1
|
Ji C, Li S, Hu C, Liu T, Huang Q, Yang M, Yang M, Wang Q, Li A, Guo D, Huang Y, Yin S, Feng S. Traditional Chinese medicine as a promising choice for future control of PEDV. Virus Res 2025; 356:199572. [PMID: 40220931 DOI: 10.1016/j.virusres.2025.199572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Porcine epidemic diarrhea virus (PEDV) is the major agent of the recent outbreaks of diarrhea in piglets, which has caused huge economic losses to the global swine industry. Since traditional vaccine strategies cannot provide complete protection for piglets, the development of safe, effective, and economical antiviral drugs is urgently needed. For many years, traditional Chinese medicines (TCMs) have been broadly applied for viral infectious diseases, exhibiting advantages such as abundant resources, lower toxicity, and minimal drug resistance. Many Chinese herbal monomers, single herbal extracts derived from these traditional drugs, and Chinese herbal recipes exhibit significant anti-PEDV effects in vitro and/or in vivo by targeting multiple sites and perspectives, including inhibition of the viral life cycle, anti-inflammation effects, enhancement of the host immune response, modulation of reactive oxygen species, and apoptosis. However, to date, no review has been published on the anti-PEDV effects of TCM. Therefore, this review summarizes the current control strategies for PEDV and systematically analyses the research progress of TCMs against PEDV. Furthermore, the future directions including the integration of nanotechnology and artificial intelligence with TCMs are also discussed. This review will provide a valuable reference for future studies on TCMs in antiviral research.
Collapse
Affiliation(s)
- Conghao Ji
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Engineering Research Center for Chinese Medicine Foods for Special Medical Purpose, Zhengzhou 450046, China.
| | - Shuxuan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Engineering Research Center for Chinese Medicine Foods for Special Medical Purpose, Zhengzhou 450046, China
| | - Cunhai Hu
- Luoyang Yiyin Industrial Co., LTD, Luoyang 471000, China
| | - Tongtong Liu
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Qingqing Huang
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Mengyuan Yang
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Mengxin Yang
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Qianqian Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Engineering Research Center for Chinese Medicine Foods for Special Medical Purpose, Zhengzhou 450046, China
| | - Aifang Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Engineering Research Center for Chinese Medicine Foods for Special Medical Purpose, Zhengzhou 450046, China
| | - Dandan Guo
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Engineering Research Center for Chinese Medicine Foods for Special Medical Purpose, Zhengzhou 450046, China
| | - Yu Huang
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Engineering Research Center for Chinese Medicine Foods for Special Medical Purpose, Zhengzhou 450046, China
| | - Sugai Yin
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Engineering Research Center for Chinese Medicine Foods for Special Medical Purpose, Zhengzhou 450046, China
| | - Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Engineering Research Center for Chinese Medicine Foods for Special Medical Purpose, Zhengzhou 450046, China.
| |
Collapse
|
2
|
Shahhamzehei N, Abdelfatah S, Schwarzer-Sperber HS, Sutter K, Yücer R, Bringmann G, Schwarzer R, Efferth T. Identification of nitrile-containing isoquinoline-related natural product derivatives as coronavirus entry inhibitors in silico and in vitro. Biomed Pharmacother 2024; 180:117517. [PMID: 39357326 DOI: 10.1016/j.biopha.2024.117517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused millions of infections and deaths worldwide since its emergence in Wuhan, China, in late 2019. Natural product inhibitors targeting the interaction between the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and human angiotensin-converting enzyme 2 (ACE2), crucial for viral attachment and cellular entry, are of significant interest as potential antiviral agents. In this study a library of nitrile- and sulfur-containing natural product derived compounds were used for virtual drug screening against the RBD of the SARS-CoV-2 spike protein. The top 18 compounds from docking were tested for their efficacy to inhibit virus entry. In vitro experiments revealed that compounds 9, 14, and 15 inhibited SARS-CoV-2 pseudovirus and live virus entry in HEK-ACE2 and Vero E6 host cells at low micromolar IC50 values. Cell viability assays showed these compounds exerted low cytotoxicity towards MRC5, Vero E6, and HEK-ACE2 cell lines. Microscale thermophoresis revealed all three compounds strongly bound to the RBDs of SARS-CoV-2, SARS-CoV-2 XBB, SARS-CoV-1, MERS-CoV, and HCoV-HKU1, with their Kd values increasing as RBD sequence similarity decreased. Molecular docking studies indicated compounds 9, 14, and 15 bound to the SARS-CoV-2 spike protein RBD and interacted with hotspot amino acid residues required for the RBD-ACE2 interaction and cellular infection. These three nitrile-containing candidates, particularly compound 15, should be considered for further development as potential pan-coronavirus entry inhibitors.
