1
|
Peneva P, Pancheva R, Nikolova SP. Respiratory Microbiota and Health Risks in Children with Cerebral Palsy: A Narrative Review. CHILDREN (BASEL, SWITZERLAND) 2025; 12:358. [PMID: 40150639 PMCID: PMC11941506 DOI: 10.3390/children12030358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/05/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025]
Abstract
Children diagnosed with cerebral palsy (CP) frequently face a range of intricate health challenges that go beyond their main condition. Respiratory problems represent one of the most crucial factors contributing to morbidity and mortality. This review employed a systematic approach to identify and collate recent findings on the respiratory microbiota in children with CP. The review emphasizes notable microbial alterations in the respiratory systems of children with CP, marked by a decrease in beneficial bacteria (such as Corynebacterium spp. and Dolosigranulum spp.) and an increase in opportunistic pathogens like Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumonia. These changes probably increase the vulnerability of children with CP to frequent respiratory infections, ongoing inflammation, and infections that are resistant to antibiotics. Key factors influencing the composition of microbiota include living in urban areas, socioeconomic factors, seasonal variations, vaccination status, dietary habits, breastfeeding, etc. Although new research has shed significant light on this topic, there are still considerable gaps in our understanding of how these microbial communities develop and interact with the immune responses of the host. Future research should focus on longitudinal studies to track microbiota changes over time and identify interventions that optimize respiratory health in CP.
Collapse
Affiliation(s)
- Pavlina Peneva
- First Department of Internal Disease, Faculty of Medicine, Medical University, 9002 Varna, Bulgaria
| | - Rouzha Pancheva
- Department of Hygiene and Epidemiology, Faculty of Public Health, Medical University, 9002 Varna, Bulgaria;
| | - Silviya P. Nikolova
- Department of Social Medicine and Healthcare Organization, Faculty of Public Health, Medical University, 9002 Varna, Bulgaria;
| |
Collapse
|
2
|
Sokolovs-Karijs O, Brīvība M, Saksis R, Rozenberga M, Bunka L, Girotto F, Osīte J, Reinis A, Sumeraga G, Krūmiņa A. Comparing the Microbiome of the Adenoids in Children with Secretory Otitis Media and Children without Middle Ear Effusion. Microorganisms 2024; 12:1523. [PMID: 39203366 PMCID: PMC11356538 DOI: 10.3390/microorganisms12081523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND The adenoids, primary sites of microbial colonization in the upper airways, can influence the development of various conditions, including otitis media with effusion (OME). Alterations in the adenoid microbiota have been implicated in the pathogenesis of such conditions. AIM This study aims to utilize 16S rRNA genetic sequencing to identify and compare the bacterial communities on the adenoid surfaces of children with OME and children with healthy middle ears. Additionally, we seek to assess the differences in bacterial diversity between these two groups. MATERIALS AND METHODS We collected adenoid surface swabs from forty children, divided into two groups: twenty samples from children with healthy middle ears and twenty samples from children with OME. The V3-V4 hypervariable region of the bacterial 16S rRNA gene was amplified and sequenced using the Illumina MiSeq platform. Alpha and beta diversity indices were calculated, and statistical analyses were performed to identify significant differences in bacterial composition. RESULTS Alpha diversity analysis, using Pielou's index, revealed significantly greater evenness in the bacterial communities on the adenoid surfaces of the healthy ear group compared with the OME group. Beta diversity analysis indicated greater variability in the microbial composition of the OME group. The most common bacterial genera in both groups were Haemophilus, Fusobacterium, Streptococcus, Moraxella, and Peptostreptococcus. The healthy ear group was primarily dominated by Haemophilus and Streptococcus, whereas the OME group showed higher abundance of Fusobacterium and Peptostreptococcus. Additionally, the OME group exhibited statistically significant higher levels of Alloprevotella, Peptostreptococcus, Porphyromonas, Johnsonella, Parvimonas, and Bordetella compared with the healthy ear group. CONCLUSION Our study identified significant differences in the bacterial composition and diversity on the adenoid surfaces of children with healthy middle ears and those with OME. The OME group exhibited greater microbial variability and higher abundances of specific bacterial genera. These findings suggest that the adenoid surface microbiota may play a role in the pathogenesis of OME. Further research with larger sample sizes and control groups is needed to validate these results and explore potential clinical applications.
