan
- Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, P.O. Box: 6341773637, Mollasani, Iran
| |
Collapse
|
15
|
Hu Y, Zhao Y, Jia X, Liu D, Huang X, Wang C, Zhu Y, Yue C, Deng S, Lyu Y. Lactic acid bacteria with a strong antioxidant function isolated from "Jiangshui," pickles, and feces. Front Microbiol 2023; 14:1163662. [PMID: 37293224 PMCID: PMC10246737 DOI: 10.3389/fmicb.2023.1163662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/26/2023] [Indexed: 06/10/2023] Open
Abstract
Excessive free radicals and iron death lead to oxidative damage, which is one of the main causes of aging and diseases. In this field of antioxidation, developing new, safe, and efficient antioxidants is the main research focus. Lactic acid bacteria (LAB) are natural antioxidants with good antioxidant activity and can regulate gastrointestinal microecological balance and immunity. In this study, 15 LAB strains from fermented foods ("Jiangshui" and pickles) or feces were evaluated in terms of their antioxidant attributes. Strains with strong antioxidant capacity were preliminarily screened by the following tests: 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl radical, superoxide anion radical scavenging capacity; ferrous ion chelating assay; hydrogen peroxide tolerance capacity. Then, the adhesion of the screened strains to the intestinal tract was examined using hydrophobic and auto-aggregation tests. The safety of the strains was analyzed based on their minimum inhibitory concentration and hemolysis, and 16S rRNA was used for molecular biological identification. Antimicrobial activity tests showed them probiotic function. The cell-free supernatant of selected strains were used to explore the protective effect against oxidative damage cells. The scavenging rate of DPPH, hydroxyl radicals, and ferrous ion-chelating of 15 strains ranged from 28.81-82.75%, 6.54-68.52%, and 9.46-17.92%, respectively, the scavenging superoxide anion scavenging activity all exceeded 10%. According to all the antioxidant-related tests, strains possessing high antioxidant activities J2-4, J2-5, J2-9, YP-1, and W-4 were screened, these five strains demonstrated tolerance to 2 mM hydrogen peroxide. J2-4, J2-5, and J2-9 were Lactobacillus fermentans and γ-hemolytic (non-hemolytic). YP-1 and W-4 were Lactobacillus paracasei and α-hemolytic (grass-green hemolytic). Although L. paracasei has been proven as a safe probiotic without hemolytic characteristics, the hemolytic characteristics of YP-1 and W-4 should be further studied. Due to the weak hydrophobicity and antimicrobial activity of J2-4, finally, we selected J2-5, J2-9 for cell experiment, J2-5 and J2-9 showed an excellent ability that resistant to oxidative damage by increasing SOD, CAT, T-AOC activity of 293T cells. Therefore, J2-5, and J2-9 strains from fermented foods "Jiangshui" could be used as potential antioxidants for functional food, health care, and skincare.
Collapse
Affiliation(s)
- Yue Hu
- Yan'an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan'an University, Yan'an, Shaanxi, China
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
| | - Yan Zhao
- Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Xu Jia
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
| | - Dan Liu
- Department of TCM, Sichuan Province People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, China
| | - Xinhe Huang
- Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Cheng Wang
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
| | - Yanhua Zhu
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
| | - Changwu Yue
- Yan'an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan'an University, Yan'an, Shaanxi, China
| | - Shanshan Deng
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
| | - Yuhong Lyu
- Yan'an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan'an University, Yan'an, Shaanxi, China
| |
Collapse
|
16
|
Neidhöfer C, Rathore K, Parčina M, Sieber MA. ESKAPEE Pathogen Biofilm Control on Surfaces with Probiotic Lactobacillaceae and Bacillus species. Antibiotics (Basel) 2023; 12:871. [PMID: 37237774 PMCID: PMC10215598 DOI: 10.3390/antibiotics12050871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Combatting the rapidly growing threat of antimicrobial resistance and reducing prevalence and transmission of ESKAPEE pathogens in healthcare settings requires innovative strategies, one of which is displacing these pathogens using beneficial microorganisms. Our review comprehensively examines the evidence of probiotic bacteria displacing ESKAPEE pathogens, with a focus on inanimate surfaces. A systematic search was conducted using the PubMed and Web of Science databases on 21 December 2021, and 143 studies were identified examining the effects of Lactobacillaceae and Bacillus spp. cells and products on the growth, colonization, and survival of ESKAPEE pathogens. While the diversity of study methods limits evidence analysis, results presented by narrative synthesis demonstrate that several species have the potential as cells or their products or supernatants to displace nosocomial infection-causing organisms in a variety of in vitro and in vivo settings. Our review aims to aid the development of new promising approaches to control pathogen biofilms in medical settings by informing researchers and policymakers about the potential of probiotics to combat nosocomial infections. More targeted studies are needed to assess safety and efficacy of different probiotic formulations, followed by large-scale studies to assess utility in infection control and medical practice.
