1
|
Chowdhury MR, Islam A, Yurina V, Shimosato T. Water pollution, cholera, and the role of probiotics: a comprehensive review in relation to public health in Bangladesh. Front Microbiol 2025; 15:1523397. [PMID: 39877756 PMCID: PMC11772269 DOI: 10.3389/fmicb.2024.1523397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
Cholera, a disease caused by Vibrio cholerae, remains a pervasive public health threat, particularly in regions with inadequate water sanitation and hygiene infrastructure, such as Bangladesh. This review explores the complex interplay between water pollution and cholera transmission in Bangladesh, highlighting how contaminated water bodies serve as reservoirs for V. cholerae. A key focus is the potential role of probiotics as a novel intervention approach for cholera prevention and management. Probiotics are promising as an adjunctive approach to existing therapies as they can enhance gut barrier function, induce competitive exclusion of pathogens, and modulate host immune responses. Recent probiotic advancements include engineering strains that disrupt V. cholerae biofilms and inhibit their virulence. Integrating probiotics with traditional cholera control measures could significantly enhance their effectiveness and provide a multifaceted approach to combating this persistent disease. This review aims to shed light on the potential of probiotics in revolutionizing cholera management and to offer insights into their application as both preventive and therapeutic tools in the fight against this enduring public health challenge.
Collapse
Affiliation(s)
- Md. Rayhan Chowdhury
- Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan
| | - Ariful Islam
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Valentina Yurina
- Department of Pharmacy, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Takeshi Shimosato
- Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan
- Department of Pharmacy, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Institute for Aqua Regeneration, Shinshu University, Nagano, Japan
| |
Collapse
|
2
|
Derakhshan-Sefidi M, Bakhshi B, Rasekhi A. Vibriocidal efficacy of Bifidobacterium bifidum and Lactobacillus acidophilus cell-free supernatants encapsulated in chitosan nanoparticles against multi-drug resistant Vibrio cholerae O1 El Tor. BMC Infect Dis 2024; 24:905. [PMID: 39223499 PMCID: PMC11367852 DOI: 10.1186/s12879-024-09810-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Cholera is a diarrheal disease recognized for being caused by toxin-producing Vibrio (V.) cholerae. This study aims to assess the vibriocidal and immunomodulatory properties of derived cell-free supernatants (CFSs) of Bifidobacterium (B.) bifidum and Lactobacillus (L.) acidophilus encapsulated in chitosan nanoparticles (CFSb-CsNPs and CFSa-CsNPs) against clinical multi-drug resistance (MDR) isolates of V. cholerae O1 El Tor. METHODS We synthesized CFSb-CsNPs and CFSa-CsNPs using the ionic gelation technique. The newly nanostructures were characterized for size, surface zeta potential, morphology, encapsulation efficacy (EE), stability in different pH values and temperatures, release profile, and in vitro cytotoxicity. The antimicrobial and antibiofilm effects of the obtained nanocomposites on clinical MDR isolates (N = 5) of V. cholerae E1 Tor O1 were investigated by microbroth dilution assay and crystal violet staining, respectively. We conducted quantitative real-time PCR (qRT-PCR) to analyze the relative gene expressions of Bap, Rbmc, CTXAB, and TCP in response to CFSb-CsNPs and CFSa-CsNPs. Additionally, the immunomodulatory effects of formulated structures on the expression of TLR2 and TLR4 genes in human colorectal adenocarcinoma cells (Caco-2) were studied. RESULTS Nano-characterization analyses indicated that CFSb-CsNPs and CFSa-CsNPs exhibit spherical shapes under scanning electron microscopy (SEM) imaging, with