Collapse
Affiliation(s)
- Oļegs Sokolovs-Karijs
- Department of Otolaryngology, Riga Stradiņš University, 16 Dzirciema Street, LV-1007 Riga, Latvia;
- AIWA Clinic, 241 Latgales Street, LV-1019 Riga, Latvia
| | - Monta Brīvība
- Latvian Biomedicine Research and Study Center, 1 Ratsupites Street, LV-1067 Riga, Latvia; (M.B.); (R.S.); (M.R.); (L.B.)
| | - Rihards Saksis
- Latvian Biomedicine Research and Study Center, 1 Ratsupites Street, LV-1067 Riga, Latvia; (M.B.); (R.S.); (M.R.); (L.B.)
| | - Maija Rozenberga
- Latvian Biomedicine Research and Study Center, 1 Ratsupites Street, LV-1067 Riga, Latvia; (M.B.); (R.S.); (M.R.); (L.B.)
| | - Laura Bunka
- Latvian Biomedicine Research and Study Center, 1 Ratsupites Street, LV-1067 Riga, Latvia; (M.B.); (R.S.); (M.R.); (L.B.)
| | - Francesca Girotto
- Faculty of Medicine, Riga Stradiņš University, 16 Dzirciema Street, LV-1007 Riga, Latvia;
| | - Jana Osīte
- “Centrālā Laboratorrija”, 1b. Šarlotes Street, LV-1011 Riga, Latvia;
| | - Aigars Reinis
- Department of Biology and Microbiology, Riga Stradiņš University, 16 Dzirciema Street, LV-1007 Riga, Latvia;
| | - Gunta Sumeraga
- Department of Otolaryngology, Riga Stradiņš University, 16 Dzirciema Street, LV-1007 Riga, Latvia;
| | - Angelika Krūmiņa
- Department of Infectology, Riga Stradiņš University, 16 Dzirciema Street, LV-1007 Riga, Latvia;
| |
Collapse
|
3
|
Nanushaj D, Kono M, Sakatani H, Murakami D, Hotomi M. Nucleic acid sensing Toll-like receptors 3 and 9 play complementary roles in the development of bacteremia after nasal colonization associated with influenza co-infection. Exp Anim 2024; 73:50-60. [PMID: 37532523 PMCID: PMC10877144 DOI: 10.1538/expanim.23-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023] Open
Abstract
Streptococcus pneumoniae can cause mortality in infant, elderly, and immunocompromised individuals owing to invasion of bacteria to the lungs, the brain, and the blood. In building strategies against invasive infections, it is important to achieve greater understanding of how the pneumococci are able to survive in the host. Toll-like receptors (TLRs), critically important components in the innate immune system, have roles in various stages of the development of infectious diseases. Endosomal TLRs recognize nucleic acids of the pathogen, but the impact on the pneumococcal diseases of immune responses from signaling them remains unclear. To investigate their role in nasal colonization and invasive disease with/without influenza co-infection, we established a mouse model of invasive pneumococcal diseases directly developing from nasal colonization. TLR9 KO mice had bacteremia more frequently than wildtype in the pneumococcal mono-infection model, while the occurrence of bacteremia was higher among TLR3 KO mice after infection with influenza in advance of pneumococcal inoculation. All TLR KO strains showed poorer survival than wildtype after the mice had bacteremia. The specific and protective role of TLR3 and TLR9 was shown in developing bacteremia with/without influenza co-infection respectively, and all nucleic sensing TLRs would contribute equally to protecting sepsis after bacteremia.