Collapse
Affiliation(s)
- Claudio Neidhöfer
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Kamni Rathore
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Institute for Functional Gene Analytics, Bonn-Rhein-Sieg University of Applied Sciences, 53757 Sankt Augustin, Germany
| | - Marijo Parčina
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Martin A. Sieber
- Institute for Functional Gene Analytics, Bonn-Rhein-Sieg University of Applied Sciences, 53757 Sankt Augustin, Germany
| |
Collapse
|
17
|
Khan FF, Sohail A, Ghazanfar S, Ahmad A, Riaz A, Abbasi KS, Ibrahim MS, Uzair M, Arshad M. Recent Innovations in Non-dairy Prebiotics and Probiotics: Physiological Potential, Applications, and Characterization. Probiotics Antimicrob Proteins 2023; 15:239-263. [PMID: 36063353 DOI: 10.1007/s12602-022-09983-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2022] [Indexed: 10/14/2022]
Abstract
Non-dairy sources of prebiotics and probiotics impart various physiological functions in the prevention and management of chronic metabolic disorders, therefore nutraceuticals emerged as a potential industry. Extraction of prebiotics from non-dairy sources is economical and easily implemented. Waste products during food processing, including fruit peels and fruit skins, can be utilized as a promising source of prebiotics and considered "Generally Recognized As Safe" for human consumption. Prebiotics from non-dairy sources have a significant impact on gut microbiota and reduce the population of pathogenic bacteria. Similarly, next-generation probiotics could also be isolated from non-dairy sources. These sources have considerable potential and can give novel strains of probiotics, which can be the replacement for dairy sources. Such strains isolated from non-dairy sources have good probiotic properties and can be used as therapeutic. This review will elaborate on the potential non-dairy sources of prebiotics and probiotics, their characterization, and significant physiological potential.
Collapse
Affiliation(s)
- Fasiha Fayyaz Khan
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan.
| | - Asma Sohail
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Shakira Ghazanfar
- Functional Genomics and Bioinformatics, National Institute of Genomics and Agriculture Biotechnology (NIGAB), National Agriculture Research Centre, Park Road, Islamabad, 45500, Pakistan
| | - Asif Ahmad
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Aayesha Riaz
- Faculty of Veterinary & Animal Sciences, Department of Parasitology & Microbiology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Kashif Sarfraz Abbasi
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Muhammad Sohail Ibrahim
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan
| | - Muhammad Arshad
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan
| |
Collapse
|
18
|
Production and evaluation of a functional fruit beverage consisting of mango juice and probiotic bacteria. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01862-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
19
|
Abramov VM, Kosarev IV, Machulin AV, Priputnevich TV, Deryusheva EI, Nemashkalova EL, Chikileva IO, Abashina TN, Panin AN, Melnikov VG, Suzina NE, Nikonov IN, Selina MV, Khlebnikov VS, Sakulin VK, Samoilenko VA, Gordeev AB, Sukhikh GT, Uversky VN, Karlyshev AV. Limosilactobacillus fermentum 3872 That Produces Class III Bacteriocin Forms Co-Aggregates with the Antibiotic-Resistant Staphylococcus aureus Strains and Induces Their Lethal Damage. Antibiotics (Basel) 2023; 12:antibiotics12030471. [PMID: 36978338 PMCID: PMC10044573 DOI: 10.3390/antibiotics12030471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
LF3872 was isolated from the milk of a healthy lactating and breastfeeding woman. Earlier, the genome of LF3872 was sequenced, and a gene encoding unique bacteriocin was discovered. We have shown here that the LF3872 strain produces a novel thermolabile class III bacteriolysin (BLF3872), exhibiting antimicrobial activity against antibiotic-resistant Staphylococcus aureus strains. Sequence analysis revealed the two-domain structural (lysozyme-like domain and peptidase M23 domain) organization of BLF3872. At least 25% residues of this protein are expected to be intrinsically disordered. Furthermore, BLF3872 is predicted to have a very high liquid-liquid phase separation. According to the electron microscopy data, the bacterial cells of LF3872 strain form co-aggregates with the S. aureus 8325-4 bacterial cells. LF3872 produced bacteriolysin BLF3872 that lyses the cells of the S. aureus 8325-4 mastitis-inducing strain. The sensitivity of the antibiotic-resistant S. aureus collection strains and freshly isolated antibiotic-resistant strains was tested using samples from women with lactation mastitis; the human nasopharynx and oral cavity; the oropharynx of pigs; and the cows with a diagnosis of clinical mastitis sensitive to the lytic action of the LF3872 strain producing BLF3872. The co-cultivation of LF3872 strain with various antibiotic-resistant S. aureus strains for 24 h reduced the level of living cells of these pathogens by six log. The LF3872 strain was found to be able to co-aggregate with all studied S. aureus strains. The cell-free culture supernatant of LF3872 (CSLF3872) induced S. aureus cell damage and ATP leakage. The effectiveness of the bacteriolytic action of LF3872 strain did not depend on the origin of the S. aureus strains. The results reported here are important for the creation of new effective drugs against antibiotic-resistant strains of S. aureus circulating in humans and animals.