Collapse
Affiliation(s)
- Nasim Shahhamzehei
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany
| | - Sara Abdelfatah
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany
| | - Hannah S Schwarzer-Sperber
- Institute for the Research on HIV and AIDS-Associated Diseases (HIV-AAD), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Kathrin Sutter
- Institute for the Research on HIV and AIDS-Associated Diseases (HIV-AAD), University Hospital Essen, University Duisburg-Essen, Essen, Germany; Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Rümeysa Yücer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Roland Schwarzer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany.
| |
Collapse
|
3
|
Thesnor V, Cheremond Y, Sylvestre M, Meffre P, Cebrián-Torrejón G, Benfodda Z. Survey on the Traditional Use of Medicinal Herbs in Haiti: A Study on Knowledge, Practices, and Efficacy Prevention. PLANTS (BASEL, SWITZERLAND) 2024; 13:2383. [PMID: 39273867 PMCID: PMC11396795 DOI: 10.3390/plants13172383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024]
Abstract
The use of medicinal herbs is highly developed in Haiti. However, there is a significant lack of knowledge in the literature on medicinal plants and their uses. The objective of this study was to determine the knowledge and practices of Haitian families for the prevention/treatment of COVID-19, influenza, and respiratory diseases, as well as the mode of preparation and administration of the plants. Individuals were interviewed using the TRAMIL questionnaire as the information holder. The data obtained were analyzed by calculating 5 indices (relative frequency of citation, use value, the family use value, informant consensus factor, and fidelity level). The study surveyed 120 Haitians and collected 75 plants from 43 botanical families. The botanical family most used for all these preventions and remedies is the Lamiaceae. The highest ranked species with a relative frequency of citation value > 0.3. Infusion, decoction, and in the form of punch are the methods used for the remedies. The study found that the use of herbal remedies is still prevalent in the study area, and many of the commonly used plants have been scientifically validated. However, some plants, such as Samyda rosea Sims, lack sufficient research and are recommended for further investigation.
Collapse
Affiliation(s)
- Valendy Thesnor
- COVACHIM-M2E Laboratory EA 3592, Department of Chemistry, Université des Antilles, UFR SEN, Fouillole Campus, Cedex, 97157 Pointe-a-Pitre, France
- URE, Université d'État d'Haïti, Port-au-Prince HT6110, Haiti
- UPR CHROME, University Nimes, cedex 1, 30021 Nimes, France
| | - Yvens Cheremond
- URE, Université d'État d'Haïti, Port-au-Prince HT6110, Haiti
| | - Muriel Sylvestre
- COVACHIM-M2E Laboratory EA 3592, Department of Chemistry, Université des Antilles, UFR SEN, Fouillole Campus, Cedex, 97157 Pointe-a-Pitre, France
| | - Patrick Meffre
- UPR CHROME, University Nimes, cedex 1, 30021 Nimes, France
| | - Gerardo Cebrián-Torrejón
- COVACHIM-M2E Laboratory EA 3592, Department of Chemistry, Université des Antilles, UFR SEN, Fouillole Campus, Cedex, 97157 Pointe-a-Pitre, France
| | - Zohra Benfodda
- UPR CHROME, University Nimes, cedex 1, 30021 Nimes, France
| |
Collapse
|
4
|
Li K, Xia T, Jiang Y, Wang N, Lai L, Xu S, Yue X, Xin H. A review on ethnopharmacology, phytochemistry, pharmacology and potential uses of Portulaca oleracea L. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117211. [PMID: 37739100 DOI: 10.1016/j.jep.2023.117211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Portulaca oleracea L. (PO), popularly known as purslane, has been documented in ethnopharmacology in various countries and regions. Traditional application records indicated that PO might be used extensively to treat the common cold, dysentery, urinary tract infections, coughing, eye infections, skin problems, gynecological diseases, and pediatric illnesses. AIM OF THE REVIEW This paper includes a systematic review of the traditional usage, phytochemicals, pharmacological activity, and potential uses of PO to provide an overview of the research for further exploitation of PO resources. MATERIALS AND METHODS This article uses "Portulaca oleracea L." and "purslane" as the keywords and collects relevant information on PO from different databases, including PubMed, Web of Science, Springer, Science Direct, ACS, Wiley, CNKI, Baidu Scholar, Google Scholar, and ancient meteria medica. RESULTS PO is a member of the Portulacaceae family and is grown worldwide. Traditional Chinese medicine believes that purslane has the effect of improving eyesight, eliminating evil qi, quenching thirst, purgation, diuresis, hemostasis, regulating qi, promoting hair growth, detoxifying, and avoiding epidemic qi. Recent phytochemical investigations have shown that PO is a rich source of flavonoids, homoisoflavonoids, alkaloids, organic acids, esters, lignans, terpenoids, catecholamines, sterols, and cerebrosides. The purslane extracts or compounds have exhibited numerous biological activities such as anti-inflammatory, immunomodulatory, antimicrobial, antiviral, antioxidant, anticancer, renoprotective, hepatoprotective, gastroprotective, metabolic, muscle relaxant, anti-asthmatic and anti-osteoporosis properties. The significant omega-3 fatty acids, vital amino acids, minerals, and vitamins found in purslane also provide nutritional benefits. Purslane as a food/feed additive in the food industry and animal husbandry has caused concern. Its global wide distribution and tolerance to abiotic stress characteristics make it in the future sustainable development of agriculture a certain position. CONCLUSIONS Based on traditional usage, phytochemicals, and pharmacological activity, PO is a potential medicinal and edible plant with diverse pharmacological effects. Due to purslane's various advantages, it may have vast application potential in the food and pharmaceutical industries and animal husbandry.
