1
|
Wu QJ, Zhu LL, Zhang RK, Xing ZY, Wang C, Liao JH, Hu NZ, Cheng BY, Ma Y, Wang YQ. Effect of glutamine on the systemic innate immune response in broiler chickens challenged with Salmonella pullorum. BMC Vet Res 2023; 19:275. [PMID: 38102601 PMCID: PMC10724901 DOI: 10.1186/s12917-023-03836-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The objective of this study was to evaluate the effects of glutamine on the growth performance and systemic innate immune response in broiler chickens challenged with Salmonella pullorum. A total of 600 one-day-old Arbor Acres broiler chickens were assigned randomly to 6 dietary treatments with 10 replicates for a 21-day feeding experiment. The experimental treatments were as follows: the control treatment (birds fed the basal diet), the Gln1 treatment, and the Gln 2 treatment (birds fed the basal diet supplemented with 0.5%, and 1.0% Glutamine, respectively). At 3 d of age, half of the birds from each treatment were challenged oral gavage with 2.0 × 104 CFU/mL of S. pullorum suspension (1.0 mL per bird) or an equivalent amount of sterile saline alone, which served as a control. RESULTS The results showed that S. pullorum infection had adverse effects on the average daily feed intake, average daily gain, and feed conversion ratio of broiler chickens compared with those of the CON treatment on d 7, decreased the spleen and bursa of fabricius relative weights (except on d 21), serum immunoglobulin A (IgA),immunoglobulin G (IgG), and immunoglobulin M (IgM) concentrations, and spleen melanoma differentiation-associated gene 5 (MDA5) and laboratory of genetics and physiology gene 2 (LGP2) mRNA expression levels, and increased the mRNA expression levels of spleen Nodinitib-1 (NOD1), Toll-like receptors 2,4 (TLR2, TLR4), DNA-dependent activator of IFN-regulatory factors (DAI), mitochondrial antiviral-signaling protein (MAVS), P50, P65, and RelB on d 4, 7, 14, and 21. Supplementation with Gln improved the relative weights of the spleen and bursa of Fabricius (except on d 21), increased the serum IgA, IgG, and IgM concentrations and the mRNA expression levels of spleen MDA5 and LGP2, and decreased the mRNA expression levels of spleen NOD1, TLR2, TLR4, DAI, MAVS, P50, P65, and RelB of S. pullorum-challenged broiler chickens. CONCLUSION These results indicate that Gln might stimulate the systemic innate immune responses of the spleen in broiler chickens challenged with S. pullorum.
Collapse
Affiliation(s)
- Qiu Jue Wu
- College of Animal Science and Technology, Henan University of Science and Technology, Henan, 471003, China.
| | - Long Long Zhu
- College of Animal Science and Technology, Henan University of Science and Technology, Henan, 471003, China
| | - Rong Kai Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Henan, 471003, China
| | - Zhong Ying Xing
- College of Animal Science and Technology, Henan University of Science and Technology, Henan, 471003, China
| | - Cong Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Henan, 471003, China
| | - Jia Hui Liao
- College of Animal Science and Technology, Henan University of Science and Technology, Henan, 471003, China
| | - Nai Zhi Hu
- College of Animal Science and Technology, Henan University of Science and Technology, Henan, 471003, China
| | - Bin Yao Cheng
- College of Animal Science and Technology, Henan University of Science and Technology, Henan, 471003, China
| | - Yan Ma
- College of Animal Science and Technology, Henan University of Science and Technology, Henan, 471003, China
| | - Yu Qin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Henan, 471003, China
| |
Collapse
|
2
|
Li W, Ren Q, Ni T, Zhao Y, Sang Z, Luo R, Li Z, Li S. Strategies adopted by Salmonella to survive in host: a review. Arch Microbiol 2023; 205:362. [PMID: 37904066 DOI: 10.1007/s00203-023-03702-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 11/01/2023]
Abstract
Salmonella, a Gram-negative bacterium that infects humans and animals, causes diseases ranging from gastroenteritis to severe systemic infections. Here, we discuss various strategies used by Salmonella against host cell defenses. Epithelial cell invasion largely depends on a Salmonella pathogenicity island (SPI)-1-encoded type 3 secretion system, a molecular syringe for injecting effector proteins directly into host cells. The internalization of Salmonella into macrophages is primarily driven by phagocytosis. After entering the host cell cytoplasm, Salmonella releases many effectors to achieve intracellular survival and replication using several secretion systems, primarily an SPI-2-encoded type 3 secretion system. Salmonella-containing vacuoles protect Salmonella from contacting bactericidal substances in epithelial cells and macrophages. Salmonella modulates the immunity, metabolism, cell cycle, and viability of host cells to expand its survival in the host, and the intracellular environment of Salmonella-infected cells promotes its virulence. This review provides insights into how Salmonella subverts host cell defenses for survival.
