1
|
El Dougdoug NK, Attia MS, Malash MN, Abdel-Maksoud MA, Malik A, Kiani BH, Fesal AA, Rizk SH, El-Sayyad GS, Harb N. Aspergillus fumigatus-induced biogenic silver nanoparticles' efficacy as antimicrobial and antibiofilm agents with potential anticancer activity: An in vitro investigation. Microb Pathog 2025; 199:106950. [PMID: 39303958 DOI: 10.1016/j.micpath.2024.106950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/18/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
A worldwide hazard to human health is posed by the growth of pathogenic bacteria that have contaminated fresh, processed, cereal, and seed products in storage facilities. As the number of multidrug-resistant (MDR) pathogenic microorganisms rises, we must find safe, and effective antimicrobials. The use of green synthesis of nanoparticles to combat microbial pathogens has gained a rising interest. The current study showed that Aspergillus fumigatus was applied as a promising biomass for the green synthesis of biogenic silver nanoparticles (Ag NPs). The UV-visible spectra of biosynthesized Ag NPs appeared characteristic surface plasmon absorption at 475 nm, round-shaped with sizes ranging from 17.11 to 75.54 nm and an average size of 50.37 ± 2.3 nm. In vitro tests were conducted to evaluate the antibacterial, antioxidant, and anticancer effects of various treatment procedures for Ag NP applications. The synthesized Ag NPs was revealed antimicrobial activity against Aspergillus flauvas, A. niger, Bacillus cereus, Candida albicans, Esherichia coli, Pseudomonas aerugonosa, and Staphylococcus aureus under optimum conditions. The tested bacteria were sensitive to low Ag NPs concentrations (5, 10, 11, 8, 7, 10, and 7 mg/mL) which was observed for the mentioned-before tested microorganisms, respectively. The tested bacterial pathogens experienced their biofilm formation effectively suppressed by Ag NPs at sub-inhibitory doses. Antibacterial reaction mechanism of Ag NPs were tested using scanning electron microscopy (SEM) to verify their antibacterial efficacy towards S. aureus and P. aeruginosa. These findings clearly show how harmful Ag NPs are to pathogenic bacteria. The synthesized Ag NPs showed antitumor activity with IC50 at 5 μg/mL against human HepG-2 and MCF-7 cellular carcinoma cells, while 50 mg/mL was required to induce 70 % of normal Vero cell mortality. These findings imply that green synthetic Ag NPs can be used on cancer cell lines in vitro for anticancer effect beside their potential as a lethal factor against some tested pathogenic microbes.
Collapse
Affiliation(s)
- Noha K El Dougdoug
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Mohamed S Attia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| | - Mohamed N Malash
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Mostafa A Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Bushra H Kiani
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachuesetts, 01609, USA
| | - Abeer A Fesal
- Higher Institute for Agriculture, Shoubra El-Kheima, Cairo, Egypt
| | - Samar H Rizk
- Department of Biochemistry, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Gharieb S El-Sayyad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Galala City, Suez, Egypt; Drug Microbiology Lab., Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt; Medical Laboratory Technology Department, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC), Cairo, Egypt.
| | - Nashwa Harb
- Department of Biology and Microbiology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
2
|
de Souza AL, Oliveira AVDA, Ribeiro LD, Moraes ARFE, Jesus M, Santos J, de Oliveira TV, Soares NDFF. Experimental and Theoretical Analysis of Dopamine Polymerization on the Surface of Cellulose Nanocrystals and Its Reinforcing Properties in Cellulose Acetate Films. Polymers (Basel) 2025; 17:345. [PMID: 39940547 PMCID: PMC11821026 DOI: 10.3390/polym17030345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
The study of natural materials inspires sustainable innovations, with biomimetics excelling in surface modification. Polydopamine (PDA) offers a promising approach for modifying cellulose nanocrystals (CNC), enhancing their compatibility with hydrophobic polymers by improving interfacial adhesion. In this work, the modification of CNC with PDA (CNC@PDA) significantly enhanced the compatibility between the nanocargoes and the cellulose acetate (CA) matrix. The CNC@PDA complex formation was suggested through a combination of FTIR analysis, particle size distribution measurements and ζ-potential analysis. However, the exact mechanism behind dopamine polymerization on the surface of CNC remains a subject of ongoing debate among researchers due to its complexity. This study hypothesized the formation of modified CNC through this process. Furthermore, this study provided a satisfactory investigation of the antimicrobial activity of CNC@PDA in response to bacterial strains (E. coli, P. aeruginosa, S. aureus and L. plantarum) in view of the hypothesis of the possible generation of reactive oxygen species (ROS). Additionally, the incorporation of CNC@PDA CA films was analyzed to assess its effect as a mechanical reinforcement agent. The results showed an improvement in mechanical properties, with the 1% CNC@PDA film exhibiting the best balance between tensile strength and flexibility.
