1
|
Gao Y, Wang K, Lin Z, Cai S, Peng A, He L, Qi H, Jin Z, Qian X. The emerging roles of microbiome and short-chain fatty acids in the pathogenesis of bronchopulmonary dysplasia. Front Cell Infect Microbiol 2024; 14:1434687. [PMID: 39372498 PMCID: PMC11449852 DOI: 10.3389/fcimb.2024.1434687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/28/2024] [Indexed: 10/08/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease that affects premature infants and leads to long-term pulmonary complications. The pathogenesis of BPD has not been fully elucidated yet. In recent years, the microbiome and its metabolites, especially short-chain fatty acids (SCFAs), in the gut and lungs have been demonstrated to be involved in the development and progression of the disease. This review aims to summarize the current knowledge on the potential involvement of the microbiome and SCFAs, especially the latter, in the development and progression of BPD. First, we introduce the gut-lung axis, the production and functions of SCFAs, and the role of SCFAs in lung health and diseases. We then discuss the evidence supporting the involvement of the microbiome and SCFAs in BPD. Finally, we elaborate on the potential mechanisms of the microbiome and SCFAs in BPD, including immune modulation, epigenetic regulation, enhancement of barrier function, and modulation of surfactant production and the gut microbiome. This review could advance our understanding of the microbiome and SCFAs in the pathogenesis of BPD, which also helps identify new therapeutic targets and facilitate new drug development.
Collapse
Affiliation(s)
- Yuan Gao
- Neonatal Intensive Care Unit (NICU), Jinhua Maternal and Child Health Care Hospital, Jinhua, China
| | - Kaixuan Wang
- Department of Pediatrics, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Zupan Lin
- Neonatal Intensive Care Unit (NICU), Jinhua Maternal and Child Health Care Hospital, Jinhua, China
| | - Shujing Cai
- Neonatal Intensive Care Unit (NICU), Jinhua Maternal and Child Health Care Hospital, Jinhua, China
| | - Aohui Peng
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Le He
- Department of Pediatrics, Jinhua Hospital of TCM Affiliated to Zhejiang University of Traditional Chinese Medicine, Jinhua, China
| | - Hui Qi
- China National Clinical Research Center of Respiratory Diseases, Respiratory Department, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Zhigang Jin
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Xubo Qian
- Department of Pediatrics, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
- Department of Pediatrics, Jinhua Hospital of TCM Affiliated to Zhejiang University of Traditional Chinese Medicine, Jinhua, China
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
2
|
Liu C, Lu J, Xiao R, Li Y, Hu J, Chen C, Wang X, Zhang J, Tian Y, Lu F. Alterations and associations between lung microbiota and metabolite profiles in silica-induced lung injury. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116711. [PMID: 39002383 DOI: 10.1016/j.ecoenv.2024.116711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/30/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Silicosis, caused by silica exposure, is the most widespread and deadliest occupational disease. However, effective treatments are lacking. Therefore, it is crucial to elucidate the mechanisms and targets involved in the development of silicosis. We investigated the basic processes of silicosis development and onset at different exposure durations (2 or 4 weeks) using various techniques such as histopathology, immunohistochemistry, Enzyme linked immunosorbent assay(ELISA),16 S rRNA, and untargeted metabolomics.These results indicate that exposure to silica leads to progressive damage to lung tissue with significant deterioration observed over time. Time-dependent cytokines such as the IL-4, IL-13, and IL-6 are detected in lung lavage fluid, the model group consistently exhibited elevated levels of these cytokines, indicating a persistent and worsening inflammatory response in the lungs. Meanwhile, HE and Masson results show that 4-week exposure to silica causes more obvious lung injury and pulmonary fibrosis. Besides, the model group consistently exhibited a distinct lung bacterial population, known as the Lachnospiraceae_NK4A136_group, regardless of exposure duration. However, with increasing exposure duration, specific temporal changes were observed in lung bacterial populations, including Haliangium, Allobaculum, and Sandaracinus (at 4 weeks; p < 0.05). Furthermore, our study revealed a strong correlation between the mechanism of silica-induced lung injury and three factors: oxidative stress, impaired lipid metabolism, and imbalanced amino acid metabolism. We observed a close correlation between cytokine levels, changes in lung microbiota, and metabolic disturbances during various exposure periods. These findings propose that a possible mechanism of silica-induced lung injury involves the interplay of cytokines, lung microbiota, and metabolites.
