1
|
Chang Z, Liu B, Lu H, Guo Q, Li Z, Liu R, Liu X. Cloning and characterization of the lysis protein LysSGF3 from Shigella Microviridae phage SGF3 for control of pathogenic bacteria and biofilms. Int J Biol Macromol 2025:144676. [PMID: 40425115 DOI: 10.1016/j.ijbiomac.2025.144676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 05/12/2025] [Accepted: 05/24/2025] [Indexed: 05/29/2025]
Abstract
Endolysins (lysins) are novel bactericidal agents derived from phages. In contrast, single-stranded DNA (ssDNA) phages can lyse host bacteria via an isolated lysis protein, with improved efficiency and speed compared to the binary lysis system "lysin-holin" employed by double-stranded DNA (dsDNA) phages. In this study, three uncharacterized proteins from Shigella Microviridae phage SGF3 were cloned and expressed. From them, a novel lysis protein, LysSGF3, was identified, and factors influencing its bactericidal activity and properties were investigated. These features were applied to biofilm control. LysSGF3 at a concentration of 100 μg/mL exhibited robust lysis activity of 76.13 % against S. flexneri 1.10599 at 37 °C and pH = 7. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of LysSGF3 on S. flexneri 1.10599 were 50 μg/mL and 300 μg/mL, respectively. Moreover, LysSGF3 exhibited a wider lysis spectrum than phage SGF3, with robust effects against 11 Gram-negative strains of Shigella, Escherichia coli, and Edwardsiella and three Gram-positive strains including Staphylococcus aureus and Bacillus. The biofilm formed by strains of Shigella, E. coli, and S. aureus experienced a removal rate of at least 50 %. At the same time, the combined biofilm of S. flexneri 1.10599 and other strains also experienced adequate removal. In summary, LysSGF3 is a promising new bactericidal agent that will provide alternative solutions to overcome antibiotic resistance.
Collapse
Affiliation(s)
- Zhankun Chang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingxin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han Lu
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250100, China
| | - Qiucui Guo
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zong Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruyin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xinchun Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Shi Z, Hong X, Li Z, Zhang M, Zhou J, Zhao Z, Qiu S, Liu G. Characterization of the novel broad-spectrum lytic phage Phage_Pae01 and its antibiofilm efficacy against Pseudomonas aeruginosa. Front Microbiol 2024; 15:1386830. [PMID: 39091310 PMCID: PMC11292732 DOI: 10.3389/fmicb.2024.1386830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
Introduction Pseudomonas aeruginosa is present throughout nature and is a common opportunistic pathogen in the human body. Carbapenem antibiotics are typically utilized as a last resort in the clinical treatment of multidrug-resistant infections caused by P. aeruginosa. The increase in carbapenem-resistant P. aeruginosa poses an immense challenge for the treatment of these infections. Bacteriophages have the potential to be used as antimicrobial agents for treating antibiotic-resistant bacteria. Methods and Results In this study, a new virulent P. aeruginosa phage, Phage_Pae01, was isolated from hospital sewage and shown to have broad-spectrum antibacterial activity against clinical P. aeruginosa isolates (83.6%). These clinical strains included multidrug-resistant P. aeruginosa and carbapenem-resistant P. aeruginosa. Transmission electron microscopy revealed that the phage possessed an icosahedral head of approximately 80 nm and a long tail about 110 m, indicating that it belongs to the Myoviridae family of the order Caudovirales. Biological characteristic analysis revealed that Phage_Pae01 could maintain stable activity in the temperature range of 4~ 60°C and pH range of 4 ~ 10. According to the in vitro lysis kinetics of the phage, Phage_Pae01 demonstrated strong antibacterial activity. The optimal multiplicity of infection was 0.01. The genome of Phage_Pae01 has a total length of 93,182 bp and contains 176 open reading frames (ORFs). The phage genome does not contain genes related to virulence or antibiotic resistance. In addition, Phage_Pae01 effectively prevented the formation of biofilms and eliminated established biofilms. When Phage_Pae01 was combined with gentamicin, it significantly disrupted established P. aeruginosa biofilms. Conclusion We identified a novel P. aeruginosa phage and demonstrated its effective antimicrobial properties against P. aeruginosa in both the floating and biofilm states. These findings offer a promising approach for the treatment of drug-resistant bacterial infections in clinical settings.