Collapse
Affiliation(s)
- Amanda Lélis de Souza
- Laboratory of Polymeric Materials, Food Technology Department, Federal University of Viçosa, Viçosa CEP 36570-000, Minas Gerais, Brazil; (A.L.d.S.); (T.V.d.O.)
| | - Arthur Vinicius de Abreu Oliveira
- Laboratory of Biochemical and Fermentative Processes, Food Technology Department, Federal University of Viçosa, Viçosa CEP 36570-000, Minas Gerais, Brazil;
| | - Laisse Dias Ribeiro
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina CEP 39100-000, Minas Gerais, Brazil;
| | - Allan Robledo Fialho e Moraes
- Institute of Agricultural Sciences, Federal University of Viçosa, Rio Paranaíba CEP 38810-000, Minas Gerais, Brazil;
| | - Meirielly Jesus
- CISAS-Center for Research and Development in Agrifood Systems and Sustainability, Polytechnic Institute of Viana do Castelo, Rua da Escola Industrial e Comercial Nun’Alvares 34, 4900-347 Viana do Castelo, Portugal;
| | - Joana Santos
- CISAS-Center for Research and Development in Agrifood Systems and Sustainability, Polytechnic Institute of Viana do Castelo, Rua da Escola Industrial e Comercial Nun’Alvares 34, 4900-347 Viana do Castelo, Portugal;
| | - Taila Veloso de Oliveira
- Laboratory of Polymeric Materials, Food Technology Department, Federal University of Viçosa, Viçosa CEP 36570-000, Minas Gerais, Brazil; (A.L.d.S.); (T.V.d.O.)
| | - Nilda de Fátima Ferreira Soares
- Laboratory of Polymeric Materials, Food Technology Department, Federal University of Viçosa, Viçosa CEP 36570-000, Minas Gerais, Brazil; (A.L.d.S.); (T.V.d.O.)
| |
Collapse
|
3
|
Matebese F, Mosai AK, Tutu H, Tshentu ZR. Mining wastewater treatment technologies and resource recovery techniques: A review. Heliyon 2024; 10:e24730. [PMID: 38317979 PMCID: PMC10839889 DOI: 10.1016/j.heliyon.2024.e24730] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/07/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
Mining wastewater can have adverse effects on the ecosystem; thus, treatment before discharging into the environment is of utmost importance. This manuscript reports on the effect of mining wastewater on the environment. Moreover, the currently used, effective and commercialised mine wastewater treatment technologies such as SAVMIN®, SPARRO®, Biogenic sulphide, and DESALX® are reported in this study. These technologies integrate two or more separation processes, which have been proven to be effective for the high recovery of salts and water for reuse. Some of the technologies reported can significantly recover salts and >95% of water. Modern pilot-stage and laboratory-scale treatment systems used for the recovery and removal of metals are also reported herein. Since some treatment technologies can generate highly toxic sludge and other waste products, the management of the generated waste was also considered. Some studies have focused on the treatment of wastewater at the laboratory level using the adsorption process. Most adsorbents exhibit promising results; however, there is insufficient research on reusability, toxic sludge management, and the economic analysis of the systems. Moreover, the implementation of adsorption systems in wastewater is necessary. Furthermore, the integration of treatment systems to recover precious metals at low concentrations is desirable in addition to water reclamation to achieve circular mine water.
