1
|
Xu J, Long Z, Sun B, Zhang F, Shen J, Jin K. Optimizing Root Phenotypes for Compacted Soils: Enhancing Root-Soil-Microbe Interactions. PLANT, CELL & ENVIRONMENT 2025; 48:4656-4667. [PMID: 40051026 DOI: 10.1111/pce.15462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/18/2025] [Accepted: 02/23/2025] [Indexed: 05/06/2025]
Abstract
Soil compaction impedes root growth, reduces crop yields, and threatens global food security and sustainable agriculture. Addressing this challenge requires a comprehensive understanding of root-soil interactions in compacted environments. This review examines key root traits-architectural, anatomical, biochemical, and biomechanical-that enhance plant resilience in compacted soils. We discuss how these traits influence root penetration and the formation of more favorable soil pore structures, which are crucial for alleviating compaction stress. Additionally, we explore the molecular mechanisms underlying root adaptation, identifying key genetic and biochemical factors that contribute to stress-tolerant root phenotypes. The review emphasizes the role of root-microbe interactions in boosting root adaptability under compaction. By integrating these insights, we propose a framework for breeding crops with resilient root systems that thrive in high soil strength, supporting sustainable agricultural practices essential for food security amidst environmental challenges.
Collapse
Affiliation(s)
- Jingqi Xu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Zijian Long
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Baoru Sun
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Fangbo Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Jianbo Shen
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Kemo Jin
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Etesami H, Santoyo G. Boosting Rhizobium-legume symbiosis: The role of nodule non-rhizobial bacteria in hormonal and nutritional regulation under stress. Microbiol Res 2025; 297:128192. [PMID: 40279725 DOI: 10.1016/j.micres.2025.128192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/19/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Legumes are vital for sustainable agriculture due to their unique ability to fix atmospheric nitrogen through symbiosis with rhizobia. Recent research has highlighted the significant role of non-rhizobial bacteria (NRB) within root nodules in enhancing this symbiotic relationship, particularly under stress conditions. These NRB exhibit plant growth-promoting (PGP) metabolites by modulating phytohormones and enhancing nutrient availability, thereby improving nodule development and function. Bacteria produce essential hormones, such as auxin (indole-3-acetic acid), cytokinins, gibberellic acids abscisic acid, jasmonic acid, and salicylic acid, and enzymes like 1-aminocyclopropane-1-carboxylate deaminase, which mitigate ethylene's inhibitory effects on nodulation. Furthermore, NRB contribute to nutrient cycling by solubilizing minerals like phosphate, potassium, silicate, zinc, and iron, essential for effective nitrogen fixation. The co-inoculation of legumes with both rhizobia and NRB with multiple PGP metabolites has shown synergistic effects on plant growth, yield, and resilience against environmental stresses. This review emphasizes the need to further explore the diversity and functional roles of nodule-associated non-rhizobial endophytes, aiming to optimize legume productivity through improved nutrient and hormonal management. Understanding these interactions is crucial for developing sustainable agricultural practices that enhance the efficiency of legume-rhizobia symbiosis, ultimately contributing to food security and ecosystem health.
Collapse
Affiliation(s)
- Hassan Etesami
- Department of Soil Science, University of Tehran, Tehran, Iran.
| | - Gustavo Santoyo
- Institute of Chemical and Biological Research, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58095, Mexico
| |
Collapse
|
3
|
Abd-Elhalim HM, Hamed RR, El Sangry DAM, Radwan KH. Characterization and isolation of 1-aminocyclopropane1-carboxylate (ACC) deaminase-producing, plant growth-promoting rhizobacteria from the rhizosphere of Egyptian wheat cultivars for improved drought resilience. BRAZ J BIOL 2025; 84:e285457. [PMID: 40197892 DOI: 10.1590/1519-6984.285457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/19/2024] [Indexed: 04/10/2025] Open
Abstract
Drought stress severely damages the growth and development of wheat and leads to lower crop production. The application of plant growth-promoting rhizobacteria (PGPR) is a sustainable approach that enhances plant tolerance to drought. This study investigated whether different bacterial isolates could promote wheat growth under drought conditions. A total of 73 bacterial isolates were obtained from the rhizosphere of Egyptian wheat cultivars, 30 of which exhibited ACC deaminase activity. The isolates were selected based on various PGPR characteristics, including phosphate solubilization, siderophore production, nitrogen fixation, indole-3-acetic acid production, biofilm formation, and antagonistic abilities. The active ACC colonies were screened for these traits and based on in vitro promotion of wheat plant growth, root inoculum from four wheat plants was used and grown under drought conditions. The percentage yield of wheat plants increased in the weight of wheat plants, while in total biomass it was found that the treatments showed significant differences compared to the control. The most effective ACC was from the wheat isolate B. subtilis. The bacterial types were identified at the genus level by sequencing the 16s rRNA gene. In conclusion, this research suggests PGPR such as V. paradoxus and K. oxytoca have the potential to reduce the effects of drought stress in Egyptian wheat cultivars.
