1
|
Rooholamini Z, Dianat-Moghadam H, Esmaeilifallah M, Khanahmad H. From classical approaches to new developments in genetic engineering of live attenuated vaccine against cutaneous leishmaniasis: potential and immunization. Front Public Health 2024; 12:1382996. [PMID: 39035184 PMCID: PMC11257927 DOI: 10.3389/fpubh.2024.1382996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/07/2024] [Indexed: 07/23/2024] Open
Abstract
Despite the development of a vaccine against cutaneous leishmaniasis in preclinical and clinical studies, we still do not have a safe and effective vaccine for human use. Given this situation, the search for a new prophylactic alternative to control leishmaniasis should be a global priority. A first-generation vaccine strategy-leishmanization, in which live Leishmania major parasites are inoculated into the skin to protect against reinfection, is taking advantage of this situation. Live attenuated Leishmania vaccine candidates are promising alternatives due to their robust protective immune responses. Importantly, they do not cause disease and could provide long-term protection following challenges with a virulent strain. In addition to physical and chemical methods, genetic tools, including the Cre-loxP system, have enabled the selection of safer null mutant live attenuated Leishmania parasites obtained by gene disruption. This was followed by the discovery and introduction of CRISPR/Cas-based gene editing tools, which can be easily and precisely used to modify genes. Here, we briefly review the immunopathology of L. major parasites and then present the classical methods and their limitations for the production of live attenuated vaccines. We then discuss the potential of current genetic engineering tools to generate live attenuated vaccine strains by targeting key genes involved in L. major pathogenesis and then discuss their discovery and implications for immune responses to control leishmaniasis.
Collapse
Affiliation(s)
- Zahra Rooholamini
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahsa Esmaeilifallah
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Keshav P, Goyal DK, Kaur S. In vitro and in vivo therapeutic antileishmanial potential of ellagic acid against Leishmania donovani in murine model. Med Microbiol Immunol 2023; 212:35-51. [PMID: 36399160 DOI: 10.1007/s00430-022-00754-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 11/01/2022] [Indexed: 11/19/2022]
Abstract
Parasite of genus Leishmania viz. L. donovani and L. infantum cause visceral leishmaniasis (VL) or Kala-azar, systemic disease with significant enlargement of the liver and spleen, weight loss, anemia, fever and immunosuppression. The silent expansion of vectors, reservoir hosts and resistant strains is also of great concern in VL control. Considering all these issues, the present study focused on in vitro and in vivo antileishmanial screening of ellagic acid (EA) against L. donovani. The in vitro study was performed against the protozoan parasite L. donovani and a 50% inhibitory concentration was calculated. The DNA arrest in the sub-G0/G1 phase of the cell cycle was studied. In vivo studies included the assessment of parasite burden and immunomodulation in response to treatment of ellagic acid in BALB/c mice. The levels of Th1 and Th2 cytokines and isotype antibodies were assessed in different groups of mice. EA showed in vitro parasiticidal activity with IC50 18.55 µg/mL and thwarted cell-cycle progression at the sub-G0/G1 phase. Administration of ellagic acid to the BALB/c mice reported diminution of splenic and hepatic parasite burden coupled with an expansion of CD4+ and CD8+ T lymphocytes. EA further potentiated a protective immune response with augmentation of Th1 type immune response evidenced by elevation of serum IgG2a levels and DTH response. EA was reported to be safe and non-toxic to the THP-1 cell line as well as to the liver and kidneys of mice. These findings endorse the therapeutic potential of EA with significant immunomodulation and can serve as a promising agent against this debilitating parasitic disease.
Collapse
Affiliation(s)
- Poonam Keshav
- Parasitology Laboratory, Department of Zoology (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Deepak Kumar Goyal
- Parasitology Laboratory, Department of Zoology (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Sukhbir Kaur
- Parasitology Laboratory, Department of Zoology (UGC-CAS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
3
|
Machado AS, Lage DP, Vale DL, Freitas CS, Linhares FP, Cardoso JM, Pereira IA, Ramos FF, Tavares GS, Ludolf F, Oliveira-da-Silva JA, Bandeira RS, Simões AC, Duarte MC, Oliveira JS, Christodoulides M, Chávez-Fumagalli MA, Roatt BM, Martins VT, Coelho EA. A recombinant Leishmania amastigote-specific protein, rLiHyG, with adjuvants, protects against infection with Leishmania infantum. Acta Trop 2022; 230:106412. [PMID: 35305943 DOI: 10.1016/j.actatropica.2022.106412] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/11/2022]
Abstract
Vaccination against visceral leishmaniasis (VL) should be considered as a control measure to protect against disease, and amastigote-specific proteins could help to develop such vaccines, since this parasite form is in contact with the host immune system during the active disease. In this study, a Leishmania amastigote-specific protein, LiHyG, was evaluated as recombinant protein (rLiHyG) as vaccine candidate against Leishmania infantum infection in BALB/c mice. The protein was associated with saponin (rLiHyG/Sap) or Poloxamer 407-based polymeric micelles (rLiHyG/Mic) as adjuvants, and animals receiving saline, saponin or micelle as controls. Immunological and parasitological analyses were performed before (n = 8 per group; as primary endpoint) and after (n = 8 per group; as secondary endpoint) infection. Results showed that, in both endpoints, rLiHyG/Sap and rLiHyG/Mic induced higher levels of IFN-γ, IL-12 and GM-CSF in spleen cell cultures from vaccinated animals, besides elevated presence of IgG2a isotype antibodies. Decreased hepatotoxicity and 'positive lymphoproliferative response were also found after challenge. Such findings reflected in significantly lower levels of parasite load found in their spleens, livers, bone marrows and draining lymph nodes. In conclusion, rLiHyG associated with Th1-type adjuvant could be considered for future studies as vaccine candidate to protect against VL.