Collapse
Affiliation(s)
- Funeka Matebese
- Department of Chemistry, Nelson Mandela University, P.O. Box 77000, Port Elizabeth (Gqeberha), 6031, South Africa
| | - Alseno K. Mosai
- Department of Chemistry, Faculty of Natural and Agricultural Science, University of Pretoria, Lynwood Road, Pretoria, WSZ0002, South Africa
| | - Hlanganani Tutu
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag X3, WITS, 2050, South Africa
| | - Zenixole R. Tshentu
- Department of Chemistry, Nelson Mandela University, P.O. Box 77000, Port Elizabeth (Gqeberha), 6031, South Africa
| |
Collapse
|
4
|
Moreno-Chamba B, Salazar-Bermeo J, Navarro-Simarro P, Narváez-Asensio M, Martínez-Madrid MC, Saura D, Martí N, Valero M. Autoinducers modulation as a potential anti-virulence target of bacteria by phenolic compounds. Int J Antimicrob Agents 2023; 62:106937. [PMID: 37517626 DOI: 10.1016/j.ijantimicag.2023.106937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/05/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023]
Abstract
OBJECTIVE The goal of this study was to determine the effects of phenolic extracts from grape (GrPE), pomegranate (PoPE), and persimmon (PePE) by-products on bacterial virulence activities such as biofilms, motility, energy-dependent efflux pumps, and β-lactamase activity, which are modulated primarily by quorum sensing (QS), defining their potential applications. METHOD The microdilution method was used to determine the minimum inhibitory concentration (MIC) and sub-inhibitory concentrations (SICs) of the extracts against reference pathogenic bacteria. The antibacterial mode of action was determined by labelling bacterial cells in in vivo cell-tracking experiments. RESULTS Antibiograms showed that PoPE inhibited bacteria at lower concentrations, and PePE had a stronger effect against Klebsiella pneumoniae. Both extracts caused significant cell membrane damage (CMD), whereas GrPE did not. At SICs, all extracts showed anti-QS activity, especially PePE, which inhibited violacein and pyocyanin production at 1/128 × MIC. Additionally, QS autoinducers found in Chromobacterium violaceum and Pseudomonas aeruginosa were modulated by the extracts; PePE showed the highest modulation. Antibiofilm assays revealed that GrPE, at MIC and 2 × MIC, acted as a potent antibiofilm agent against biofilms of Pseudomonas putida, Bacillus cereus, and Staphylococcus aureus, which was related to disruption of swarming motility by GrPE. All extracts, especially PoPE, exerted a potent effect against the activation of efflux pumps of P. aeruginosa as well as β-lactamase activity in K. pneumoniae. CONCLUSION Results suggest that the anti-virulence potential of the extracts may be related to their effect as extracellular autoinducer modulators. This study allowed to define potential applications of these extracts.
Collapse
Affiliation(s)
- Bryan Moreno-Chamba
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche (UMH), Alicante, Spain; Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Valencia, Spain
| | - Julio Salazar-Bermeo
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche (UMH), Alicante, Spain; Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Valencia, Spain
| | - Pablo Navarro-Simarro
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche (UMH), Alicante, Spain
| | - Marta Narváez-Asensio
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche (UMH), Alicante, Spain
| | - María Concepción Martínez-Madrid
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche (UMH), Alicante, Spain
| | - Domingo Saura
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche (UMH), Alicante, Spain
| | - Nuria Martí
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche (UMH), Alicante, Spain
| | - Manuel Valero
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche (UMH), Alicante, Spain.