Collapse
Affiliation(s)
- H M Abd-Elhalim
- Agricultural Genetic Engineering Research Institute - AGERI, Agricultural Research Center - ARC, Giza, Egypt
- Badr University in Cairo - BUC, School of Biotechnology, Cairo, Egypt
| | - R R Hamed
- Agricultural Genetic Engineering Research Institute - AGERI, Agricultural Research Center - ARC, Giza, Egypt
| | - D A M El Sangry
- Agricultural Genetic Engineering Research Institute - AGERI, Agricultural Research Center - ARC, Giza, Egypt
| | - K H Radwan
- Agricultural Genetic Engineering Research Institute - AGERI, Agricultural Research Center - ARC, Giza, Egypt
- National Biotechnology Network of Expertise - ASRT, Cairo, Egypt
| |
Collapse
|
4
|
Wang L, Zhang X, Lu J, Huang L. Microbial diversity and interactions: Synergistic effects and potential applications of Pseudomonas and Bacillus consortia. Microbiol Res 2025; 293:128054. [PMID: 39799763 DOI: 10.1016/j.micres.2025.128054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/01/2025] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
Microbial diversity and interactions in the rhizosphere play a crucial role in plant health and ecosystem functioning. Among the myriads of rhizosphere microbes, Pseudomonas and Bacillus are prominent players known for their multifaceted functionalities and beneficial effects on plant growth. The molecular mechanism of interspecies interactions between natural isolates of Bacillus and Pseudomonas in medium conditions is well understood, but the interaction between the two in vivo remains unclear. This paper focuses on the possible synergies between Pseudomonas and Bacillus associated in practical applications (such as recruiting beneficial microbes, cross-feeding and niche complementarity), and looks forward to the application prospects of the consortium in agriculture, human health and bioremediation. Through in-depth understanding of the interactions between Pseudomonas and Bacillus as well as their application prospects in various fields, this study is expected to provide a new theoretical basis and practical guidance for promoting the research and application of rhizosphere microbes.
Collapse
Affiliation(s)
- Lixue Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xinyi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jiahui Lu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Lingxia Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
5
|
Secomandi E, De Gregorio MA, Garcia-Perez P, Vaccari F, Puglisi E, Lucini L. Waterlogging alone and combined with other abiotic stresses provides unique metabolic signatures at the plant-rhizosphere interface: A multi-omics perspective on root metabolome, root exudation and rhizomicrobiome. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109646. [PMID: 39965412 DOI: 10.1016/j.plaphy.2025.109646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/03/2025] [Accepted: 02/11/2025] [Indexed: 02/20/2025]
Abstract
Despite the growing evidence on unique and unpredictable impact of stress combination over plants, waterlogging-combined stresses effects are still underexplored. Under those conditions, besides the impairment of plant aerial parts, the root system is particularly vulnerable, leading to consequences on plant survival. Here, we report on the short-term exposure of soil-grown Arabidopsis thaliana L. to waterlogging alone and combined with cold, heat, and salinity to inspect their antagonistic, additive or synergistic effects in the rhizosphere. To this aim, root metabolic changes, exudation profiles, and microbial diversity were investigated using a combination of metabolomics and metagenomics, and their interaction was analysed through multi-omics data integration. In roots, waterlogging strongly affected metabolism compared to other single stresses, causing a down-accumulation of targeted classes of compounds including, phenylpropanoids, sterols, terpenoids, and alkaloids. Additive and synergistic effects were reported in roots under waterlogging combined with heat and cold stresses, respectively. Regarding root exudates, flavonoids, terpenoids, and alkaloids were the main classes of compounds affected. Waterlogging caused a down-accumulation of all classes except for coumarins, and mixed trends were observed in waterlogging-combined stresses, with waterlogging-salinity stresses resulting in an ameliorating effect. Even though microbial communities' alpha- and beta-diversity remained stable, suggesting their resilience under short-term exposure, specific taxa modulation was recorded under each condition. Overall, these results contribute to understanding the hierarchical impact of waterlogging on root metabolism and exudation, influencing rhizosphere interactions. This multi-omics approach advances our understanding of plant stress responses and microbial dynamics, paving the way for future studies on adaptive mechanisms.