Collapse
Affiliation(s)
- Denisa Nanushaj
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Research Building 9F, 811-1 Kimiidera, Wakayama 641-8510, Japan
| | - Masamitsu Kono
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Research Building 9F, 811-1 Kimiidera, Wakayama 641-8510, Japan
| | - Hideki Sakatani
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Research Building 9F, 811-1 Kimiidera, Wakayama 641-8510, Japan
| | - Daichi Murakami
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Research Building 9F, 811-1 Kimiidera, Wakayama 641-8510, Japan
| | - Muneki Hotomi
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Research Building 9F, 811-1 Kimiidera, Wakayama 641-8510, Japan
| |
Collapse
|
4
|
Sokolovs-Karijs O, Brīvība M, Saksis R, Rozenberga M, Girotto F, Osīte J, Reinis A, Sumeraga G, Krūmiņa A. Identifying the Microbiome of the Adenoid Surface of Children Suffering from Otitis Media with Effusion and Children without Middle Ear Effusion Using 16S rRNA Genetic Sequencing. Microorganisms 2023; 11:1955. [PMID: 37630514 PMCID: PMC10459895 DOI: 10.3390/microorganisms11081955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The upper respiratory tract harbors diverse communities of commensal, symbiotic, and pathogenic organisms, originating from both the oral and nasopharyngeal microbiota. Among the primary sites of microbial colonization in the upper airways are the adenoids. Alterations in the adenoid microbiota have been implicated in the development of various conditions, including secretory otitis media. AIM This study aims to employ 16S rRNA genetic sequencing to identify the most common bacteria present on the surface of adenoids in children with otitis media with effusion and compare them with children without pathologies in the tympanic cavity. Additionally, we seek to determine and compare the bacterial diversity in these two study groups. MATERIALS AND METHODS A total of nineteen samples from the adenoid surfaces were collected, comprising two groups: thirteen samples from children without middle ear effusion and six samples from children with secretory otitis media. The libraries of the V3-V4 hypervariable region of the bacterial 16S rRNA gene was made and sequenced using MiSeq platform. RESULTS The most prevalent phyla observed in both groups were Proteobacteria, Firmicutes, and Bacteroidetes. The most common bacterial genera identified in both groups were Haemophilus, Streptococcus, Moraxella, Fusobacterium, and Bordetella, with Fusobacterium and Moraxella being more prevalent in the groups that had no middle ear effusion, while Haemophulus and Streptococcus were more prevalent in the otitis media with effusion group, although not in a statistically significant way. Statistical analysis shows a trend towards bacterial composition and beta diversity being similar between the study groups; however, due to the limited sample size and unevenness between groups, we should approach this data with caution. CONCLUSION The lack of prolific difference in bacterial composition between the study groups suggests that the role of the adenoid microbiome in the development of otitis media with effusion may be less significant.
Collapse
Affiliation(s)
- Oļegs Sokolovs-Karijs
- Department of Otolaryngology, Riga Stradiņš University, 16 Dzirciema Str., LV-1007 Riga, Latvia
- AIWA Clinic, 241 Maskavas Str., LV-1019 Riga, Latvia
| | - Monta Brīvība
- Latvian Biomedicine Research and Study Center, 1 Ratsupites Str., LV-1067 Riga, Latvia
| | - Rihards Saksis
- Latvian Biomedicine Research and Study Center, 1 Ratsupites Str., LV-1067 Riga, Latvia
| | - Maija Rozenberga
- Latvian Biomedicine Research and Study Center, 1 Ratsupites Str., LV-1067 Riga, Latvia
| | - Francesca Girotto
- Faculty of Medicine, Riga Stradiņš University, 16 Dzirciema Str., LV-1007 Riga, Latvia
| | - Jana Osīte
- Centrālā Laboratorrija, 1b. Šarlotes Str., LV-1011 Riga, Latvia
| | - Aigars Reinis
- Department of Biology and Microbiology, Riga Stradiņš University, 16 Dzirciema Str., LV-1007 Riga, Latvia
| | - Gunta Sumeraga
- Department of Otolaryngology, Riga Stradiņš University, 16 Dzirciema Str., LV-1007 Riga, Latvia
| | - Angelika Krūmiņa
- Department of Infectology, Riga Stradiņš University, 16 Dzirciema Str., LV-1007 Riga, Latvia
| |
Collapse
|
5
|
Chen W, Yin G, Chen Y, Wang L, Wang Y, Zhao C, Wang W, Ye J. Analysis of factors that influence the occurrence of otitis media with effusion in pediatric patients with adenoid hypertrophy. Front Pediatr 2023; 11:1098067. [PMID: 36911018 PMCID: PMC9992982 DOI: 10.3389/fped.2023.1098067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Objective Adenoid hypertrophy (AH) and otitis media with effusion (OME) are common pediatric otolaryngological diseases and often occur concurrently. The purpose of this study was to comprehensively analyze the factors that influence the occurrence of OME pediatric patients with AH. Methods Patients younger than 12 years with AH, who were hospitalized for treatment at Beijing Tsinghua Changgung Hospital in Beijing, China, between March 2018 and February 2022 were enrolled. The patients were divided into an AH group and an AH + OME