| |
Collapse
|
5
|
Tharani M, Rajeshkumar S, Al-Ghanim KA, Nicoletti M, Sachivkina N, Govindarajan M. Terminalia chebula-Assisted Silver Nanoparticles: Biological Potential, Synthesis, Characterization, and Ecotoxicity. Biomedicines 2023; 11:biomedicines11051472. [PMID: 37239143 DOI: 10.3390/biomedicines11051472] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
In the current research, an aqueous extract of Terminalia chebula fruit was used to produce silver nanoparticles (Ag NPs) in a sustainable manner. UV-visible spectrophotometry, transmission electron microscopy (TEM), and scanning electron microscopy (SEM) were used to characterize the synthesized nanoparticles. Synthesized Ag NPs were detected since their greatest absorption peak was seen at 460 nm. The synthesized Ag NPs were spherical and had an average size of about 50 nm, with agglomerated structures, as shown via SEM and TEM analyses. The biological activities of the synthesized Ag NPs were evaluated in terms of their antibacterial and antioxidant properties, as well as protein leakage and time-kill kinetics assays. The results suggest that the green synthesized Ag NPs possess significant antibacterial and antioxidant activities, making them a promising candidate for therapeutic applications. Furthermore, the study also evaluated the potential toxicological effects of the Ag NPs using zebrafish embryos as a model organism. The findings indicate that the synthesized Ag NPs did not induce any significant toxic effects on zebrafish embryos, further supporting their potential as therapeutic agents. In conclusion, the environmentally friendly production of Ag NPs using the extract from T. chebula is a promising strategy for discovering novel therapeutic agents with prospective uses in biomedicine.
Collapse
Affiliation(s)
- Munusamy Tharani
- Nanobiomedicine Lab, Department of Pharmacology, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600 077, Tamil Nadu, India
| | - Shanmugam Rajeshkumar
- Nanobiomedicine Lab, Department of Pharmacology, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600 077, Tamil Nadu, India
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marcello Nicoletti
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
| | - Nadezhda Sachivkina
- Department of Microbiology V.S. Kiktenko, Institute of Medicine, Peoples Friendship University of Russia Named after Patrice Lumumba (RUDN University), Moscow 117198, Russia
| | - Marimuthu Govindarajan
- Unit of Mycology and Parasitology, Department of Zoology, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India
- Unit of Natural Products and Nanotechnology, Department of Zoology, Government College for Women (Autonomous), Kumbakonam 612 001, Tamil Nadu, India
| |
Collapse
|
6
|
Mostafa HY, El-Sayyad GS, Nada HG, Ellethy RA, Zaki EG. Promising antimicrobial and antibiofilm activities of Orobanche aegyptiaca extract-mediated bimetallic silver-selenium nanoparticles synthesis: Effect of UV-exposure, bacterial membrane leakage reaction mechanism, and kinetic study. Arch Biochem Biophys 2023; 736:109539. [PMID: 36746259 DOI: 10.1016/j.abb.2023.109539] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023]
Abstract
In this research, Orobanche aegyptiaca extract was utilized as an eco-friendly, and cost-effective green route for the construction of bimetallic silver-selenium nanoparticles (Ag-Se NPs). Bimetallic Ag-Se NPs were characterized by XRD, EDX, FTIR, HR-TEM, DLS, SEM/mapping and EDX studies. Antimicrobial, and antibiofilm potentials were tested against some selected pathogenic bacteria and unicellular fungi by ZOI, MIC, effect of UV exposure, and inhibition %. Reaction mechanism was assessed through membrane leakage assay and SEM imaging. HRTEM analysis confirmed the spherical nature and was ranged from 18.1 nm to 72.0 nm, and the avarage particle size is determined to be 30.58 nm. SEM imaging prove that bimetallic Ag-Se NPs presents as a bright particles, and both Ag and Se were distributed equally across O. aegyptiaca extract and Guar gum stabilizers. ZOI results showed that, bimetallic Ag-Se NPs have antimicrobial activity against S. aureus (20.0 nm), E. coli (18.5 nm), P. aeruginosa (12.6 nm), and C. albicans (18.2 nm). In addition, bimetallic Ag-Se NPs were able to inhibit the biofilm formation for S. aureus by 79.48%, for E. coli by 78.79%, for P. aeruginosa by 77.50%, and for C. albicans by 73.73%. Bimetallic Ag-Se NPs are an excellent disinfectant once it had excited by UV light. It was observed that the quantity of cellular protein discharged from S. aureus is directly proportional to the concentration of bimetallic Ag-Se NPs and found to be 244.21 μg/mL after the treatment with 1 mg/mL, which proves the antibacterial characteristics, and explains the creation of holes in the cell membrane of S. aureus producing in the oozing out of the proteins from the S. aureus cytoplasm. Based on the promising properties, they showed superior antimicrobial potential at low concentration (to avoid toxicity) and continued-phase durability, they may use in pharmaceutical and biomedical applications.