Collapse
Affiliation(s)
- Chang Liu
- Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; College of integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jun Lu
- Medical School, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Rong Xiao
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Changsha 410006, China
| | - Yingqiu Li
- Medical School, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jue Hu
- Medical School, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Chunjing Chen
- Medical School, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xiaoqi Wang
- Medical School, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jiaxiang Zhang
- Medical School, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yue Tian
- Medical School, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Fangguo Lu
- Medical School, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
3
|
van der Bie S, Haaksma ME, Vermin B, van Assema H, van Gorp ECM, Langerak T, Endeman H, Snijders D, van den Akker JPC, van Houten MA, van Lelyveld SFL, Goeijenbier M. A Systematic Review of the Pulmonary Microbiome in Patients with Acute Exacerbation COPD Requiring ICU Admission. J Clin Med 2024; 13:472. [PMID: 38256606 PMCID: PMC10816170 DOI: 10.3390/jcm13020472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/03/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Background: Chronic obstructive pulmonary disease (COPD) is a major health concern. Acute exacerbations (AECOPD) may require intensive care unit (ICU) admission and mechanical ventilation. Acute infections and chronic colonization of the respiratory system are known to precipitate AECOPD. Detailed knowledge of the respiratory microbiome could lead to effective treatment and prevention of exacerbations. Objective: The aim of this review is to summarize the available evidence on the respiratory microbiome of patients with a severe AECOPD requiring mechanical ventilation and intensive care admission. Methods: A systematic literature search was conducted to identify the published papers until January 2023. The collected data were then subjected to qualitative analysis. After the first analysis, a secondary focused review of the most recent publications studying the relationship between microbiome and mortality in AECOPD was performed. Results: Out of 120 screened articles six articles were included in this review. Potentially pathogenic microorganisms (PPMs) were identified in 30% to 72% of the patients with community-acquired bacteria, gram-negative enteric bacilli, Stenotrophomonas and Pseudomonas being the most frequently isolated. During hospitalization, 21% of patients experienced colonization by PPMs. Adequate antimicrobial therapy resulted in the eradication of 77% of the identified PPMs. However, 24% of the bacteria displayed multi-drug resistance leading to prolonged or failure of eradication. Conclusion: PPMs are prevalent in a significant proportion of patients experiencing an AECOPD. The most identified PPMs include community-acquired pathogens and gram-negative enteric bacilli. Notably, no differences in mortality or duration of ventilation were observed between patients with and without isolated PPMs. However, the included studies did not investigate the virome of the patients, which may influence the microbiome and the outcome of infection. Therefore, further research is essential to comprehensively investigate the complete microbial and viral composition of the lower respiratory system in COPD patients admitted to the ICU.
Collapse
Affiliation(s)
- Sjoerd van der Bie
- Department of Intensive Care Medicine, Spaarne Gasthuis Hoofddorp, 2134 TM Hoofddorp, The Netherlands; (S.v.d.B.); (M.E.H.); (B.V.); (H.v.A.)
| | - Mark E. Haaksma
- Department of Intensive Care Medicine, Spaarne Gasthuis Hoofddorp, 2134 TM Hoofddorp, The Netherlands; (S.v.d.B.); (M.E.H.); (B.V.); (H.v.A.)
| | - Ben Vermin
- Department of Intensive Care Medicine, Spaarne Gasthuis Hoofddorp, 2134 TM Hoofddorp, The Netherlands; (S.v.d.B.); (M.E.H.); (B.V.); (H.v.A.)
| | - Hidde van Assema
- Department of Intensive Care Medicine, Spaarne Gasthuis Hoofddorp, 2134 TM Hoofddorp, The Netherlands; (S.v.d.B.); (M.E.H.); (B.V.); (H.v.A.)
| | - Eric C. M. van Gorp
- Department of Viroscience, Erasmus MC, 3000 CA Rotterdam, The Netherlands; (E.C.M.v.G.); (T.L.)
| | - Thomas Langerak
- Department of Viroscience, Erasmus MC, 3000 CA Rotterdam, The Netherlands; (E.C.M.v.G.); (T.L.)
| | - Henrik Endeman
- Department of Intensive Care Medicine, Erasmus MC, 3000 CA Rotterdam, The Netherlands; (H.E.); (J.P.C.v.d.A.)
| | - Dominic Snijders
- Department of Pulmonology, Spaarne Gasthuis Hoofddorp, 2134 TM Hoofddorp, The Netherlands;
| | | | - Marlies A. van Houten
- Department of Pediatric Medicine, Spaarne Gasthuis Hoofddorp, 2134 TM Hoofddorp, The Netherlands;
| | | | - Marco Goeijenbier
- Department of Intensive Care Medicine, Spaarne Gasthuis Hoofddorp, 2134 TM Hoofddorp, The Netherlands; (S.v.d.B.); (M.E.H.); (B.V.); (H.v.A.)
- Department of Viroscience, Erasmus MC, 3000 CA Rotterdam, The Netherlands; (E.C.M.v.G.); (T.L.)
- Department of Intensive Care Medicine, Erasmus MC, 3000 CA Rotterdam, The Netherlands; (H.E.); (J.P.C.v.d.A.)
| |
Collapse
|
4
|
Song X, Dou X, Chang J, Zeng X, Xu Q, Xu C. The role and mechanism of gut-lung axis mediated bidirectional communication in the occurrence and development of chronic obstructive pulmonary disease. Gut Microbes 2024; 16:2414805. [PMID: 39446051 PMCID: PMC11509012 DOI: 10.1080/19490976.2024.2414805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/21/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
The current studies have shown that the occurrence and development of chronic obstructive pulmonary disease (COPD) are closely related to the changes in gut health and its microenvironment, and even some gut diseases have significant clinical correlation with COPD. The dysbiosis of gut microbiota observed in COPD patients also suggests a potential bidirectional interaction between the gut and lung. Communication between the gut and lung may occur through circulating inflammatory cells, gut microbial metabolites, and circulating inflammatory mediators, but the mechanism of bidirectional communication between the gut and lung in COPD is still under study. Therefore, more research is still needed in this area. In this review, we summarize recent clinical studies and animal models on the role of the gut-lung axis in the occurrence and development of COPD and its mechanisms, so as to provide ideas for further research in this field. In addition, we also summarized the negative effects of COPD medication on gut microbiota and the gut microbiota risk factors for COPD and proposed the potential prevention and treatment strategies.
Collapse
Affiliation(s)
- Xiaofan Song
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Xina Dou
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Jiajing Chang
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Xiaonan Zeng
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Qinhong Xu
- Department of Geriatric Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Chunlan Xu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| |
Collapse
|