Collapse
Affiliation(s)
- Vyacheslav M. Abramov
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia
- Correspondence:
| | - Igor V. Kosarev
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia
| | - Andrey V. Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Tatiana V. Priputnevich
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia
| | - Evgenia I. Deryusheva
- Institute for Biological Instrumentation, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Ekaterina L. Nemashkalova
- Institute for Biological Instrumentation, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Irina O. Chikileva
- Laboratory of Cell Immunity, Blokhin National Research Center of Oncology, Ministry of Health RF, 115478 Moscow, Russia
| | - Tatiana N. Abashina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Alexander N. Panin
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Vyacheslav G. Melnikov
- Gabrichevsky Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia
| | - Nataliya E. Suzina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Ilia N. Nikonov
- Federal State Educational Institution of Higher Professional Education, Moscow State Academy of Veterinary Medicine and Biotechnology named after K.I. Skryabin, 109472 Moscow, Russia
| | - Marina V. Selina
- Federal State Educational Institution of Higher Professional Education, Moscow State Academy of Veterinary Medicine and Biotechnology named after K.I. Skryabin, 109472 Moscow, Russia
| | | | - Vadim K. Sakulin
- Institute of Immunological Engineering, 142380 Lyubuchany, Russia
| | - Vladimir A. Samoilenko
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Alexey B. Gordeev
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia
| | - Gennady T. Sukhikh
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Andrey V. Karlyshev
- Department of Biomolecular Sciences, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston upon Thames KT1 2EE, UK
| |
Collapse
|
20
|
Tang Z, Qian Y, Li Y, Wang R, Liu Z. Exploring the effect of Lactiplantibacillus plantarum Lac 9-3 with high adhesion on refrigerated shrimp: Adhesion modeling and biopreservation evaluation. Food Res Int 2023; 164:112462. [PMID: 36738013 DOI: 10.1016/j.foodres.2023.112462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Lactic acid bacteria (LAB) have recently become ideal candidates for developing food biopreservatives. Adhesion is critical for LAB to perform biocontrol functions in food processing and preservation. In this study, we innovatively proposed an effective adhesion evaluation model related to the surface properties of LAB to excavate a LAB strain with high adhesion on the surface of shrimp. Then, the biocontrol potential regarding the quality of refrigerated shrimp was explored, especially for protein quality. The screening of highly adherent LAB was performed using 54 LAB strains tolerant to the low temperature (4 °C) and present antimicrobial activity. Based on surface hydrophobicity, autoaggregation, and biofilm formation, a new method for predicting LAB adhesion was established by stepwise multiple linear regression. The most relevant relationship between adhesion and biofilm formation was derived from the model. Lactiplantibacillus plantarum Lac 9-3 stood out for the strongest adhesion on the shrimp surface and the highest antimicrobial activity. The preservation results showed that Lac 9-3 significantly (p < 0.05) retarded the accumulation of total volatile basic nitrogen (TVB-N) and the growth of spoilage bacteria. The damage to the texture properties of shrimp was inhibited. Meanwhile, the degradation of myofibrillar protein was alleviated, including a significant delay (p < 0.05) in sulfhydryl (SH) group reduction, surface hydrophobicity increases, and protein conformation changes. This research optimized the evaluation of the bacteria adhesion potential, providing a new idea for developing biocontrol strategies to extend the commercial life of aquatic products.
Collapse
Affiliation(s)
- Zhixin Tang
- College of Food Science and Engineering, Ocean University of China, 266003 Qingdao, Shandong Province, China
| | - Yilin Qian
- College of Food Science and Engineering, Ocean University of China, 266003 Qingdao, Shandong Province, China
| | - Yuan Li
- College of Food Science and Engineering, Ocean University of China, 266003 Qingdao, Shandong Province, China
| | - Rongrong Wang
- College of Food Science and Engineering, Ocean University of China, 266003 Qingdao, Shandong Province, China
| | - Zunying Liu
- College of Food Science and Engineering, Ocean University of China, 266003 Qingdao, Shandong Province, China.