Collapse
Affiliation(s)
- Hamida Y Mostafa
- Refining Department, Egyptian Petroleum Research Institute (EPRI), Cairo, Egypt
| | - Gharieb S El-Sayyad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt; Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt; Chemical Engineering Department, Military Technical Collage (MTC), Egyptian Armed Forces, Cairo, Egypt.
| | - Hanady G Nada
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Rania A Ellethy
- Biochemistry Division, Chemistry Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, Egypt
| | - E G Zaki
- Petroleum Applications Department, Egyptian Petroleum Research Institute (EPRI), Cairo, Egypt
| |
Collapse
|
7
|
Cacaci M, Squitieri D, Palmieri V, Torelli R, Perini G, Campolo M, Di Vito M, Papi M, Posteraro B, Sanguinetti M, Bugli F. Curcumin-Functionalized Graphene Oxide Strongly Prevents Candida parapsilosis Adhesion and Biofilm Formation. Pharmaceuticals (Basel) 2023; 16:275. [PMID: 37259419 PMCID: PMC9967767 DOI: 10.3390/ph16020275] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 10/15/2023] Open
Abstract
Candida parapsilosis is the major non-C. albicans species involved in the colonization of central venous catheters, causing bloodstream infections. Biofilm formation on medical devices is considered one of the main causes of healthcare-associated infections and represents a global public health problem. In this context, the development of new nanomaterials that exhibit anti-adhesive and anti-biofilm properties for the coating of medical devices is crucial. In this work, we aimed to characterize the antimicrobial activity of two different coated-surfaces, graphene oxide (GO) and curcumin-graphene oxide (GO/CU) for the first time, against C. parapsilosis. We report the capacity of GO to bind and stabilize CU molecules, realizing a homogenous coated surface. We tested the anti-planktonic activity of GO and GO/CU by growth curve analysis and quantification of Reactive Oxigen Species( ROS) production. Then, we tested the antibiofilm activity by adhesion assay, crystal violet assay, and live and dead assay; moreover, the inhibition of the formation of a mature biofilm was investigated by a viability test and the use of specific dyes for the visualization of the cells and the extra-polymeric substances. Our data report that GO/CU has anti-planktonic, anti-adhesive, and anti-biofilm properties, showing a 72% cell viability reduction and a decrease of 85% in the secretion of extra-cellular substances (EPS) after 72 h of incubation. In conclusion, we show that the GO/CU conjugate is a promising material for the development of medical devices that are refractory to microbial colonization, thus leading to a decrease in the impact of biofilm-related infections.
Collapse
Affiliation(s)
- Margherita Cacaci
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Damiano Squitieri
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Valentina Palmieri
- Istituto dei Sistemi Complessi, Centro Nazionale Ricerche (CNR), 00185, Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario “A. Gemelli” IRCSS, 00168, Rome, Italy
| | - Riccardo Torelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giordano Perini
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Michela Campolo
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maura Di Vito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario “A. Gemelli” IRCSS, 00168, Rome, Italy
| | - Brunella Posteraro
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Francesca Bugli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
8
|
Carrapiço A, Martins MR, Caldeira AT, Mirão J, Dias L. Biosynthesis of Metal and Metal Oxide Nanoparticles Using Microbial Cultures: Mechanisms, Antimicrobial Activity and Applications to Cultural Heritage. Microorganisms 2023; 11:microorganisms11020378. [PMID: 36838343 PMCID: PMC9960935 DOI: 10.3390/microorganisms11020378] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Nanoparticles (1 to 100 nm) have unique physical and chemical properties, which makes them suitable for application in a vast range of scientific and technological fields. In particular, metal nanoparticle (MNPs) research has been showing promising antimicrobial activities, paving the way for new applications. However, despite some research into their antimicrobial potential, the antimicrobial mechanisms are still not well determined. Nanoparticles' biosynthesis, using plant extracts or microorganisms, has shown promising results as green alternatives to chemical synthesis; however, the knowledge regarding the mechanisms behind it is neither abundant nor consensual. In this review, findings from studies on the antimicrobial and biosynthesis mechanisms of MNPs were compiled and evidence-based mechanisms proposed. The first revealed the importance of enzymatic disturbance by internalized metal ions, while the second illustrated the role of reducing and negatively charged molecules. Additionally, the main results from recent studies (2018-2022) on the biosynthesis of MNPs using microorganisms were summarized and analyzed, evidencing a prevalence of research on silver nanoparticles synthesized using bacteria aiming toward testing their antimicrobial potential. Finally, a synopsis of studies on MNPs applied to cultural heritage materials showed potential for their future use in preservation.