mean diameters of 98.16 ± 0.763 nm and 83.90 ± 0.854 nm, respectively. Both types of nanoparticles possess positive surface charges. The EE% of CFSb-CsNPs was 77 ± 4.28%, whereas that of CFSa-CsNPs was 62.5 ± 7.33%. Chitosan (Cs) encapsulation leads to increased stability of CFSs in simulated pH conditions of the gastrointestinal tract in which the release rates for CFSb-CsNPs and CFSa-CsNPs were reached at 58.00 ± 1.24% and 55.01 ± 1.73%, respectively at pH = 7.4. The synergistic vibriocidal effects observed from the co-administration of both CFSb-CsNPs and CFSa-CsNPs, as evidenced by a fractional inhibitory concentration (FIC) index of 0.57, resulting in a significantly lower MIC of 2.5 ± 0.05 mg/mL (p < 0.0001) compare to individual administration. The combined antibacterial effect of CFSb-CsNPs and CFSa-CsNPs on Bap (0.14 ± 0.05), Rbmc (0.24 ± 0.01), CTXAB (0.30 ± 0.09), and TCP (0.38 ± 0.01) gene expression was significant (p < 0.001). Furthermore, co-administration of CFSb-CsNPs and CFSa-CsNPs also demonstrated the potency of suppressing TLR 2/4 (0.20 ± 0.01 and 0.12 ± 0.02, respectively) gene expression (p = 0.0019) and reduced Caco-2 cells attached bacteria to 526,000 ± 51,46 colony-forming units/mL (11.19%) (p < 0.0001). CONCLUSION Our study revealed that encapsulating CFSs within CsNPs enhances their vibriocidal activity by improving stability and enabling a controlled release mechanism at the site of interaction between the host and bacteria. Additionally, the simultaneous use of CFSb-CsNPs and CFSa-CsNPs exhibited superior vibriocidal potency against MDR V. cholerae O1 El Tor strains, indicating these combinations as a potential new approach against MDR bacteria.
Collapse
Affiliation(s)
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Aliakbar Rasekhi
- Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
3
|
Lu Y, Xing S, He L, Li C, Wang X, Zeng X, Dai Y. Characterization, High-Density Fermentation, and the Production of a Directed Vat Set Starter of Lactobacilli Used in the Food Industry: A Review. Foods 2022; 11:3063. [PMID: 36230139 PMCID: PMC9563398 DOI: 10.3390/foods11193063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/15/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Lactobacilli have been widely concerned for decades. Bacteria of the genus Lactobacillus have been commonly employed in fermented food to improve the appearance, smell, and taste of food or prolong its shelf-life. They comprise 261 species (by March 2020) that are highly diverse at the phenotypic, ecological, and genotypic levels. Some Lactobacilli strains have been documented to be essential probiotics, which are defined as a group of living microorganisms that are beneficial to the health of the host when ingested in sufficiency. However, the characterization, high-density fermentation, and the production of a directed vat set (DVS) starter of Lactobacilli strains used in the food industry have not been systematically reported. This paper mainly focuses on reviewing Lactobacilli as functional starter cultures in the food industry, including different molecular techniques for identification at the species and strain levels, methods for evaluating Lactobacilli properties, enhancing their performance and improving the cell density of Lactobacilli, and the production techniques of DVS starter of Lactobacilli strains. Moreover, this review further discussed the existing problems and future development prospects of Lactobacilli in the food industry. The viability and stability of Lactobacilli in the food industry and gastrointestinal environment are critical challenges at the industrial scale. The new production equipment and technology of DVS starter of Lactobacilli strains will have the potential for large-scale application, for example, developing low-temperature spray drying, freezing granulation drying, and spray freeze-drying.