| |
Collapse
|
21
|
Kardooni Z, Alizadeh Behbahani B, Jooyandeh H, Noshad M. Probiotic viability, physicochemical, and sensory properties of probiotic orange juice. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Silva S, Costa EM, Oliveira H, Freitas VD, Morais RM, Calhau C, Pintado M. Impact of a Purified Blueberry Extract on In Vitro Probiotic Mucin-Adhesion and Its Effect on Probiotic/Intestinal Pathogen Systems. Molecules 2022; 27:6991. [PMID: 36296591 PMCID: PMC9611478 DOI: 10.3390/molecules27206991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 10/15/2023] Open
Abstract
Several arguments have been made to substantiate the need for natural antimicrobials for the food industry. With blueberry extracts, the most compelling are both their healthy connotation and the possibility of obtaining a multipurpose solution that can be an antioxidant, colorant, and antimicrobial. From an antimicrobial perspective, as blueberry/anthocyanin-rich extracts have been associated with a capacity to inhibit harmful bacteria while causing little to no inhibition on potential probiotic microorganisms, the study of potential benefits that come from synergies between the extract and probiotics may be of particular interest. Therefore, the present work aimed to evaluate the effect of an anthocyanin-rich extract on the adhesion of five different probiotics as well as their effect on the probiotics' capacity to compete with or block pathogen adhesion to a mucin/BSA-treated surface. The results showed that, despite some loss of probiotic adhesion, the combined presence of extract and probiotic is more effective in reducing the overall amount of adhered viable pathogen cells than the PROBIOTIC alone, regardless of the probiotic/pathogen system considered. Furthermore, in some instances, the combination of the extract with Bifidobacterium animalis Bo allowed for almost complete inhibition of pathogen adhesion.
Collapse
Affiliation(s)
- Sara Silva
- Universidade Católica Portuguesa, CBQF Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Eduardo M. Costa
- Universidade Católica Portuguesa, CBQF Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Hélder Oliveira
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Vitor De Freitas
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Rui M. Morais
- Universidade Católica Portuguesa, CBQF Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Conceição Calhau
- Nutrição e Metabolismo, NOVA Medical School, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
- CINTESIS, Centro de Investigação em Tecnologias e Serviços de Saúde, Universidade do Porto, 4200-450 Porto, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
23
|
Cai J, Xing L, Zhang W, Fu L, Zhang J. Selection of Potential Probiotic Yeasts from Dry-Cured Xuanwei Ham and Identification of Yeast-Derived Antioxidant Peptides. Antioxidants (Basel) 2022; 11:antiox11101970. [PMID: 36290693 PMCID: PMC9598758 DOI: 10.3390/antiox11101970] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/27/2022] Open
Abstract
The aim of this study was to select potential probiotic yeasts from dry-cured Xuanwei ham and investigate yeast-derived antioxidant peptides. The results showed that two strains (XHY69 and XHY79) were selected as potential probiotic yeasts and identified as Yamadazyma triangularis. The two yeasts showed tolerance under pH 2.5 and 1% bile salt, in addition to protease activity, auto-aggregation, antibacterial, and antioxidant activities. The peptide fraction (MW < 3 kDa) isolated from XHY69 fermentation broth, named XHY69AP, showed higher radical scavenging activities than glutathione at a concentration of 4.5 mg/mL (p < 0.05). The fraction (AP-D10) was purified from XHY69AP by gel filtration chromatography and reversed-phase high performance liquid chromatography, and then further identified by a UHPLC-LTQ-Orbitrap mass spectrometer. The molecular weight of all 55 purified sequences was distributed between 0.370 and 0.735 kDa. Among these seven novel peptides, Tyr-Pro-Leu-Pro (YPLP), Ala-Gly-Pro-Leu (AGPL), Gly-Pro-Phe-Pro (GPFP), and Ala-Pro-Gly-Gly-Phe (APGGF) were identified. All sequences were abundant in hydrophobic amino acids, especially proline residue. Among these novel peptides, YPLP possessed the highest ABTS scavenging rate (75.48%). The present work selects two new probiotic potential yeasts from dry-cured Xuanwei ham that are effective to yield novel antioxidant peptides.
Collapse
|
24
|
Zawistowska-Rojek A, Kociszewska A, Zaręba T, Tyski S. New Potentially Probiotic Strains Isolated from Humans – Comparison of Properties with Strains from Probiotic Products and ATCC Collection. Pol J Microbiol 2022; 71:395-409. [DOI: 10.33073/pjm-2022-035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/14/2022] [Indexed: 11/06/2022] Open
Abstract
Abstract
Lactic acid bacteria are used in various types of probiotic products. Due to the constantly growing probiotics market, new strains with pro-health properties are sought. The present study compared 39 strains of Lactobacillus, Lacticaseibacillus, and Lactiplantibacillus, isolated from probiotic products and healthy people. The current research aimed to search for new, potentially probiotic strains. For this purpose the relationship between Lactobacillaceae strains was carried out; moreover, the basic properties of probiotic microorganisms, such as survival at low pH and bile salt environment, antibiotic susceptibility, aggregation and antagonism were estimated. The properties of these isolates were also compared with the properties of probiotic strains from the ATCC collection. In comparing the genetic relationship (PFGE method) between the tested isolates, it was observed that some of them show a high degree of similarity. All tested strains tolerated an environment with a pH value of 3.0, and the addition of 0.3% bile salt; showed auto-aggregation properties and displayed antagonism against pathogenic microorganisms. In the present study, the bacteria were susceptible to tetracycline, chloramphenicol and ampicillin; the resistance to vancomycin
depended on the bacteria type. All the properties were strain-depended. Most of the tested strains had properties comparable to the reference strains. Three L. acidophilus strains isolated from cervical swabs seem to be promising candidates for probiotic strains.