Collapse
|
4
|
Machado AS, Lage DP, Vale DL, Freitas CS, Linhares FP, Cardoso JMO, Oliveira-da-Silva JA, Pereira IAG, Ramos FF, Tavares GSV, Ludolf F, Bandeira RS, Maia LGN, Menezes-Souza D, Duarte MC, Chávez-Fumagalli MA, Roatt BM, Christodoulides M, Martins VT, Coelho EAF. Leishmania LiHyC protein is immunogenic and induces protection against visceral leishmaniasis. Parasite Immunol 2022; 44:e12921. [PMID: 35437797 DOI: 10.1111/pim.12921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/27/2022]
Abstract
AIMS Treatment against visceral leishmaniasis (VL) presents problems by toxicity of drugs, high cost and/or emergence of resistant strains. The diagnosis is hampered by variable sensitivity and/or specificity of tests. In this context, prophylactic vaccination could represent a control measure against disease. In this study, the protective efficacy from Leishmania LiHyC protein was evaluated in murine model against Leishmania infantum infection. METHODS AND RESULTS LiHyC was used as recombinant protein (rLiHyC) associated with saponin (rLiHyC/S) or Poloxamer 407-based polymeric micelles (rLiHyC/M) to immunize mice. Animals received also saline, saponin or empty micelles as controls. The immunogenicity was evaluated before and after challenge, and results showed that vaccination with rLiHyC/S or rLiHyC/M induced the production of high levels of IFN-γ, IL-12 and GM-CSF in cell culture supernatants, as well as higher IFN-γ expression evaluated by RT-qPCR and involvement from CD4+ and CD8+ T cell subtypes producing IFN-γ, TNF-α and IL-2. A positive lymphoproliferative response was also found in cell cultures from vaccinated animals, besides high levels of rLiHyC- and parasite-specific nitrite and IgG2a antibodies. Immunological assays correlated with significant reductions in the parasite load in spleens, livers, bone marrows and draining lymph nodes from vaccinated mice, when compared to values found in the controls. The micellar composition showed slightly better immunological and parasitological data, as compared to rLiHyC/S. CONCLUSION Results suggest that rLiHyC associated with adjuvants could be considered for future studies as a vaccine candidate against VL.
Collapse
Affiliation(s)
- Amanda S Machado
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela P Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Danniele L Vale
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Camila S Freitas
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Flávia P Linhares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Jamille M O Cardoso
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - João A Oliveira-da-Silva
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Isabela A G Pereira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda F Ramos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Grasiele S V Tavares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Ludolf
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Raquel S Bandeira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Luiz G N Maia
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel Menezes-Souza
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil.,Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana C Duarte
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil.,Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Miguel A Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José S/N, Umacollo, Arequipa, Peru
| | - Bruno M Roatt
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Myron Christodoulides
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, England
| | - Vívian T Martins
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo A F Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil.,Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
5
|
Keshav P, Goyal DK, Kaur S. GC-MS screening and antiparasitic action of Putranjiva roxburghii leaves against sensitive and resistant strains of Leishmania donovani. J Parasit Dis 2021; 45:1002-1013. [PMID: 34789984 PMCID: PMC8556436 DOI: 10.1007/s12639-021-01388-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/07/2021] [Indexed: 11/28/2022] Open
Abstract
Looming drug resistance cases of leishmaniasis infection are an undeniably serious danger to worldwide public health, also jeopardize the efficacy of available drugs. Besides this, no successful vaccine is available till date. Since the ancient era, many plants and their parts have been used as medicines against various ailments. Hence, the importance of drug development for new molecules against Leishmania infection is significant that is a cost-effective and safer drug preferably from the natural herbal resources. We evaluated the GC-MS screening and efficacy of Putranjiva roxburghii (PR) against the sensitive and resistant promastigotes of L. donovani. GC-MS profiling revealed that the extract was rich in myo-inositol-4-C-methyl, azulene and desulphosinigrin. Quantitative investigation of phytoconstituents confirmed that PR was rich in phenols, flavonoids and terpenoids. We found an IC50 25.61 ± 0.57 µg/mL and 29.02 ± 1.21 µg/mL of PR against sodium stibogluconate sensitive and resistant strain respectively. It was found to be safer in cytotoxicity assay and generated ROS mediated oxidative stress in the parasitic cells which was evidenced by the increased and decreased levels of superoxide radicals, lipid peroxidation products, lipid bodies and levels of thiol, plasma membrane integrity respectively. Therefore, our results support the importance of P. roxburghii as a medicinal plant against L. donovani and showed potential for exploration as an antileishmanial agent.
Collapse
Affiliation(s)
- Poonam Keshav
- Parasitology Laboratory, Department of Zoology (UGC-CAS), Panjab University, Chandigarh, UT India
| | - Deepak Kumar Goyal
- Parasitology Laboratory, Department of Zoology (UGC-CAS), Panjab University, Chandigarh, UT India
| | - Sukhbir Kaur
- Parasitology Laboratory, Department of Zoology (UGC-CAS), Panjab University, Chandigarh, UT India
| |
Collapse
|