1
|
Abo-Al-Ela HG, Mahdi S, Angthong P, Rungrassamee W. Probiotic modulation of key immune macromolecules in shrimp. Microb Pathog 2025; 203:107463. [PMID: 40081678 DOI: 10.1016/j.micpath.2025.107463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/30/2024] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
The rapid expansion of shrimp aquaculture has been accompanied by significant disease challenges, driving the need for innovative prevention strategies. Probiotics, which are live microorganisms that confer health benefits to the host, have shown promise in controlling diseases in aquatic environments. Shrimp rely on their innate immune system, including physical barriers, and cellular and humoral defenses, for protection against pathogens. Physical barriers include the exoskeleton and the digestive tract, while cellular defenses involve hemocytes that engage in encapsulation, phagocytosis, and nodulation. Humoral defenses include the prophenoloxidase (proPO) system, lectins, agglutinins, and antimicrobial peptides (AMPs). Recent studies suggest that shrimp innate immunity can exhibit immunological memory, primarily through the actions of phagocytic cells. This review explores the use of probiotics in shrimp aquaculture, with a focus on their interaction with the shrimp immune system and their potential role in probiotic selection, either through environmental adaptation or as feed additives. Probiotics that enhance shrimp immunity by boosting phagocytosis, modulating the proPO system, and interacting with key signaling pathways such as Toll, IMD, and JAK/STAT offer a promising means of improving disease resistance. Probiotics play a critical role in modulating the infection process, influencing pathogen virulence factors, and shaping host-pathogen interactions. Further research into emerging immune pathways in shrimp could deepen our understanding of crustacean immunity and its applications in aquaculture.
Collapse
Affiliation(s)
- Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez, 43221, Egypt.
| | - Shaimaa Mahdi
- Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez 43221, Egypt
| | - Pacharaporn Angthong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Wanilada Rungrassamee
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| |
Collapse
|
2
|
Shi F, Zheng X, Liang P, Guo W. Enhancing the quality of mango juices through Lacticaseibacillus paracasei fermentation: unveiling aroma and taste characteristics. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40116166 DOI: 10.1002/jsfa.14236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/19/2025] [Accepted: 03/09/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND Lacticaseibacillus paracasei, widely recognized for its safety, is frequently used as a starter culture in fermented foods. In the present study, the differences in the physicochemical properties, antioxidant activities, volatile compounds and non-volatile compounds of mango juice fermented with L. paracasei FJG2339 were evaluated. RESULTS The results displayed that L. paracasei FJG2339 significantly reduced the total sugar content of mango juice, but slightly increased the contents of polyphenols and flavonoids. Meanwhile, the ABTS [i.e. 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)], DPPH (i.e. 2,2-diphenyl-1-picrylhydrazyl) and OH radical scavenging abilities of mango juice were increased by 28%, 29% and 48%, respectively, after L. paracasei FJG2339 fermentation. Flavor profiles analysis suggested that L. paracasei FJG2339 facilitated the production of acids, alcohols and esters in mango juice, which endow it with a distinct aroma. Untargeted metabolomics analysis displayed that L. paracasei FJG2339 fermentation significantly shifted 207 non-volatile compounds (containing 123 up-regulated non-volatile substances and 84 down-regulated non-volatile substances) of mango juice, which are mainly involved in animo acid metabolism (such as alanine, aspartate and glutamate metabolism, tyrosine metabolism, tryptophan metabolism, phenylalanine metabolism, phenylalanine, and tyrosine and tryptophan biosynthesis). CONCLUSION These results indicate that L. paracasei FJG2339 fermentation enhances the physicochemical properties, antioxidant capacity and metabolic profiles of mango juices. This study has important implications for the application of fermentation technology of fruit juices. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Feifei Shi