Collapse
Affiliation(s)
- Anna Zawistowska-Rojek
- Department of Antibiotics and Microbiology, National Medicines Institute , Warsaw , Poland
- Department of Pharmaceutical Microbiology, Medical University of Warsaw , Warsaw , Poland
| | - Agnieszka Kociszewska
- Department of Antibiotics and Microbiology, National Medicines Institute , Warsaw , Poland
| | - Tomasz Zaręba
- Department of Antibiotics and Microbiology, National Medicines Institute , Warsaw , Poland
| | - Stefan Tyski
- Department of Antibiotics and Microbiology, National Medicines Institute , Warsaw , Poland
- Department of Pharmaceutical Microbiology, Medical University of Warsaw , Warsaw , Poland
| |
Collapse
|
25
|
Characterization of potential probiotic bacteria Enterococcus faecium MC-5 isolated from the gut content of Cyprinus carpio specularis. Microb Pathog 2022; 172:105783. [PMID: 36150558 DOI: 10.1016/j.micpath.2022.105783] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 01/01/2023]
Abstract
The goal of this study was to determine the unique characteristics of Enterococcus faecium MC-5, a probiotic bacteria isolated from the intestine of a fish, Cyprinus carpio specularis, collected from Dal Lake in Srinagar, Kashmir, India. For this, the important valuable probiotic attributes, some functional properties, and safety assessments were analyzed in-vitro for the strain MC-5. The strain E. faecium MC-5 exhibited high resistance to low pH, high bile salt, lysozyme, and phenol. The strain MC-5 showed excellent auto- and co-aggregation properties and displayed remarkable hydrophobicity towards various tested hydrocarbons which suggested that the strain possesses venerable adhesion properties. Apart from these, the cell-free supernatant (CFS) of strain MC-5 exhibited phenomenal antimicrobial activity against the tested pathogens. A scanning electron microscope (SEM) image revealed strain MC-5 finely adhered to human colon adenocarcinoma cells (HCT-15 cells). The strain MC-5 showed high bile salt hydrolase activity and excellent cholesterol removal ability of 70.27%. The intact cells of strain MC-5 also showed strong DPPH scavenging activity. The EPS produced by E. faecium MC-5 inhibited the adhesion of Listeria monocytogenes, Staphylococcus aureus, and Salmonella enterica on HCT-15 cells with maximum inhibition rates of 41.82, 40.34, and 55.51%, respectively for displacement assay, which was higher as compared to exclusion (26.06, 26.11, and 39.23%) and competition assays (30.06, 26.7, and 41.20%). Strain MC-5 did not exhibit hemolysis and was also found susceptible to vancomycin and other clinically important antibiotics. When evaluating all the results from the present study, it is propounded that strain MC-5 has enviable probiotic characteristics and thus can be used as bio-protective cultures and/or bio-shield in food and pharmaceutical industries.
Collapse
|
26
|
Vasiee A, Falah F, Mortazavi SA. Evaluation of probiotic potential of autochthonous lactobacilli strains isolated from Zabuli yellow kashk, an Iranian dairy product. J Appl Microbiol 2022; 133:3201-3214. [PMID: 35957557 DOI: 10.1111/jam.15772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/14/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
Abstract
AIMS The aim of this study was evaluating the probiotic potential and anti-biofilm activity of five lactobacilli strains which isolated and identified from an Iranian product. METHODS AND RESULTS Five lactobacilli strains which were isolated from Zabuli yellow kashk, were evaluated for the presence of probiotic properties, such as resistance to low pH, resistance to simulated gastrointestinal conditions, bile salt tolerance, hydrophobicity, auto- and co-aggregation. In addition, antimicrobial susceptibility, adherence to Caco-2 cells (human colon cancer cell line), anti-adhesion activity, ability against biofilm formation, and biofilm degradation of mentioned strains against Pseudomonas aeruginosa PTCC 1707 were assessed. All the strains tested showed acceptable characteristics, but Lactiplantibacillus plantarum TW57-4 appeared of particular interest. Some probiotic properties of this strain were similar and in some cases higher than the commercial probiotic strain Lacticaseibacillus rhamnosus GG (standard sample). Cholesterol assimilation and radical-scavenging activity of Lpb. plantarum TW57-4 were70.2 % and 62.3 %, respectively. The adhesion degree of Lpb. plantarum TW57-4 was 10.6 %. Applying competition and inhibition assay, this strain showed 55.3 % and 62.3 % of competition and inhibition activity in adhesion of P. aeruginosa PTCC 1707 to the intestinal cells, respectively. CONCLUSIONS According to the obtained results, it can be concluded that Lpb. plantarum TW57-4 strain can be used as a promising candidate for in-vivo studies with the aim of developing new probiotic starter cultures. SIGNIFICANCE AND IMPACT OF STUDY The present study furthers our understanding of lactobacilli strains behavior after consumption to establish their beneficial effects.