Collapse
Affiliation(s)
- Yun Lu
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- Department of Brewing Engineering, Moutai University, Renhuai 564507, China
| | - Shuqi Xing
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Laping He
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Cuiqin Li
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Xiao Wang
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Xuefeng Zeng
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Yifeng Dai
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
4
|
Anas A, Sukumaran V, Nampullipurackal Devarajan D, Maniyath S, Chekidhenkuzhiyil J, Mary A, Parakkaparambil Kuttan S, Tharakan B. Probiotics inspired from natural ecosystem to inhibit the growth of Vibrio spp. causing white gut syndrome in Litopenaeus vannamei. 3 Biotech 2021; 11:66. [PMID: 33489684 PMCID: PMC7803865 DOI: 10.1007/s13205-020-02618-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/26/2020] [Indexed: 12/19/2022] Open
Abstract
Probiotics inspired by host-microbe interactions in the natural ecosystem are propitious in controlling bacterial infections in aquaculture and veterinary systems. Here we report the isolation and characterization of pathogenic Vibrio spp. and lactic acid bacteria from an intensive culture system of Litopenaeus vannamei and natural ecosystem, respectively. The pathogen isolated from the gut of L. vannamei showing the symptoms of white gut disease were identified as V. parahaemolyticus and V. campbelli. Both the pathogens expressed the virulence genes, rtxA, and tcpA and were showing multiple antibiotic resistance (MAR) index of more than 0.5. The lactic acid bacteria isolated from the sediment and gut of benthic organisms (shrimp and polychaetes) collected from a tropical estuary were classified as member of 9 OTUs such as Pediococcus stilessi, Lactobacillus fermentum, L. rhamnosus, Weissella cibaria, Enterococcus durans, E. fecalis, Streptococcus gallolyticus and L. garvieae. Majority of these isolates were facultative in nature and were able to tolerate gastric juice and bile salt. Out of 83 bacteria isolated from sediment and gut, 36 showed abilities to reduce the pH of culture medium to less than five. Many of these isolates (34 Nos.) showed production of hydrolytic enzymes and secondary metabolites with antagonistic activity against both the pathogens (1 No.) or separately toward V. parahaemolyticus (9 Nos.) and V. campbelli (11 Nos.). Overall, the current study proposes a natural ecosystem as a potential source of lactic acid bacteria with probiotic potentials to prevent the vibriosis disease outbreaks in shrimp aquaculture systems. Further studies are required to understand the abilities of lactic acid bacteria to colonize shrimp intestine, stimulate immune system and manipulate microbiome. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-020-02618-2.
Collapse
Affiliation(s)
- Abdulaziz Anas
- CSIR-National Institute of Oceanography, Regional Centre Cochin, Kochi, India
| | - Vrinda Sukumaran
- CSIR-National Institute of Oceanography, Regional Centre Cochin, Kochi, India
| | | | - Shijina Maniyath
- CSIR-National Institute of Oceanography, Regional Centre Cochin, Kochi, India
| | | | - Ann Mary
- CSIR-National Institute of Oceanography, Regional Centre Cochin, Kochi, India
| | | | - Balu Tharakan
- CSIR-National Institute of Oceanography, Regional Centre Cochin, Kochi, India
| |
Collapse
|
5
|
Cho JY, Liu R, Macbeth JC, Hsiao A. The Interface of Vibrio cholerae and the Gut Microbiome. Gut Microbes 2021; 13:1937015. [PMID: 34180341 PMCID: PMC8244777 DOI: 10.1080/19490976.2021.1937015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 02/04/2023] Open
Abstract
The bacterium Vibrio cholerae is the etiologic agent of the severe human diarrheal disease cholera. The gut microbiome, or the native community of microorganisms found in the human gastrointestinal tract, is increasingly being recognized as a factor in driving susceptibility to infection, in vivo fitness, and host interactions of this pathogen. Here, we review a subset of the emerging studies in how gut microbiome structure and microbial function are able to drive V. cholerae virulence gene regulation, metabolism, and modulate host immune responses to cholera infection and vaccination. Improved mechanistic understanding of commensal-pathogen interactions offers new perspectives in the design of prophylactic and therapeutic approaches for cholera control.
Collapse
Affiliation(s)
- Jennifer Y. Cho
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
- Department of Biochemistry, University of California, Riverside, California, USA
| | - Rui Liu
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
- Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, California, USA
| | - John C. Macbeth
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Ansel Hsiao
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| |
Collapse
|