Collapse
Affiliation(s)
- Wanwu Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Qili Ren
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Ting Ni
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Yifei Zhao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Zichun Sang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Renli Luo
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Zhongjie Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China.
| | - Sanqiang Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
3
|
The LysR-Type Transcription Regulator YhjC Promotes the Systemic Infection of Salmonella Typhimurium in Mice. Int J Mol Sci 2023; 24:ijms24021302. [PMID: 36674819 PMCID: PMC9867438 DOI: 10.3390/ijms24021302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 01/11/2023] Open
Abstract
Salmonella Typhimurium is a Gram-negative intestinal pathogen that can infect humans and a variety of animals, causing gastroenteritis or serious systemic infection. Replication within host macrophages is essential for S. Typhimurium to cause systemic infection. By analyzing transcriptome data, the expression of yhjC gene, which encodes a putative regulator in S. Typhimurium, was found to be significantly up-regulated after the internalization of Salmonella by macrophages. Whether yhjC gene is involved in S. Typhimurium systemic infection and the related mechanisms were investigated in this study. The deletion of yhjC reduced the replication ability of S. Typhimurium in macrophages and decreased the colonization of S. Typhimurium in mouse systemic organs (liver and spleen), while increasing the survival rate of the infected mice, suggesting that YhjC protein promotes systemic infection by S. Typhimurium. Furthermore, by using transcriptome sequencing and RT-qPCR assay, the transcription of several virulence genes, including spvD, iroCDE and zraP, was found to be down-regulated after the deletion of yhjC. Electrophoretic mobility shift assay showed that YhjC protein can directly bind to the promoter region of spvD and zraP to promote their transcription. These findings suggest that YhjC contributes to the systemic virulence of S. Typhimurium via the regulation of multiple virulence genes and YhjC could represent a promising target to control S. Typhimurium infection.
Collapse
|
4
|
Fan W, Wang Y, Jiang S, Li Y, Yao X, Wang M, Zhao J, Sun X, Jiang X, Zhong L, Han Y, Song H, Xu Y. Identification of key proteins of cytopathic biotype bovine viral diarrhoea virus involved in activating NF-κB pathway in BVDV-induced inflammatory response. Virulence 2022; 13:1884-1899. [PMID: 36316807 PMCID: PMC9629132 DOI: 10.1080/21505594.2022.2135724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bovine viral diarrhoea virus (BVDV) is the etiologic agent of bovine viral diarrhea-mucosal disease, one of the most important viral diseases in cattle, with inflammatory diarrhea, enteritis, and mucosa necrosis as the major clinical manifestations. NF-κB is an important transcription complex that regulates the expression of genes involved in inflammation and immune responses. NLRP3 inflammasome plays a key role in the development of inflammatory diseases. However, whether the activation of NF-κB is crucial for BVDV infection-induced inflammatory responses remains unclear. The results of our present study showed that BVDV infection significantly activated the NF-κB pathway and promoted the expression of NLRP3 inflammasome components (NLRP3, ASC, pro-caspase 1) as well inflammatory cytokine pro-IL-1β in BVDV-infected bovine cells, resulting in the cleavage of pro-caspase 1 and pro-IL-1β into active form caspase 1 and IL-1β. However, the levels of the NLRP3 inflammasome components and inflammatory cytokines were obviously inhibited, as well the cleavage of pro-caspase 1 and pro-IL-1β in the pre-treated bovine cells with NF-κB-specific inhibitors after BVDV infection. Further, cytopathic biotype BVDV (cpBVDV) Erns and NS5A proteins with their key functional domains contributed to BVDV-induced inflammatory responses via activating the NF-κB pathway were confirmed experimentally. Especially, the NS5A can promote cholesterol synthesis and accelerate its augmentation, further activating the NF-κB signalling pathway. Conclusively, our data elucidate that the activation of NF-κB signaling pathway plays a crucial role in cpBVDV infection-induced inflammatory responses.