Collapse
Affiliation(s)
- António Carrapiço
- HERCULES Laboratory, Cultural Heritage, Studies and Safeguard, University of Évora, 7000-809 Évora, Portugal
- Institute for Research and Advanced Training (IIFA), University of Évora, 7000-809 Évora, Portugal
| | - Maria Rosário Martins
- HERCULES Laboratory, Cultural Heritage, Studies and Safeguard, University of Évora, 7000-809 Évora, Portugal
- Department of Medicinal Sciences and Health, School of Health and Human Development, University of Évora, 7000-671 Évora, Portugal
| | - Ana Teresa Caldeira
- HERCULES Laboratory, Cultural Heritage, Studies and Safeguard, University of Évora, 7000-809 Évora, Portugal
- Department of Chemistry and Biochemistry, School of Sciences and Technology, University of Évora, 7000-671 Évora, Portugal
| | - José Mirão
- HERCULES Laboratory, Cultural Heritage, Studies and Safeguard, University of Évora, 7000-809 Évora, Portugal
- Department of Geosciences, School of Sciences and Technology, University of Évora, 7000-671 Évora, Portugal
| | - Luís Dias
- HERCULES Laboratory, Cultural Heritage, Studies and Safeguard, University of Évora, 7000-809 Évora, Portugal
- Department of Geosciences, School of Sciences and Technology, University of Évora, 7000-671 Évora, Portugal
- Correspondence:
| |
Collapse
|
9
|
Elfadil D, Elkhatib WF, El-Sayyad GS. Promising advances in nanobiotic-based formulations for drug specific targeting against multidrug-resistant microbes and biofilm-associated infections. Microb Pathog 2022; 170:105721. [PMID: 35970290 DOI: 10.1016/j.micpath.2022.105721] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
Antimicrobial agents and alternative strategies to combat bacterial infections have become urgent due to the rapid development of multidrug-resistant bacteria caused by the misuse and overuse of antibiotics, as well as the ineffectiveness of antibiotics against difficult-to-treat infectious diseases. Nanobiotics is one of the strategies being explored to counter the increase in antibiotic-resistant bacteria. Nanobiotics are antibiotic molecules encapsulated in nanoparticles or artificially engineered pure antibiotics that are ≤ 100 nm in size in at least one dimension. Formulation scientists recognize nanobiotic delivery systems as an effective strategy to overcome the limitations associated with conventional antibiotic therapy. This review highlights the general mechanisms by which nanobiotics can be used to target resistant microbes and biofilm-associated infections. We focus on the design elements, properties, characterization, and toxicity assessment of organic nanoparticles, inorganic nanoparticle and molecularly imprinted polymer-based nano-formulations that can be designed to improve the efficacy of nanobiotic formulation.
Collapse
Affiliation(s)
- Dounia Elfadil
- Biology and Chemistry Department, Hassan II University of Casablanca, Morocco
| | - Walid F Elkhatib
- Microbiology and Immunology Department, Ain Shams University, African Union Organization St., Abbassia, Cairo, 11566, Egypt; Department of Microbiology and Immunology, Galala University, New Galala City, Suez, Egypt.
| | - Gharieb S El-Sayyad
- Department of Microbiology and Immunology, Galala University, New Galala City, Suez, Egypt; Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| |
Collapse
|