1
|
Yao Z, Yu K, Qian C, Zhou B, Lin Y, Zhang X, Zhang Y, Zhou T, Zeng W, Cao J, Sun Y. Gallium nitrate inhibits multidrug-resistant Acinetobacter baumannii isolated from bloodstream infection by disrupting multiple iron-dependent metabolic processes. BMC Microbiol 2025; 25:216. [PMID: 40229649 PMCID: PMC11995626 DOI: 10.1186/s12866-025-03950-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 04/04/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Acinetobacter baumannii is a major pathogen in hospitals, causing a notable rise in bloodstream infections among inpatients. Its growing resistance to multiple drugs limits treatment options. This study aims to examine the antibacterial effects of gallium nitrate [Ga(NO3)3] against A. baumannii and elucidate the underlying molecular mechanism. METHODS 40 strains of A. baumannii with different antimicrobials susceptibility patterns were isolated from bloodstream infections. The in vitro antibacterial activity of Ga(NO3)3 was analyzed by micro-dilution method and time-kill assay. The influence of ferric chloride/hemin on the antibacterial efficacy of Ga(NO3)3 was investigated. Transcriptome sequencing was performed to elucidate the antibacterial mechanism of Ga(NO3)3. A mouse infection model was conducted to assess its in vivo performance. RESULTS Ga(NO3)3 exhibited a potent antibacterial effect in RPMI 1640 medium containing 10% human serum, with MICs ranging from 0.06 μg/mL to 0.125 μg/mL. The antibacterial activity of Ga(NO3)3 was found to be dose- and time- dependent. However, the antibacterial effect of Ga(NO3)3 was partially compromised in the presence of exogenous ferric chloride/hemin. Transcriptomics analysis revealed that Ga(NO3)3 exerted its antibacterial effect by up-regulating the expression of genes associated with siderophore biosynthesis and transport, while simultaneously disrupting multiple iron-dependent metabolic processes. Ga(NO3)3 treatment significantly reduced bacterial load in vivo using a neutropenic mouse thigh infection model. CONCLUSION This study sheds light on the antibacterial mechanisms of Ga(NO3)3 against A. baumannii, suggesting its potential as a promising antibacterial drug for treating bloodstream infections caused by multidrug-resistant A. baumannii.
Collapse
Affiliation(s)
- Zhuocheng Yao
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Kaihang Yu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- Department of Pathology, the Second Affiliated Hospital, School of Medical, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Changrui Qian
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Beibei Zhou
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Yishuai Lin
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Xiaodong Zhang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Ying Zhang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Tieli Zhou
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Weiliang Zeng
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Jianming Cao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
| | - Yao Sun
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
| |
Collapse
|
2
|
Chen Z, Mao Y, Song Y, Dou M, Shang K, Yu Z, Ding K, Chen S. Refined egoist: The toxin-antitoxin immune system of T6SS. Microb Pathog 2024; 196:106991. [PMID: 39369755 DOI: 10.1016/j.micpath.2024.106991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
The Type VI secretory system (T6SS) is a key regulatory network in the bacterial system, which plays an important role in host-pathogen interactions and maintains cell homeostasis by regulating the release of effector proteins in specific competition. T6SS causes cell lysis or competitive inhibition by delivering effector molecules, such as toxic proteins and nucleic acids, directly from donor bacterial cells to eukaryotic or prokaryotic targets. Additionally, it orchestrates synthesis of immune effectors that counteract toxins thus preventing self-intoxication or antagonistic actions by competing microbes. Even so, the mechanism of toxin-antitoxin regulation in bacteria remains unclear. In response, this review discusses the bacterial T6SS's structure and function and the mechanism behind toxin-antitoxin secretion and the T6SS's expression in order to guide the further exploration of the pathogenic mechanism of the T6SS and the development of novel preparations for reducing and replacing toxins and antitoxins.
Collapse
Affiliation(s)
- Ziduo Chen
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yikai Mao
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yinzhou Song
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China
| | - Mengxuan Dou
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China
| | - Ke Shang
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China
| | - Zuhua Yu
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China
| | - Ke Ding
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Songbiao Chen
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China.