group based on the presence of OME. The authors collected the following clinical data for univariable analysis: sex; age; body mass index (BMI); comorbid nasal congestion/rhinorrhea, recurrent tonsillitis, or allergic rhinitis (AR); adenoid and tonsil grade; tonsillar hypertrophy; food/drug allergy; history of adenoidectomy and congenital diseases; breastfeeding status; preterm birth; exposure to environmental tobacco smoke (ETS); family history of adenotonsillectomy, otitis media, and AR; main data of polysomnography and oropharyngeal conditional pathogen culture data of some patients. Univariate analysis was performed as a basis for logistic regression analysis. Results A total of 511 children (329 boys and 182 girls) were included, their mean age was 5.37 ± 2.10 years. Of them, 407 (79.6%) were in the AH group and 104 (20.4%) in the AH + OME group. Univariate analysis revealed statistically significant differences in age, BMI, adenoid grade, AR, breastfeeding status, and ETS exposure between the two groups. Multivariate stepwise logistic regression analysis showed that age, adenoid grade, AR, breastfeeding status, and ETS influenced the occurrence of OME in pediatric patients with AH. The risk of OME decreased with increasing age. High adenoid grade, ETS exposure, and comorbid AR were risk factors for OME in pediatric patients with AH, but breastfeeding was a protective factor. The final analytical results of the oropharyngeal conditional pathogen culture data showed that Streptococcus pneumoniae positivity was associated with OME in AH. Conclusion The pathogenesis of AH with OME is complex. Young age, high adenoid grade, ETS exposure, non-breastfed status, comorbid AR, and the presence of S. pneumoniae in the oropharynx are risk factors for OME in pediatric patients with AH.
Collapse
Affiliation(s)
- Wenjing Chen
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Guoping Yin
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yijing Chen
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Lijun Wang
- Department of Clinical Laboratory, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yingying Wang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Chunmei Zhao
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Wan Wang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jingying Ye
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
6
|
Zhang X, Li X, Xu H, Fu Z, Wang F, Huang W, Wu K, Li C, Liu Y, Zou J, Zhu H, Yi H, Kaiming S, Gu M, Guan J, Yin S. Changes in the oral and nasal microbiota in pediatric obstructive sleep apnea. J Oral Microbiol 2023; 15:2182571. [PMID: 36875426 PMCID: PMC9980019 DOI: 10.1080/20002297.2023.2182571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Background Several clinical studies have demonstrated that pediatric obstructive sleep apnea (OSA) is associated with dysbiosis of airway mucosal microbiota. However, how oral and nasal microbial diversity, composition, and structure are altered in pediatric OSA has not been systemically explored. Methods 30 polysomnography-confirmed OSA patients with adenoid hypertrophy, and 30 controls who did not have adenoid hypertrophy, were enrolled. Swabs from four surface oral tissue sites (tongue base, soft palate, both palatine tonsils, and adenoid) and one nasal swab from both anterior nares were collected. The 16S ribosomal RNA (rRNA) V3-V4 region was sequenced to identify the microbial communities. Results The beta diversity and microbial profiles were significantly different between pediatric OSA patients and controls at the five upper airway sites. The abundances of Haemophilus, Fusobacterium, and Porphyromonas were higher at adenoid and tonsils sites of pediatric patients with OSA. Functional analysis revealed that the differential pathway between the pediatric OSA patients and controls involved glycerophospholipids and amino acid metabolism. Conclusions In this study, the oral and nasal microbiome of pediatric OSA patients exhibited certain differences in composition compared with the controls. However, the microbiota data could be useful as a reference for studies on the upper airway microbiome.
Collapse
Affiliation(s)
- Xiaoman Zhang
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyi Li
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huajun Xu
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihui Fu
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Wang
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weijun Huang
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kejia Wu
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenyang Li
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yupu Liu
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianyin Zou
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huaming Zhu
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongliang Yi
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Su Kaiming
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meizhen Gu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Guan
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shankai Yin
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|