Collapse
Affiliation(s)
- Kun Li
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China; Department of Traditional Chinese Medicine, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Tianshuang Xia
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Yiping Jiang
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Nani Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Liyong Lai
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Shengyan Xu
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Xiaoqiang Yue
- Department of Traditional Chinese Medicine, Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - Hailiang Xin
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China.
| |
Collapse
|
5
|
Zhang Y, Liu Y, Yang S, Yin B, Zhao Z, Huang Z, Wu J, Lin S, Wang X. Water Extract of Portulaca Oleracea Inhibits PEDV Infection-Induced Pyrolysis by Caspase-1/GSDMD. Curr Issues Mol Biol 2023; 45:10211-10224. [PMID: 38132483 PMCID: PMC10742930 DOI: 10.3390/cimb45120637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) belongs to the coronavirus family and the coronavirus genus, causing contact enteric infection in pigs. It is one of the most serious diseases that threatens the pig industry. However, there is currently no specific drug to prevent and treat the disease, indicating that we need to be vigilant about the spread of the disease and the development of anti-PEDV drugs. The dried aerial parts of the plant Portulaca oleracea in the family Portulacaceous, whose decoction can be used to treat acute enteritis, dysentery, diarrhea, and other diseases. This study explored the potential mechanism of water extract of Portulaca oleracea (WEPO) in PEDV-induced pyroptosis in Vero cells. PEDV decreased the viability of Vero cells in a dose- and time-dependent manner, causing cell damage, upregulating the level of intracellular Nlrp3, and inhibiting the level of Gasdermin D (GSDMD) and the activation of Caspase-1. WEPO can inhibit PEDV-induced pyroptosis, reduce the elevation of inflammatory factors caused by infection, and exhibit a dose-dependent effect. Knockdown of Caspase-1 and GSDMD separately can induce the production of the inflammatory factor IL-1β to significantly decrease and increase, respectively. These results suggest that WEPO can inhibit cell pyroptosis caused by PEDV and that the Caspase-1 and GSDMD pathways play an important role in this process.
Collapse
Affiliation(s)
- Yu Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, China;
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Jinan 250100, China (S.Y.); (B.Y.); (J.W.)
| | - Yueyue Liu
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Jinan 250100, China (S.Y.); (B.Y.); (J.W.)
| | - Shifa Yang
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Jinan 250100, China (S.Y.); (B.Y.); (J.W.)
| | - Bin Yin
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Jinan 250100, China (S.Y.); (B.Y.); (J.W.)
| | - Zengcheng Zhao
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Jinan 250100, China (S.Y.); (B.Y.); (J.W.)
| | - Zhongli Huang
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Jinan 250100, China (S.Y.); (B.Y.); (J.W.)
| | - Jiaqiang Wu
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Jinan 250100, China (S.Y.); (B.Y.); (J.W.)
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Shuqian Lin
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Jinan 250100, China (S.Y.); (B.Y.); (J.W.)
| | - Xin Wang
- College of Veterinary Medicine, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, China;
| |
Collapse
|
6
|
Zhou X, Li Y, Li T, Cao J, Guan Z, Xu T, Jia G, Ma G, Zhao R. Portulaca oleracea L. Polysaccharide Inhibits Porcine Rotavirus In Vitro. Animals (Basel) 2023; 13:2306. [PMID: 37508085 PMCID: PMC10376577 DOI: 10.3390/ani13142306] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/07/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Diarrhea is one of the most common causes of death in young piglets. Porcine rotavirus (PoRV) belongs to the genus Rotavirus within the family Reoviridae, and is considered to be the primary pathogen causing diarrhea in piglets. Portulaca oleracea L. (POL) has been reported to alleviate diarrhea and viral infections. However, the antiviral effect of Portulaca oleracea L. polysaccharide (POL-P), an active component of POL, on PoRV infection remains unclear. This study demonstrated that the safe concentration range of POL-P in IPEC-J2 cells is 0-400 μg/mL. POL-P (400 μg/mL) effectively inhibits PoRV infection in IPEC-J2 cells, reducing the expression of rotavirus VP6 protein, mRNA and virus titer. Furthermore, on the basis of viral life cycle analysis, we showed that POL-P can decrease the expression of PoRV VP6 protein, mRNA, and virus titer during the internalization and replication stages of PoRV. POL-P exerts antiviral effects by increasing IFN-α expression and decreasing the expression levels of TNF-α, IL-6, and IL-10 inflammatory factors. Overall, our study found that POL-P is a promising candidate for anti-PoRV drugs.