Collapse
Affiliation(s)
- Alireza Vasiee
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Seyed Ali Mortazavi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
27
|
Zawistowska-Rojek A, Kośmider A, Stępień K, Tyski S. Adhesion and aggregation properties of Lactobacillaceae strains as protection ways against enteropathogenic bacteria. Arch Microbiol 2022; 204:285. [PMID: 35478049 PMCID: PMC9046290 DOI: 10.1007/s00203-022-02889-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 12/01/2022]
Abstract
The adhesion and aggregation are characteristic attributes of probiotic strains belonging to Lactobacillaceae genus. Due to these properties the host organisms can avoid colonisation of the intestinal tract by enteropathogenic bacteria. The presented research includes a comparison of the properties of various strains belonging to different Lactobacillaceae species and isolated from different sources The aim of this study was to investigate the ability of Lactocaseibacillus rhamnosus, Lactiplantibacillus plantarum, and Lactobacillus strains (L. acidophilus, L. gasseri, L. ultunensis) from probiotic products and clinical specimens to direct and competitive adherence to Caco-2 and HT-29 cell lines. Furthermore, the ability of lactobacilli and enteropathogenic bacteria, E. coli, E. faecalis, and S. Typhimurium, to auto- and co-aggregation was also investigated. The results showed that all tested strains adhered to Caco-2 and HT-29 cell lines. Though, the factor of adhesion depended on the species and origin of the strain. L. rhamnosus strains showed a lowest degree of adherence as compared to L. plantarum and Lactobacillus sp. strains. On the other side both, L. rhamnosus and L. acidophilus strains reduced the pathogenic bacteria in competition adherence test most effectively. All tested lactobacilli strains were characterised by auto- and co-aggregation abilities, to various degrees. The properties of Lactobacillaceae strains analysed in this study, like adhesion abilities, competitive adherence, auto- and co-aggregation, may affect the prevention of colonisation and elimination of pathogenic bacteria in gastrointestinal tract.
Collapse
Affiliation(s)
- Anna Zawistowska-Rojek
- Department of Antibiotics and Microbiology, National Medicines Institute, Warsaw, Poland. .,Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland.
| | - Anita Kośmider
- Department of Biochemistry and Clinical Chemistry, Medical University of Warsaw, Warsaw, Poland.,Department of Cancer Biology, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Karolina Stępień
- Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland
| | - Stefan Tyski
- Department of Antibiotics and Microbiology, National Medicines Institute, Warsaw, Poland.,Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
28
|
Erginkaya Z, Konuray-Altun G. Potential biotherapeutic properties of lactic acid bacteria in foods. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Afroj S, Brannen AD, Nasrin S, Al Mouslem A, Hathcock T, Maxwell H, Rasmussen-Ivey CR, Sandage MJ, Davis EW, Panizzi P, Wang C, Liles MR. Bacillus velezensis AP183 Inhibits Staphylococcus aureus Biofilm Formation and Proliferation in Murine and Bovine Disease Models. Front Microbiol 2021; 12:746410. [PMID: 34690995 PMCID: PMC8533455 DOI: 10.3389/fmicb.2021.746410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
The increasing frequency of S. aureus antimicrobial resistance has spurred interest in identifying alternative therapeutants. We investigated the S. aureus-inhibitory capacity of B. velezensis strains in mouse and bovine models. Among multiple B. velezensis strains that inhibited S. aureus growth in vitro, B. velezensis AP183 provided the most potent inhibition of S. aureus proliferation and bioluminescence in a mouse cutaneous wound (P = 0.02). Histology revealed abundant Gram-positive cocci in control wounds that were reduced in B. velezensis AP183-treated tissues. Experiments were then conducted to evaluate the ability of B. velezensis AP183 to prevent S. aureus biofilm formation on a tracheostomy tube substrate. B. velezensis AP183 could form a biofilm on a tracheostomy tube inner cannula substrate, and that this biofilm was antagonistic to S. aureus colonization. B. velezensis AP183 was also observed to inhibit the growth of S. aureus isolates originated from bovine mastitis cases. To evaluate the inflammatory response of mammary tissue to intramammary inoculation with B. velezensis AP183, we used high dose and low dose inocula in dairy cows. At the high dose, a significant increase in somatic cell count (SCC) and clinical mastitis was observed at all post-inoculation time points (P < 0.01), which resolved quickly compared to S. aureus-induced mastitis; in contrast, the lower dose of B. velezensis AP183 resulted in a slight increase of SCC and no clinical mastitis. In a subsequent experiment, all mammary quarters in four cows were induced to have grade 1 clinical mastitis by intramammary inoculation of a S. aureus mastitis isolate; following mastitis induction, eight quarters were treated with B. velezensis AP183 and milk samples were collected from pretreatment and post-treatment samples for 9 days. In groups treated with B. velezensis AP183, SCC and abundance of S. aureus decreased with significant reductions in S. aureus after 3 days post-inoculation with AP183 (P = 0.04). A milk microbiome analysis revealed significant reductions in S. aureus relative abundance in the AP183-treated group by 8 days post-inoculation (P = 0.02). These data indicate that B. velezensis AP183 can inhibit S. aureus biofilm formation and its proliferation in murine and bovine disease models.