Collapse
Affiliation(s)
- Zhixin Shi
- Department of Laboratory Medicine, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
- National Key Clinical Department of Laboratory Medicine, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Xin Hong
- Department of Laboratory Medicine, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Zexuan Li
- Department of Laboratory Medicine, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Meijuan Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Jun Zhou
- Department of Laboratory Medicine, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Zhe Zhao
- College of Oceanography, Hohai University, Nanjing, China
| | - Shengfeng Qiu
- Department of Laboratory Medicine, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Genyan Liu
- Department of Laboratory Medicine, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
- National Key Clinical Department of Laboratory Medicine, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Liu B, Chang Z, Li Z, Liu R, Liu X. Prediction of key amino acids of Salmonella phage endolysin LysST-3 and detection of its mutants' activity. Arch Microbiol 2024; 206:151. [PMID: 38467842 DOI: 10.1007/s00203-024-03915-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Salmonella Typhimurium, a zoonotic pathogen, causes systemic and localized infection. The emergence of drug-resistant S. Typhimurium has increased; treating bacterial infections remains challenging. Phage endolysins derived from phages have a broader spectrum of bacteriolysis and better bacteriolytic activity than phages, and are less likely to induce drug resistance than antibiotics. LysST-3, the endolysin of Salmonella phage ST-3, was chosen in our study for its high lytic activity, broad cleavage spectrum, excellent bioactivity, and moderate safety profile. LysST-3 is a promising antimicrobial agent for inhibiting the development of drug resistance in Salmonella. The aim of this study is to investigate the molecular characteristics of LysST-3 through the prediction of key amino acid sites of LysST-3 and detection of its mutants' activity. We investigated its lytic effect on Salmonella and identified its key amino acid sites of interaction with substrate. LysST-3 may be a Ca2+, Mg2+ - dependent metalloenzyme. Its concave structure of the bottom "gripper" was found to be an important part of its amino acid active site. We identified its key sites (29P, 30T, 86D, 88 L, and 89 V) for substrate binding and activity using amino acid-targeted mutagenesis. Alterations in these sites did not affect protein secondary structure, but led to a significant reduction in the cleavage activity of the mutant proteins. Our study provides a basis for phage endolysin modification to target drug-resistant bacteria. Identifying the key amino acid site of the endolysin LysST-3 provides theoretical support for the functional modification of the endolysin and the development of subsequent effective therapeutic solutions.
Collapse
Affiliation(s)
- Bingxin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Academy IV, Yanqihu Campus, Beijing, 101314, China.
| | - Zhankun Chang
- College of Resources and Environment, University of Chinese Academy of Sciences, Academy IV, Yanqihu Campus, Beijing, 101314, China
| | - Zong Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Academy IV, Yanqihu Campus, Beijing, 101314, China
| | - Ruyin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Academy IV, Yanqihu Campus, Beijing, 101314, China
| | - Xinchun Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Academy IV, Yanqihu Campus, Beijing, 101314, China.
- Binzhou Institute of Technology, Building 9, Zhonghai Hotel, West of Huanghe 8th Road, Bincheng District, Binzhou, 256600, China.
| |
Collapse
|
4
|
Liu B, Li Z, Guo Q, Guo X, Liu R, Liu X. Integration of Lysin into Chitosan Nanoparticles for Improving Bacterial Biofilm Inhibition. Appl Biochem Biotechnol 2024; 196:1592-1611. [PMID: 37436548 DOI: 10.1007/s12010-023-04627-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2023] [Indexed: 07/13/2023]
Abstract
Bacterial biofilms (BBFs) exhibit high drug resistance, antiphagocytosis, and extremely strong adhesion, and therefore can cause various diseases. They are also one of the important causes of bacterial infections. Thus, the effective removal of BBFs has attracted considerable research interest. Endolysins, which are efficient antibacterial bioactive macromolecules, have recently been receiving increasing attention. In this study, we overcame the deficiencies of endolysins via immobilization on chitosan nanoparticles (CS-NPs) by preparing LysST-3-CS-NPs using the ionic cross-linking reaction between CS-NPs and LysST-3, an endolysin purified using phage ST-3 expression. The obtained LysST-3-CS-NPs were verified and thoroughly characterized, their antimicrobial activity was investigated using microscopy, and their antibacterial efficacy on polystyrene surfaces was studied. The results obtained suggested that LysST-3-CS-NPs exhibit enhanced bactericidal properties and increased stability and can serve as reliable biocontrol agents for the prevention and treatment of Salmonella biofilm infections.
Collapse
Affiliation(s)
- Bingxin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Zong Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Qiucui Guo
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxiao Guo
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Ruyin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
| | - Xinchun Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Lu M, Liu B, Xiong W, Liu X. The Combination of Salmonella Phage ST-3 and Antibiotics to Prevent Salmonella Typhimurium In Vitro. Curr Microbiol 2022; 79:371. [PMID: 36269452 DOI: 10.1007/s00284-022-03073-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 10/03/2022] [Indexed: 11/28/2022]
Abstract
The novel phage ST-3, capable of infecting the foodborne pathogen Salmonella Typhimurium, was isolated from wastewater. The Biological characters and genome information of ST-3 were analyzed. In the in vitro assay, the phage ST-3 with a MOI of 10 effectively inhibited the growth of Salmonella Typhimurium CGMCC 1.1174 in 6 h. The inhibitory effect of combination phage ST-3 and antibiotics was also studied, the removal rate of planktonic host exposed to ST-3 and levofloxacin hydrochloride at the same time, or to ciprofloxacin followed by ST-3, is higher than that exposed to antibiotic dosing group alone and antibiotic + phage dosing group. The phage ST-3 combined with 0.5 µg/mL levofloxacin hydrochloride resulted in the largest decrease in biofilm biomass at 54%. The phage ST-3 could be a potential agent to control Salmonella Typhimurium growth and provide instruction for use it and antibiotics together.
Collapse
Affiliation(s)
- Min Lu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Bingxin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Wenbin Xiong
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xinchun Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|