Collapse
Affiliation(s)
- Xiechen Zhou
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yan Li
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Tao Li
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Junyang Cao
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Zijian Guan
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Tianlong Xu
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Guiyan Jia
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Gaopeng Ma
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Rui Zhao
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
7
|
Rao H, Su W, Zhang X, Wang Y, Li T, Li J, Zeng X, Li P. Hypericum japonicum extract inhibited porcine epidemic diarrhea virus in vitro and in vivo. Front Pharmacol 2023; 14:1112610. [PMID: 37138845 PMCID: PMC10149974 DOI: 10.3389/fphar.2023.1112610] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) infection causes lethal watery diarrhea and high mortality in neonatal piglets, leading to huge economic losses in the global swine industry. Currently, the existing commercial vaccines cannot fully control PEDV, so it is urgent to develop effective antiviral agents to complement vaccine therapy. In the present study, we investigated the antiviral effect of Hypericum japonicum extract (HJ) against PEDV in vivo and in vitro. In in vitro assays, HJ could directly inactivate PEDV strains; moreover, it inhibited the proliferation of PEDV strains in Vero or IPI-FX cells at its non-cytotoxic concentrations. Time of addition assays revealed that HJ mainly inhibited PEDV at the later stages of the viral life cycle. In in vivo, compared with the model group, HJ could reduce the viral titers in the intestines of infected piglets, and improve their intestinal pathological, indicating that HJ could protect the newborn piglets from highly pathogenic PEDV variant infection. Furthermore, this effect may be related to the fact that HJ can not only directly inhibit viruses, but also regulate the structure of intestinal microbiota. In conclusion, our results indicate that Hypericum japonicum could inhibit PEDV replication in vitro and in vivo and might possess the potential to develop as the anti-PEDV drug.
Collapse
|
8
|
Monosaccharide Composition and In Vitro Activity to HCT-116 Cells of Purslane Polysaccharides after a Covalent Chemical Selenylation. Foods 2022; 11:foods11233748. [PMID: 36496556 PMCID: PMC9740785 DOI: 10.3390/foods11233748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
The anti-cancer effects of selenylated plant polysaccharides are a focus of research. As a natural plant with extensive biological effects, there have been few studies related to edible purslane (Portulaca oleracea L.). Thus, in this study, soluble P. oleracea polysaccharides (PPS) were extracted from the dried P. oleracea and then selenylated chemically using the HNO3-Na2SeO3 method to obtain two selenylated products, namely, SePPS1 and SePPS2. Compared with the extracted PPS, SePPS1 and SePPS2 had much higher Se contents (840.3 and 1770.5 versus 66.0 mg/kg) while also showing lower contents in three saccharides-arabinose, fucose, and ribose-and higher contents in seven saccharides including galactose, glucose, fructose, mannose, rhamnose, galacturonic acid, and glucuronic acid, but a stable xylose content demonstrated that the performed chemical selenylation of PPS led to changes in monosaccharide composition. Moreover, SePPS1 and SePPS2 shared similar features with respect to monosaccharide composition and possessed higher bioactivity than PPS in human colon cancer HCT-116 cells. Generally, SePPS1 and SePPS2 were more active than PPS with respect to cell growth inhibition, the alteration of cell morphology, disruption of mitochondrial membrane potential, intracellular reactive oxygen species (ROS) generation, the induction of cell apoptosis, and upregulation or downregulation of five apoptosis-related genes and proteins such as Bax, Bcl-2, caspases-3/-9, and cytochrome C, that cause cell apoptosis and growth suppression via the ROS-mediated mitochondrial pathway. SePPS2 consistently showed the highest capacity to exert these observed effects on the targeted cells, suggesting that the performed chemical selenylation of PPS (in particular when higher degrees of selenylation are reached) resulted in an increase in activity in the cells. It can thus be concluded that the performed selenylation of PPS was able to incorporate inorganic Se into the final PPS products, changing their monosaccharide composition and endowing them with enhanced nutraceutical and anti-cancer effects in the colon.
Collapse
|