1
|
He L, Wang W, Chen H, Ma L, Yu L, Yang Y, Qu Y, Dai P, Wang D, Ma X. Gene expressions of clinical Pseudomonas aeruginosa harboring RND efflux pumps on chromosome and involving a novel integron on a plasmid. Microb Pathog 2025; 203:107512. [PMID: 40154852 DOI: 10.1016/j.micpath.2025.107512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/03/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
The clinical strain of Pseudomonas aeruginosa XM8 harbored multiple RND-type antibiotic efflux pump genes and a novel integron In4881 on its plasmid pXM8-2, rendering it resistant to nearly all conventional antibiotics except colistin. The resistance was primarily attributed to the inactivation of the oprD gene and overexpression of several efflux pump genes, including mexAB-oprM, mexCD-oprJ, oprN-mexFE, and mexXY. In this study, the XM8 strain was comprehensively characterized using various methods. Antimicrobial susceptibility testing was performed using the BioMerieux VITEK2 system and manual double dilution methods. Gene expression levels of efflux pump-related genes were analyzed via quantitative real-time PCR. The bacterial chromosome and plasmid were sequenced using both Illumina and Nanopore platforms, and bioinformatics tools were employed to analyze mobile genetic elements associated with antibiotic resistance. The pXM8-2 plasmid containsed multiple mobile genetic elements, including integrons (In4881, In334, In413) and transposons (Tn3, TnAs1, TnAs3). Notably, In4881 was reported for the first time in this study. The presence of these elements highlights the potential for horizontal gene transfer and further spread of antibiotic resistance. Given the strong resistance profile of the XM8 strain, effective measures should be implemented to prevent the dissemination and prevalence of such multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Long He
- Department of Clinical Laboratory Medicine, Wenling First People's Hospital, Taizhou, Zhejiang, 317500, China
| | - Wenji Wang
- Department of Central Laboratory, Taizhou Municipal Hospital (Taizhou Municipal Hospital Affiliated with Taizhou University), Taizhou, Zhejiang, 318000, China; School of Life Sciences, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Haiming Chen
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Xiamen University (Xiamen Key Laboratory of Genetic Testing), Xiamen, Fujian, 361003, China
| | - Liman Ma
- Department of Basic Medicine and Medical laboratory Science, School of Medicine, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Lianhua Yu
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital (Taizhou Municipal Hospital Affiliated with Taizhou University), Taizhou, Zhejiang, 318000, China
| | - Yide Yang
- Department of Infectious Disease, Taizhou Municipal Hospital (Taizhou Municipal Hospital Affiliated with Taizhou University), Taizhou, Zhejiang, 318000, China
| | - Ying Qu
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital (Taizhou Municipal Hospital Affiliated with Taizhou University), Taizhou, Zhejiang, 318000, China
| | - Piaopiao Dai
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital (Taizhou Municipal Hospital Affiliated with Taizhou University), Taizhou, Zhejiang, 318000, China
| | - Dongguo Wang
- Department of Central Laboratory, Taizhou Municipal Hospital (Taizhou Municipal Hospital Affiliated with Taizhou University), Taizhou, Zhejiang, 318000, China.
| | - Xiaobo Ma
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Xiamen University (Xiamen Key Laboratory of Genetic Testing), Xiamen, Fujian, 361003, China.
| |
Collapse
|
2
|
Chen L, Si Y, Han X, Xiao Y, Pan Y, Duan K, Fu S. Uncovering the Multifaceted Role of PA2649 ( nuoN) in Type III Secretion System and Other Virulence Production in Pseudomonas aeruginosa PAO1. Microorganisms 2025; 13:392. [PMID: 40005758 PMCID: PMC11858028 DOI: 10.3390/microorganisms13020392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/29/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Pseudomonas aeruginosa is a multi-drug-resistant opportunistic pathogen that adapts to challenging environments by deploying virulence factors, including the type III secretion system (T3SS). Emerging evidence points to a role for NADH dehydrogenase complexes in regulating virulence; however, their precise contributions remain unclear. Here, we identify PA2649, a component of the NADH dehydrogenase complex I (nuo operon), as a key regulator of T3SS-related activities. PA2649 deletion resulted in a twofold increase in exoS expression and enhanced cytotoxicity in both A549 cell and Chinese cabbage models. Full revertant of the nuo operon was necessary to restore exoS expression to wild-type levels, suggesting a critical connection between NADH dehydrogenase activity and T3SS regulation. The PA2649 mutation also disrupted the Rsm-Exs regulatory axis, downregulating gacS, rsmY, rsmZ, and hfq while upregulating exsC. Overexpression of rsmY, rsmZ, gacA, hfq, and exsD partially rescued T3SS function, confirming that PA2649 influences T3SS via the Rsm-Exs pathway. Furthermore, PA2649 deletion altered motility, biofilm formation, pyocyanin production, protease activity, and antibiotic susceptibility. These phenotypes could not be complemented with T3SS regulatory genes alone, indicating that PA2649 modulates these traits through mechanisms independent of the Rsm-Exs axis, potentially involving NADH dehydrogenase-associated pathways. This study underscores the multifaceted role of PA2649 in regulating P. aeruginosa pathogenicity and resistance, providing novel insights into its complex regulatory networks and highlighting new avenues for therapeutic targeting.