Collapse
Affiliation(s)
- Wenlu Fan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science & Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, P.R. China,College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Yixin Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science & Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, P.R. China
| | - Sheng Jiang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science & Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, P.R. China
| | - Yuan Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science & Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, P.R. China
| | - Xin Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Mei Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science & Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, P.R. China
| | - Jinghua Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science & Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, P.R. China
| | - Xiaobo Sun
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science & Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, P.R. China
| | - Xiaoxia Jiang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science & Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, P.R. China
| | - Linhan Zhong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science & Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, P.R. China
| | - Yanyan Han
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science & Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, P.R. China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science & Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, P.R. China,Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science & Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, P.R. China,CONTACT Houhui Song
| | - Yigang Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science & Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, P.R. China,Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science & Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, P.R. China,Yigang Xu
| |
Collapse
|
5
|
Ophiopogon Polysaccharide Liposome Regulated the Immune Activity of Kupffer Cell through miR-4796. Int J Mol Sci 2022; 23:ijms232314659. [PMID: 36498983 PMCID: PMC9735683 DOI: 10.3390/ijms232314659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
The purpose of this article is to study the effects and mechanism of miR-4796 in the process of ophiopogon polysaccharide liposome (OPL) regulation of the immune activity of Kupffer cells (KCs). In this study, KCs were used as cell models, and were treated with OPL in different concentrations after being transfected with miR-4796 mimic or miR-4796 inhibitor. Firstly, the secretion of NO and iNOS, phagocytic activity, the expression of surface molecules CD14 and MHC II, apoptosis and ROS secretion were measured by Griess, flow cytometry, fluorescence staining and ELISA. Then, real-time PCR and Western blot were used to measure the expression of TLR4, IKKβ, MyD88 and NF-κB in the TLR4-NF-κB signaling pathway. The results showed that after transfection with miR-4796 mimic, the secretion of NO and iNOS, cell migration, cell phagocytosis and expression levels of CD14 and MHC II in the OPL group were significantly higher than those in the miR-4796 mimic control group (p < 0.05; p < 0.01). In addition, the mRNA and protein expression levels of TLR4, MyD88 and NF-κB were significantly higher than those in miR-4796 mimic control group (p < 0.05; p < 0.01). After transfection with miR-4796 inhibitor, the secretion of NO and iNOS, cell migration, cell phagocytosis, expression of CD14 and MHCII in OPL group were significantly higher than those in the miR-4796 inhibitor control group (p < 0.05; p < 0.01). These results indicated that OPL could regulate the immune activity of KCs by regulating miR-4796 and activating the TLR4-NF-κB signaling pathway.
Collapse
|
6
|
Gao J, Liu M, Guo H, Zhu K, Liu B, Liu B, Zhang N, Zhang D. ROS Induced by Streptococcus agalactiae Activate Inflammatory Responses via the TNF-α/NF-κB Signaling Pathway in Golden Pompano Trachinotus ovatus (Linnaeus, 1758). Antioxidants (Basel) 2022; 11:antiox11091809. [PMID: 36139883 PMCID: PMC9495563 DOI: 10.3390/antiox11091809] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/27/2022] [Accepted: 09/08/2022] [Indexed: 12/16/2022] Open
Abstract
Streptococcus agalactiae is common pathogenic bacteria in aquaculture and can cause mass mortality after fish infection. This study aimed to investigate the effects of S. agalactiae infection on the immune and antioxidant regulatory mechanisms of golden pompano (Trachinotus ovatus). Serum and liver samples were obtained at 0, 6, 12, 24, 48, 96, and 120 h after golden pompano infection with S. agalactiae for enzyme activity and gene expression analyses. After infection with S. agalactiae, the content of reactive oxygen species (ROS) in serum was significantly increased (p < 0.05). Serum levels of glucose (GLU), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and malondialdehyde (MDA) increased and then decreased (p < 0.05), reaching a maximum at 6 h. Serum antioxidant enzyme (LZM) activity increased significantly (p < 0.05) and reached a maximum at 120 h. In addition, the mRNA expression levels of antioxidant genes (SOD, CAT, and GPx) in the liver increased and then decreased, reaching the maximum at 24 h, 48 h, and 24 h, respectively. During the experimental period, the mRNA expression levels of NF-κB-related genes of the inflammatory signaling pathway inhibitory κB (IκB) showed an overall decreasing trend (p < 0.05) and the lowest expression at 120 h, whereas the mRNA expression levels of tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), IκB kinase (IKK), and nuclear factor NF-κB increased significantly (p < 0.05) and the highest expression was at 120 h. In conclusion, these results showed that S. agalactiae could activate internal regulatory signaling in the liver of golden pompano to induce defense and immune responses. This study is expected to lay a foundation to develop the healthy aquaculture of golden pompano and promote a more comprehensive understanding of its disease resistance mechanisms.