| |
Collapse
|
3
|
Yao L, Liu N, Guo Y, Zhuo C, Yang X, Wang Y, Wang J, Li F, Li J, He N, Chen J, Lin Y, Xiao S, Zhuo C. Comparison of Hypervirulent and Non-Hypervirulent Carbapenem-Resistant Acinetobacter baumannii Isolated from Bloodstream Infections: Mortality, Potential Virulence Factors, and Combination Therapy In Vitro. Antibiotics (Basel) 2024; 13:807. [PMID: 39334982 PMCID: PMC11428969 DOI: 10.3390/antibiotics13090807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/28/2024] [Accepted: 08/13/2024] [Indexed: 09/30/2024] Open
Abstract
Hypervirulent carbapenem-resistant Acinetobacter baumannii (hv-CRAB) has emerged in bloodstream infections (BSI). Cases of BSI caused by hv-CRAB (hv-CRAB-BSI) had posed a significant threat to hospitalized patients. In this study, 31 CRAB strains isolated from Chinese BSI patients were analyzed, of which 24 were identified as hv-CRAB-BSI and 7 as non-hv-CRAB-BSI, using the Galleria mellonella infection model. Patients with hv-CRAB-BSI had higher rates of septic shock (79.2% vs. 14.3%, p = 0.004) and mortality (66.7% vs. 14.3%, p = 0.028). All strains were resistant to most antibiotics but sensitive to colistin. Hv-CRAB-BSI showed lower resistance to minocycline than non-hv-CRAB-BSI (54.2% vs. 100%, p = 0.03). Whole-genome sequencing revealed that the detection rates of immune modulation genes ptk and epsA in hv-CRAB-BSI were significantly higher than in non-hv-CRAB-BSI (91.7% vs. 28.6%, p = 0.002). Additionally, all ST457 hv-CRAB-BSI lacked abaR, and all ST1486 non-hv-CRAB-BSI lacked adeG. The checkerboard dilution method assessed the efficacies of various antibiotic combinations, revealing that although synergism was rarely observed, the combination of colistin and minocycline showed the best efficacy for treating CRAB-BSI, regardless of whether the infections were hv-CRAB-BSI or non-hv-CRAB-BSI. These findings highlight the importance of analyzing molecular characteristics and exploring effective treatment strategies for hv-CRAB-BSI.
Collapse
Affiliation(s)
- Likang Yao
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Ningjing Liu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Yingyi Guo
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Chuyue Zhuo
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Xu Yang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Yijing Wang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Jiong Wang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Feifeng Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Jiahui Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Nanhao He
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Jiakang Chen
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Yexin Lin
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Shunian Xiao
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Chao Zhuo
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| |
Collapse
|
4
|
Barati H, Fekrirad Z, Jalali Nadoushan M, Rasooli I. Anti-OmpA antibodies as potential inhibitors of Acinetobacter baumannii biofilm formation, adherence to, and proliferation in A549 human alveolar epithelial cells. Microb Pathog 2024; 186:106473. [PMID: 38048840 DOI: 10.1016/j.micpath.2023.106473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Outer membrane protein A (OmpA) is a critical virulence factor in Acinetobacter baumannii, influencing adhesion, biofilm formation, host immune response, and host cell apoptosis. We investigated the invasion of A549 alveolar epithelial cells by A. baumannii and examined how anti-OmpA antibodies impact these interactions. OmpA was expressed and purified, inducing anti-OmpA antibodies in BALB/c mice. The potential toxicity of OmpA was evaluated in mice by analyzing histology from six organs. A549 cells were exposed to A. baumannii strains 19606 and a clinical isolate. Using cell culture and light microscopy, we scrutinized the effects of anti-OmpA sera on serum resistance, adherence, internalization, and proliferation of A. baumannii in A549 cells. The viability of A549 cells was assessed upon exposure to live A. baumannii and anti-OmpA sera. OmpA-induced antibody demonstrated potent bactericidal effects on both strains of A. baumannii. Both strains formed biofilms, which were reduced by anti-OmpA serum, along with decreased bacterial adherence, internalization, and proliferation in A549 cells. Anti-OmpA serum improved the survival of A549 cells post-infection. Pre-treatment with cytochalasin D hindered bacterial internalization, highlighting the role of actin polymerization in invasion. Microscopic examination revealed varied interactions encompassing adherence, apoptosis, membrane alterations, vacuolization, and damage. A549 cells treated with anti-OmpA serum exhibited improved structures and reduced damage. The findings indicate that A. baumannii can adhere to and proliferate within epithelial cells with OmpA playing a pivotal role in these interactions, and the complex nature of these interactions shapes the intricate course of A. baumannii infection in host cells.
Collapse
Affiliation(s)
| | | | - Mohammadreza Jalali Nadoushan
- Department of Pathology, School of Medicine, Shahed University, Tehran, Iran; Molecular Microbiology Research Center and Department of Biology, Shahed University, Tehran, Iran.
| | - Iraj Rasooli
- Department of Biology, Shahed University, Tehran, Iran; Molecular Microbiology Research Center and Department of Biology, Shahed University, Tehran, Iran.
| |
Collapse
|