Collapse
Affiliation(s)
- Lin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an 710069, China; (Y.S.); (X.H.); (Y.X.); (Y.P.)
| | - Yujie Si
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an 710069, China; (Y.S.); (X.H.); (Y.X.); (Y.P.)
| | - Xue Han
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an 710069, China; (Y.S.); (X.H.); (Y.X.); (Y.P.)
| | - Yue Xiao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an 710069, China; (Y.S.); (X.H.); (Y.X.); (Y.P.)
| | - Yidan Pan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an 710069, China; (Y.S.); (X.H.); (Y.X.); (Y.P.)
| | - Kangmin Duan
- Department of Medical Microbiology and Infectious Disease, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada;
| | - Songzhe Fu
- School of Medicine, Northwest University, Xi’an 710069, China
| |
Collapse
|
3
|
Hernández Delgado JG, Acedos MG, de la Calle F, Rodríguez P, García JL, Galán B. Regulation of Safracin Biosynthesis and Transport in Pseudomonas poae PMA22. Mar Drugs 2024; 22:418. [PMID: 39330299 PMCID: PMC11432991 DOI: 10.3390/md22090418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Pseudomonas poae PMA22 produces safracins, a family of compounds with potent broad-spectrum anti-bacterial and anti-tumor activities. The safracins' biosynthetic gene cluster (BGC sac) consists of 11 ORFs organized in two divergent operons (sacABCDEFGHK and sacIJ) that are controlled by Pa and Pi promoters. Contiguous to the BGC sac, we have located a gene that encodes a putative global regulator of the LysR family annotated as MexT that was originally described as a transcriptional activator of the MexEF-OprN multidrug efflux pump in Pseudomonas. Through both in vitro and in vivo experiments, we have demonstrated the involvement of the dual regulatory system MexT-MexS on the BGC sac expression acting as an activator and a repressor, respectively. The MexEF-OprN transport system of PMA22, also controlled by MexT, was shown to play a fundamental role in the metabolism of safracin. The overexpression of mexEF-oprN in PMA22 resulted in fourfold higher production levels of safracin. These results illustrate how a pleiotropic regulatory system can be critical to optimizing the production of tailored secondary metabolites, not only through direct interaction with the BGC promoters, but also by controlling their transport.
Collapse
Affiliation(s)
- J Gerardo Hernández Delgado
- Department of Biothecnology, Centro de Investigaciones Biológicas Margarita Salas, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Miguel G Acedos
- Department of Biothecnology, Centro de Investigaciones Biológicas Margarita Salas, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | | | - Pilar Rodríguez
- Research and Development Department, PharmaMar S.A., 28770 Madrid, Spain
| | - José Luis García
- Department of Biothecnology, Centro de Investigaciones Biológicas Margarita Salas, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Beatriz Galán
- Department of Biothecnology, Centro de Investigaciones Biológicas Margarita Salas, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| |
Collapse
|
4
|
Wu W, Huang J, Xu Z. Antibiotic influx and efflux in Pseudomonas aeruginosa: Regulation and therapeutic implications. Microb Biotechnol 2024; 17:e14487. [PMID: 38801351 PMCID: PMC11129675 DOI: 10.1111/1751-7915.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Pseudomonas aeruginosa is a notorious multidrug-resistant pathogen that poses a serious and growing threat to the worldwide public health. The expression of resistance determinants is exquisitely modulated by the abundant regulatory proteins and the intricate signal sensing and transduction systems in this pathogen. Downregulation of antibiotic influx porin proteins and upregulation of antibiotic efflux pump systems owing to mutational changes in their regulators or the presence of distinct inducing molecular signals represent two of the most efficient mechanisms that restrict intracellular antibiotic accumulation and enable P. aeruginosa to resist multiple antibiotics. Treatment of P. aeruginosa infections is extremely challenging due to the highly inducible mechanism of antibiotic resistance. This review comprehensively summarizes the regulatory networks of the major porin proteins (OprD and OprH) and efflux pumps (MexAB-OprM, MexCD-OprJ, MexEF-OprN, and MexXY) that play critical roles in antibiotic influx and efflux in P. aeruginosa. It also discusses promising therapeutic approaches using safe and efficient adjuvants to enhance the efficacy of conventional antibiotics to combat multidrug-resistant P. aeruginosa by controlling the expression levels of porins and efflux pumps. This review not only highlights the complexity of the regulatory network that induces antibiotic resistance in P. aeruginosa but also provides important therapeutic implications in targeting the inducible mechanism of resistance.