Collapse
Affiliation(s)
- Jie Gao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Chinese Academy of Fishery Sciences, South China Sea Fisheries Research Institute, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
- Ocean College, Hebei Agricultural University, Qinhuangdao 066000, China
- Sanya Tropical Fisheries Research Institute, Sanya 572019, China
| | - Mingjian Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Chinese Academy of Fishery Sciences, South China Sea Fisheries Research Institute, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya 572019, China
| | - Huayang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Chinese Academy of Fishery Sciences, South China Sea Fisheries Research Institute, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya 572019, China
| | - Kecheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Chinese Academy of Fishery Sciences, South China Sea Fisheries Research Institute, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya 572019, China
| | - Bo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Chinese Academy of Fishery Sciences, South China Sea Fisheries Research Institute, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya 572019, China
| | - Baosuo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Chinese Academy of Fishery Sciences, South China Sea Fisheries Research Institute, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya 572019, China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Chinese Academy of Fishery Sciences, South China Sea Fisheries Research Institute, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya 572019, China
| | - Dianchang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Chinese Academy of Fishery Sciences, South China Sea Fisheries Research Institute, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya 572019, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
- Correspondence: ; Tel.: +86-20-8910-8316; Fax: +86-20-8445-1442
| |
Collapse
|
7
|
Zhou Y, Zhao X, Hu W, Ruan F, He C, Huang J, Zuo Z. Acute and subacute oral toxicity of propylene glycol enantiomers in mice and the underlying nephrotoxic mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118050. [PMID: 34461418 DOI: 10.1016/j.envpol.2021.118050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Propylene glycol (PG; 1,2-propanediol) has been commonly used as a food additive and vehicle in pharmaceutical preparations. PG can form rectus (R-) enantiomers and sinister (S-) enantiomers. Herein, Kunming mice were used as the animal model to evaluate the acute and subacute oral toxicity of R-PG, S-PG and RS-PG (1:1 racemic mixture of R-PG and S-PG). The median lethal doses of R-PG, S-PG and RS-PG administered by oral gavage to mice were 22.81 g/kg, 26.62 g/kg and 24.92 g/kg, respectively. In the 28-day oral subacute toxicity study, the body weight, organ weights, serum biochemical, and renal histology were examined. There was no difference in subacute toxicity among R-PG, S-PG and RS-PG. The administration of 1 and 5 g/kg/day PG for 28 days caused nephrotoxicity. The kidney somatic index and levels of blood urea nitrogen exhibited a significant increase. Moreover, the activities of superoxide dismutase, catalase, and glutathione peroxidase significantly decreased after the treatment with PG. The levels of malondialdehyde, tumor necrosis factor α, interleukin 1β, and interleukin 6 significantly increased in the kidney. The results show that the nephrotoxic effects of PG are induced by oxidative stress, and the activation of the inflammatory response is mediated by the NF-κB signaling pathway. Together, these findings provide information on R-PG, S-PG and RS-PG treatments for the risk assessment of toxicity and effects on human health.
Collapse
Affiliation(s)
- Yixi Zhou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xijing Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Weiping Hu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Fengkai Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jiyi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
8
|
Li W, Li J, He N, Dai X, Wang Z, Wang Y, Ni X, Zeng D, Zhang D, Zeng Y, Pan K. Molecular mechanism of enhancing the immune effect of the Newcastle disease virus vaccine in broilers fed with Bacillus cereus PAS38. Food Funct 2021; 12:10903-10916. [PMID: 34647113 DOI: 10.1039/d1fo01777b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this study was to explore the molecular mechanism of enhancing the immune effect of the Newcastle disease virus (NDV) vaccine in broilers fed with Bacillus cereus PAS38. The results showed that the NDV antibody titer of broilers in the treatment group supplemented with B. cereus PAS38 was higher than that of the control group, and the difference was significant at 28 days of age (P < 0.05). The spleen, thymus and bursa of fabricius of 42-day-old broilers were quickly collected to construct a differentially expressed gene library of suppression subtractive hybridization (SSH). A total of 31 immune-related differentially expressed genes were screened from three immune organs, of which 15 were up-regulated and 16 were down-regulated. After silencing the up-regulated genes MIF, CD74, DOCK2 and KLHL6, the expression levels of cytokines (Akirin2, NF-κB, IL-2, IL-4, IL-6, IFN-γ and TNF-α) in lymphocytes were reduced to varying degrees. B. cereus PAS38 might be involved in the proliferation, differentiation, activation, migration of B lymphocytes and vaccine antigen presentation by up-regulating the expression of MIF, CD74, DOCK2, KLHL6 and other genes. Moreover, it also stimulated plasma cells to produce immunoglobulins and specific antibodies, thereby improving the humoral immune function of broilers and enhancing the immune effect of the NDV vaccine.
Collapse
Affiliation(s)
- Wanqiang Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Jianzhen Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China. .,Chengdu Agricultural College, Chengdu, 611130, China
| | - Nianjia He
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xixi Dai
- Chongqing Three Gorges Vocational College, Chongqing, 404155, China
| | - Zhenhua Wang
- Chengdu Agricultural College, Chengdu, 611130, China
| | - Yufei Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xueqin Ni
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Dong Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Dongmei Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yan Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Kangcheng Pan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|