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinhong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Peng Liang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Weiling Guo
- College of Biological Science and Technology, Fuzhou University, Fuzhou, China
| |
Collapse
|
3
|
Dong H, Ren X, Song Y, Zhang J, Zhuang H, Peng C, Zhao J, Shen J, Yang J, Zang J, Li D, Gupta TB, Guo D, Li Z. Assessment of Multifunctional Activity of a Postbiotic Preparation Derived from Lacticaseibacillus paracasei Postbiotic-P6. Foods 2024; 13:2326. [PMID: 39123515 PMCID: PMC11312004 DOI: 10.3390/foods13152326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
Postbiotics possess various functional activities, closely linked to their source bacterial strains and preparation methods. Therefore, the functional activities of postbiotics need to be evaluated through in vitro and in vivo methods. This study aims to prepare a postbiotic and explore its antihemolytic, anti-inflammatory, antioxidant, and antibacterial activities. Specifically, a postbiotic preparation named PostbioP-6 was prepared by intercepting 1-5 kDa of Lacticaseibacillus paracasei Postbiotic-P6 fermentation broth. The results demonstrate that PostbioP-6 exhibited notable biological activities across multiple assays. It showed significant antihemolytic activity, with a 4.9-48.1% inhibition rate at 10-50% concentrations. Anti-inflammatory effects were observed both in vitro, where 8-40% PostbioP-6 was comparable to 259.1-645.4 μg/mL diclofenac sodium, and in vivo, where 3.5 and 4.0 μL/mL PostbioP-6 significantly reduced neutrophil counts in inflamed zebrafish (p < 0.05). Antioxidant properties were evident through increased reducing power (OD700 increased from 0.279 to 2.322 at 1.25-12.5% concentrations), DPPH radical scavenging activity (38.9-92.4% scavenging rate at 2.5-50% concentrations), and hydroxyl radical scavenging activity (4.66-10.38% scavenging rate at 0.5-4% concentrations). Additionally, PostbioP-6 demonstrated antimicrobial activity against two Gram-positive bacteria, eight Gram-negative bacteria, and one fungus. Furthermore, PostbioP-6 significantly inhibited the increase in peroxide value and malondialdehyde content in cookies, highlighting its potential application in food preservation. In conclusion, we prepared a novel postbiotic, termed PostbioP-6, which proved to have prominent anti-hemolytic, anti-inflammatory, antioxidant, and broad-spectrum antimicrobial activities. The multifunctional properties of PostbioP-6 position it as a potentially effective functional food supplement or preservative. In the future, further research is necessary to elucidate the precise mechanisms of action, identify the active components, and validate its biological activities in animal models or clinical trials.
Collapse
Affiliation(s)
- Hui Dong
- School of Food Science and Engineering, Qingdao Agriculture University, Qingdao 266000, China; (H.D.); (X.R.); (Y.S.); (J.Z.); (H.Z.); (C.P.); (J.Z.); (J.Z.)
- Special Food Research Institute, Qingdao Agricultural University, Qingdao 266000, China
| | - Xianpu Ren
- School of Food Science and Engineering, Qingdao Agriculture University, Qingdao 266000, China; (H.D.); (X.R.); (Y.S.); (J.Z.); (H.Z.); (C.P.); (J.Z.); (J.Z.)
| | - Yaxin Song
- School of Food Science and Engineering, Qingdao Agriculture University, Qingdao 266000, China; (H.D.); (X.R.); (Y.S.); (J.Z.); (H.Z.); (C.P.); (J.Z.); (J.Z.)
| | - Jingwen Zhang
- School of Food Science and Engineering, Qingdao Agriculture University, Qingdao 266000, China; (H.D.); (X.R.); (Y.S.); (J.Z.); (H.Z.); (C.P.); (J.Z.); (J.Z.)