Collapse
Affiliation(s)
- Sayma Afroj
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| | - Andrew D Brannen
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, United States
| | - Shamima Nasrin
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| | - Abdulaziz Al Mouslem
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, United States
| | - Terri Hathcock
- Department of Pathobiology, Auburn University, Auburn, AL, United States
| | - Herris Maxwell
- Department of Clinical Sciences, Auburn University, Auburn, AL, United States
| | | | - Mary J Sandage
- Department of Speech, Language, and Hearing Sciences, Auburn University, Auburn, AL, United States
| | - Edward W Davis
- Department of Mechanical Engineering, Auburn University, Auburn, AL, United States
| | - Peter Panizzi
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, United States
| | - Chengming Wang
- Department of Pathobiology, Auburn University, Auburn, AL, United States
| | - Mark R Liles
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| |
Collapse
|
30
|
Barzegar H, Alizadeh Behbahani B, Falah F. Safety, probiotic properties, antimicrobial activity, and technological performance of Lactobacillus strains isolated from Iranian raw milk cheeses. Food Sci Nutr 2021; 9:4094-4107. [PMID: 34401061 PMCID: PMC8358388 DOI: 10.1002/fsn3.2365] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/19/2021] [Accepted: 05/15/2021] [Indexed: 12/18/2022] Open
Abstract
The objective of this study was to investigate probiotic, antimicrobial, technological and safety properties of lactobacillus strains isolated from local Iranian cheese made from raw milk. Six different samples were prepared, after serial dilution, culture was performed on MRS culture medium. The gram-positive and catalase-negative lactobacillus strains were subjected to grouping and identifying using biochemical tests, carbohydrates fermentation profiles, and 16S rDNA analysis. The results of sequence analysis showed the Lactobacillus spp. belonged to Lactobacillus brevis, Lactobacillus acidophilus, Lactobacillus plantarum, and Lactobacillus casei. After 3 hr incubation at pH=2, 3-6 log units of strains decreased which Lactobacillus acidophilus (B14) and Lactobacillus brevis (B2) showed highest resistance to low pH as well as simulated GIT juices. The highest and lowest hydrophobicity degree was belonged to L. acidophilus (B14) (65.9%) and L. casei (B22) (25.6%), respectively. Also, the highest auto-aggregation and coaggregation were observed in L. acidophilus (B14) (51.3%) and L. plantarum (B20) (43.6%). The adhered percentage of strains varied from 2.5% to 14.6%. L. plantarum (B20) showed highest proteolytic activity followed by L. acidophilus (B14). Also, the highest autolytic activity belonged to L. acidophilus (B14). All of the strains showed low acidifying potential, except for L. acidophilus (B17) which decreased 2.05 unit of pH after 24 hr. The isolates did not show lipolytic activity as well as biogenic amines production (except L. brevis B3). All of the strains were sensitive to chloramphenicol and erythromycin except L. acidophilus (B15) and L. casei (B22). All strains showed no hemolysis activity which make them safe for consumption. Based on the obtained results, L. acidophilus (B14) presented the best probiotic and technological characteristics and is proposed for using as coculture in the dairy industrial.