Collapse
Affiliation(s)
- Weiyan Wu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Jiahui Huang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Zeling Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
5
|
Lorusso AB, Carrara JA, Barroso CDN, Tuon FF, Faoro H. Role of Efflux Pumps on Antimicrobial Resistance in Pseudomonas aeruginosa. Int J Mol Sci 2022; 23:15779. [PMID: 36555423 PMCID: PMC9779380 DOI: 10.3390/ijms232415779] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial resistance is an old and silent pandemic. Resistant organisms emerge in parallel with new antibiotics, leading to a major global public health crisis over time. Antibiotic resistance may be due to different mechanisms and against different classes of drugs. These mechanisms are usually found in the same organism, giving rise to multidrug-resistant (MDR) and extensively drug-resistant (XDR) bacteria. One resistance mechanism that is closely associated with the emergence of MDR and XDR bacteria is the efflux of drugs since the same pump can transport different classes of drugs. In Gram-negative bacteria, efflux pumps are present in two configurations: a transmembrane protein anchored in the inner membrane and a complex formed by three proteins. The tripartite complex has a transmembrane protein present in the inner membrane, a periplasmic protein, and a porin associated with the outer membrane. In Pseudomonas aeruginosa, one of the main pathogens associated with respiratory tract infections, four main sets of efflux pumps have been associated with antibiotic resistance: MexAB-OprM, MexXY, MexCD-OprJ, and MexEF-OprN. In this review, the function, structure, and regulation of these efflux pumps in P. aeruginosa and their actions as resistance mechanisms are discussed. Finally, a brief discussion on the potential of efflux pumps in P. aeruginosa as a target for new drugs is presented.
Collapse
Affiliation(s)
- Andre Bittencourt Lorusso
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, Brazil
- School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | - João Antônio Carrara
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, Brazil
| | | | - Felipe Francisco Tuon
- Laboratory of Emerging Infectious Diseases, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | - Helisson Faoro
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, Brazil
- CHU de Quebec Research Center, Department of Microbiology, Infectious Disease and Immunology, University Laval, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
6
|
Perry EK, Meirelles LA, Newman DK. From the soil to the clinic: the impact of microbial secondary metabolites on antibiotic tolerance and resistance. Nat Rev Microbiol 2022; 20:129-142. [PMID: 34531577 PMCID: PMC8857043 DOI: 10.1038/s41579-021-00620-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2021] [Indexed: 02/08/2023]
Abstract
Secondary metabolites profoundly affect microbial physiology, metabolism and stress responses. Increasing evidence suggests that these molecules can modulate microbial susceptibility to commonly used antibiotics; however, secondary metabolites are typically excluded from standard antimicrobial susceptibility assays. This may in part account for why infections by diverse opportunistic bacteria that produce secondary metabolites often exhibit discrepancies between clinical antimicrobial susceptibility testing results and clinical treatment outcomes. In this Review, we explore which types of secondary metabolite alter antimicrobial susceptibility, as well as how and why this phenomenon occurs. We discuss examples of molecules that opportunistic and enteric pathogens either generate themselves or are exposed to from their neighbours, and the nuanced impacts these molecules can have on tolerance and resistance to certain antibiotics.
Collapse
Affiliation(s)
- Elena K Perry
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Lucas A Meirelles
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Dianne K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
7
|
Vanderwoude J, Fleming D, Azimi S, Trivedi U, Rumbaugh KP, Diggle SP. The evolution of virulence in Pseudomonas aeruginosa during chronic wound infection. Proc Biol Sci 2020; 287:20202272. [PMID: 33081616 DOI: 10.1098/rspb.2020.2272] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Opportunistic pathogens are associated with a number of chronic human infections, yet the evolution of virulence in these organisms during chronic infection remains poorly understood. Here, we tested the evolution of virulence in the human opportunistic pathogen Pseudomonas aeruginosa in a murine chronic wound model using a two-part serial passage and sepsis experiment, and found that virulence evolved in different directions in each line of evolution. We also assessed P. aeruginosa adaptation to a chronic wound after 42 days of evolution and found that morphological diversity in our evolved populations was limited compared with that previously described in cystic fibrosis (CF) infections. Using whole-genome sequencing, we found that genes previously implicated in P. aeruginosa pathogenesis (lasR, pilR, fleQ, rpoN and pvcA) contained mutations during the course of evolution in wounds, with selection occurring in parallel across all lines of evolution. Our findings highlight that: (i) P. aeruginosa heterogeneity may be less extensive in chronic wounds than in CF lungs; (ii) genes involved in P. aeruginosa pathogenesis acquire mutations during chronic wound infection; (iii) similar genetic adaptations are employed by P. aeruginosa across multiple infection environments; and (iv) current models of virulence may not adequately explain the diverging evolutionary trajectories observed in an opportunistic pathogen during chronic wound infection.
Collapse
Affiliation(s)
- Jelly Vanderwoude
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Derek Fleming
- Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Sheyda Azimi
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Urvish Trivedi
- Section of Microbiology, Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kendra P Rumbaugh
- Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Stephen P Diggle
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|