- Special Food Research Institute, Qingdao Agricultural University, Qingdao 266000, China
| | - Haonan Zhuang
- School of Food Science and Engineering, Qingdao Agriculture University, Qingdao 266000, China; (H.D.); (X.R.); (Y.S.); (J.Z.); (H.Z.); (C.P.); (J.Z.); (J.Z.)
| | - Chuantao Peng
- School of Food Science and Engineering, Qingdao Agriculture University, Qingdao 266000, China; (H.D.); (X.R.); (Y.S.); (J.Z.); (H.Z.); (C.P.); (J.Z.); (J.Z.)
- Special Food Research Institute, Qingdao Agricultural University, Qingdao 266000, China
| | - Jinshan Zhao
- School of Food Science and Engineering, Qingdao Agriculture University, Qingdao 266000, China; (H.D.); (X.R.); (Y.S.); (J.Z.); (H.Z.); (C.P.); (J.Z.); (J.Z.)
- Special Food Research Institute, Qingdao Agricultural University, Qingdao 266000, China
| | - Jinling Shen
- Technology Center for Animal Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 200000, China; (J.S.); (J.Y.); (D.G.)
| | - Jielin Yang
- Technology Center for Animal Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 200000, China; (J.S.); (J.Y.); (D.G.)
| | - Jinhong Zang
- School of Food Science and Engineering, Qingdao Agriculture University, Qingdao 266000, China; (H.D.); (X.R.); (Y.S.); (J.Z.); (H.Z.); (C.P.); (J.Z.); (J.Z.)
- Special Food Research Institute, Qingdao Agricultural University, Qingdao 266000, China
| | - Day Li
- Food System Integrity Team, Hopkirk Research Institute, AgResearch, Palmerston North 4474, New Zealand; (D.L.); (T.B.G.)
| | - Tanushree B. Gupta
- Food System Integrity Team, Hopkirk Research Institute, AgResearch, Palmerston North 4474, New Zealand; (D.L.); (T.B.G.)
| | - Dehua Guo
- Technology Center for Animal Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 200000, China; (J.S.); (J.Y.); (D.G.)
| | - Zhaojie Li
- School of Food Science and Engineering, Qingdao Agriculture University, Qingdao 266000, China; (H.D.); (X.R.); (Y.S.); (J.Z.); (H.Z.); (C.P.); (J.Z.); (J.Z.)
- Special Food Research Institute, Qingdao Agricultural University, Qingdao 266000, China
| |
Collapse
|
4
|
Contente D, Díaz-Formoso L, Feito J, Gómez-Sala B, Costas D, Hernández PE, Muñoz-Atienza E, Borrero J, Poeta P, Cintas LM. Antimicrobial Activity, Genetic Relatedness, and Safety Assessment of Potential Probiotic Lactic Acid Bacteria Isolated from a Rearing Tank of Rotifers ( Brachionus plicatilis) Used as Live Feed in Fish Larviculture. Animals (Basel) 2024; 14:1415. [PMID: 38791633 PMCID: PMC11117289 DOI: 10.3390/ani14101415] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Aquaculture is a rapidly expanding agri-food industry that faces substantial economic losses due to infectious disease outbreaks, such as bacterial infections. These outbreaks cause disruptions and high mortalities at various stages of the rearing process, especially in the larval stages. Probiotic bacteria are emerging as promising and sustainable alternative or complementary strategies to vaccination and the use of antibiotics in aquaculture. In this study, potential probiotic candidates for larviculture were isolated from a rotifer-rearing tank used as the first live feed for turbot larvae. Two Lacticaseibacillus paracasei and two Lactiplantibacillus plantarum isolates were selected for further characterization due to their wide and strong antimicrobial activity against several ichthyopathogens, both Gram-positive and Gram-negative. An extensive in vitro safety assessment of these four isolates revealed the absence of harmful traits, such as acquired antimicrobial resistance and other virulence factors (i.e., hemolytic and gelatinase activities, bile salt deconjugation, and mucin degradation, as well as PCR detection of biogenic amine production). Moreover, Enterobacterial Repetitive Intergenic Consensus-PCR (ERIC-PCR) analyses unveiled their genetic relatedness, revealing two divergent clusters within each species. To our knowledge, this work reports for the first time the isolation and characterization of Lactic Acid Bacteria (LAB) with potential use as probiotics in aquaculture from rotifer-rearing tanks, which have the potential to optimize turbot larviculture and to introduce novel microbial management approaches for a sustainable aquaculture.