Collapse
Affiliation(s)
- Hassan Barzegar
- Department of Food Science and TechnologyFaculty of Animal Science and Food TechnologyAgricultural Sciences and Natural Resources University of KhuzestanMollasaniIran
| | - Behrooz Alizadeh Behbahani
- Department of Food Science and TechnologyFaculty of Animal Science and Food TechnologyAgricultural Sciences and Natural Resources University of KhuzestanMollasaniIran
| | - Fereshteh Falah
- Department of Food Science and TechnologyFaculty of AgricultureFerdowsi University of MashhadMashhadIran
| |
Collapse
|
31
|
Kwon G, Heo B, Kwon MJ, Kim I, Chu J, Kim BY, Kim BK, Park SS. Effect of Silk Fibroin Biomaterial Coating on Cell Viability and Intestinal Adhesion of Probiotic Bacteria. J Microbiol Biotechnol 2021; 31:592-600. [PMID: 33820891 PMCID: PMC9705937 DOI: 10.4014/jmb.2103.03031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/15/2022]
Abstract
Probiotics can be processed into a powder, tablet, or capsule form for easy intake. They are exposed to frequent stresses not only during complex processing steps, but also in the human body after intake. For this reason, various coating agents that promote probiotic bacterial stability in the intestinal environment have been developed. Silk fibroin (SF) is a material used in a variety of fields from drug delivery systems to enzyme immobilization and has potential as a coating agent for probiotics. In this study, we investigated this potential by coating probiotic strains with 0.1% or 1% water-soluble calcium (WSC), 1% SF, and 10% trehalose. Under simulated gastrointestinal conditions, cell viability, cell surface hydrophobicity, and cell adhesion to intestinal epithelial cells were then measured. The survival ratio after freeze-drying was highest upon addition of 0.1% WSC. The probiotic bacteria coated with SF showed improved survival by more than 10.0% under simulated gastric conditions and 4.8% under simulated intestinal conditions. Moreover, the cell adhesion to intestinal epithelial cells was elevated by 1.0-36.0%. Our results indicate that SF has positive effects on enhancing the survival and adhesion capacity of bacterial strains under environmental stresses, thus demonstrating its potential as a suitable coating agent to stabilize probiotics throughout processing, packaging, storage and consumption.
Collapse
Affiliation(s)
- Gicheol Kwon
- R&D Center, Chong Kun Dang Healthcare, Seoul 07249, Republic of Korea
| | - Bohye Heo
- Probiotics Research Laboratory, Chong Kun Dang Bio Research Institute, Ansan 15604, Republic of Korea
| | - Mi Jin Kwon
- R&D Center, Chong Kun Dang Healthcare, Seoul 07249, Republic of Korea
| | - Insu Kim
- R&D Center, Chong Kun Dang Healthcare, Seoul 07249, Republic of Korea
| | - Jaeryang Chu
- Probiotics Research Laboratory, Chong Kun Dang Bio Research Institute, Ansan 15604, Republic of Korea
| | - Byung-Yong Kim
- R&D Center, Chong Kun Dang Healthcare, Seoul 07249, Republic of Korea
| | - Byoung-Kook Kim
- Probiotics Research Laboratory, Chong Kun Dang Bio Research Institute, Ansan 15604, Republic of Korea
| | - Sung Sun Park
- R&D Center, Chong Kun Dang Healthcare, Seoul 07249, Republic of Korea,Corresponding author Phone: +82-2-6292-9101 Fax: +82-2-6292-9266 E-mail:
| |
Collapse
|
32
|
Antibiotic Resistance Crisis: An Update on Antagonistic Interactions between Probiotics and Methicillin-Resistant Staphylococcus aureus (MRSA). Curr Microbiol 2021; 78:2194-2211. [PMID: 33881575 DOI: 10.1007/s00284-021-02442-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/01/2021] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance (AMR) havoc is a global multifaceted crisis endowing a significant challenge for the successful eradication of devastating pathogens. Methicillin-Resistant Staphylococcus aureus (MRSA) is an enduring superbug involved in causing devastating infections. Although MRSA is a frequent colonizer of human skin, wound, and anterior nares, the intestinal colonization of MRSA has greatly increased the risk of inducing MRSA-associated colitis besides creating a conducive environment for horizontal transfer of resistant genes to commensal microbes. On the other hand, staphylococcal resistance to last-resort antibiotics has urged the development of novel antimicrobial agents for the effective decolonization of MRSA. In response, probiotics and their metabolites (postbiotics) have been proposed as the adjunct therapeutic avenues. Probiotics exhibit a multitude of anti-MRSA actions (anti-bacterial, anti-biofilm, anti-virulence, anti-drug resistance, co-aggregation, and anti-quorum sensing) through the production of numerous antagonistic compounds such as organic acids, hydrogen peroxide, low molecular weight compounds, biosurfactants, bacteriocins, and bacteriocins like inhibitory substances. Besides, probiotics stabilize the epithelial barrier function and positively modulate the host immune system via regulating various signal transduction mechanisms. Preclinical and human intervention studies have suggested that probiotics outcompete with MRSA by exhibiting anti-colonization mechanisms via protective, competitive, and displacement mode. In this review, we aim to highlight the dynamics of MRSA associated virulence and drug resistance properties, and how probiotics antagonize MRSA through various mechanism of action.
Collapse
|
33
|
Saboktakin-Rizi M, Alizadeh Behbahani B, Hojjati M, Noshad M. Identification of Lactobacillus plantarum TW29-1 isolated from Iranian fermented cereal-dairy product (Yellow Zabol Kashk): probiotic characteristics, antimicrobial activity and safety evaluation. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00846-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
34
|
Singh A, Kumar S, Vinay V, Tyagi B, Choudhury PK, Rashmi H, Banakar P, Tyagi N, Tyagi AK. Autochthonous Lactobacillus spp. isolated from Murrah buffalo calves show potential application as probiotic. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|