Collapse
Affiliation(s)
- Diogo Contente
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGA-BALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.)
| | - Lara Díaz-Formoso
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGA-BALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.)
| | - Javier Feito
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGA-BALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.)
| | - Beatriz Gómez-Sala
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
- Teagasc Food Research Centre, Moorepark, R93 XE12 Cork, Ireland
| | - Damián Costas
- Centro de Investigación Mariña, Universidade de Vigo, Centro de Investigación Mariña (ECIMAT), 36331 Vigo, Spain;
| | - Pablo E. Hernández
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGA-BALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.)
| | - Estefanía Muñoz-Atienza
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGA-BALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.)
| | - Juan Borrero
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGA-BALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.)
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, Universidade de Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- CECAV-Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Luis M. Cintas
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGA-BALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.)
| |
Collapse
|
5
|
Xu J, Chen X, Song J, Wang C, Xu W, Tan H, Suo H. Antibacterial activity and mechanism of cell-free supernatants of Lacticaseibacillus paracasei against Propionibacterium acnes. Microb Pathog 2024; 189:106598. [PMID: 38423403 DOI: 10.1016/j.micpath.2024.106598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/30/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Propionibacterium acnes (P. acnes) is an anaerobic and gram-positive bacterium involved in the pathogenesis and inflammation of acne vulgaris. This study particularly focuses on the antimicrobial effect of Lacticaseibacillus paracasei LPH01 against P. acnes, a bacterium that causes acne vulgaris. Fifty-seven Lactobacillus strains were tested for their ability to inhibit P. acnes growth employing the Oxford Cup and double dilution methods. The cell-free supernatant (CFS) of L. paracasei LPH01 demonstrated a strong inhibitory effect, with an inhibition zone diameter of 24.65 ± 0.27 mm and a minimum inhibitory concentration of 12.5 mg/mL. Among the CFS, the fraction over 10 kDa (CFS-10) revealed the best antibacterial effect. Confocal laser scanning microscopes and flow cytometry showed that CFS-10 could reduce cell metabolic activity and cell viability and destroy the integrity and permeability of the cell membrane. A scanning electron microscope revealed that bacterial cells exhibited obvious morphological and ultrastructural changes, which further confirmed the damage of CFS-10 to the cell membrane and cell wall. Findings demonstrated that CFS-10 inhibited the conversion of triglycerides, decreased the production of free fatty acids, and down-regulated the extracellular expression of the lipase gene. This study provides a theoretical basis for the metabolite of L. paracasei LPH01 as a potential antibiotic alternative in cosmeceutical skincare products.
Collapse
Affiliation(s)
- Jiahui Xu
- College of Food Science, Southwest University, Chongqing, 400715, PR China
| | - Xiaoyong Chen
- College of Food Science, Southwest University, Chongqing, 400715, PR China; Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing, 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built By Sichuan and Chongqing, Chongqing, 400715, PR China; Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, 400715, PR China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing, 400715, PR China; Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing, 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built By Sichuan and Chongqing, Chongqing, 400715, PR China; Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, 400715, PR China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing, 400715, PR China; Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing, 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built By Sichuan and Chongqing, Chongqing, 400715, PR China; Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, 400715, PR China
| | - Weiping Xu
- College of Food Science, Southwest University, Chongqing, 400715, PR China
| | - Han Tan
- College of Food Science, Southwest University, Chongqing, 400715, PR China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing, 400715, PR China; Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing, 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built By Sichuan and Chongqing, Chongqing, 400715, PR China; Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|