Collapse
Affiliation(s)
- Elena Secomandi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122, Piacenza, Italy; Department of Science, Technology and Society, Scuola Universitaria Superiore IUSS Pavia, Palazzo del Broletto, Piazza della vittoria, 15, Pavia, Italy
| | - Marco Armando De Gregorio
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122, Piacenza, Italy
| | - Pascual Garcia-Perez
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122, Piacenza, Italy; Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", 30100, Murcia, Spain
| | - Filippo Vaccari
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122, Piacenza, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122, Piacenza, Italy.
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122, Piacenza, Italy; Institute of Bioimaging and Complex Biological Systems, National Research Council (IBSBC CNR), Via Fratelli Cervi, 93, 20054, Milan, Italy
| |
Collapse
|
6
|
Nouioui I, Zimmermann A, Gomez Escribano JP, Jando M, Pötter G, Neumann-Schaal M, Mast Y. Taxonomic description of Micromonospora reichwaldensis sp. nov. and its biosynthetic and plant growth-promoting potential. Microbiol Spectr 2025; 13:e0212924. [PMID: 40029309 PMCID: PMC11960110 DOI: 10.1128/spectrum.02129-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/11/2024] [Indexed: 03/05/2025] Open
Abstract
Micromonospora strains proved to be a model organism for drug discovery and plant growth promotion (PGP). Strain DSM 115977 T was subjected to polyphasic taxonomic analysis and genome mining for biosynthetic gene clusters and PGP-associated genes in order to determine its taxonomic rank and assess its biosynthetic potential. The strain was found to form a novel species within the evolutionary radiation of the genus Micromonospora. The strain contained glucose, mannose, xylose, and ribose as whole-cell sugars and the isomer DL-diaminopimelic acid in its peptidoglycan. Strain DSM 115977T had iso-C15:0, iso-C16:0, C17:1cis 9, C17:0, iso-C17:0, and 10-methyl-C17:0 as fatty acid profile (>5%) and MK10-H4 and MK10-H6 as the predominant menaquinones (>10%). The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, glycophosphatidylinositol, glycophospholipids, phosphoaminolipid, unidentified lipids, and phospholipids. The genome of the strain had a size of 7.0 Mbp with a DNA G + C content of 73.4%. It formed a well-supported sub-clade with its close phylogenomic neighbor, Micromonospora echinofusca DSM 43913T (98.7%). Digital DNA-DNA hybridization and average nucleotide identity derived from sequence comparisons between the strain and its close phylogenomic neighbors were below the thresholds of 70 and 95-96% for prokaryotic species demarcation, respectively. Based on these findings, strain DSM 115977T (Asg4T = KCTC 59188T) merits to be considered as the type strain of a new species for which the name Micromonospora reichwaldensis sp. nov. is proposed. Genome mining for biosynthetic gene clusters encoding specialized secondary metabolites highlighted its ability to produce potentially novel therapeutic compounds. The strain is rich in plant growth-promoting genes whose predicted products directly and indirectly affect the development and immune system of the plant. IMPORTANCE In view of the significant pharmaceutical, biotechnological, and ecological potentials of micromonosporae, it is particularly interesting to enhance the genetic diversity of this genus by focusing on the isolation of novel strain from underexplored habitats, with the promise that novel bacteria will lead to new chemical entities. In this report, modern polyphasic taxonomic study confirmed the assignment of strain DSM 115977T to a novel species for which the name Micromonospora reichwaldensis sp. nov. is proposed. The strain harbors in its genomic sequence several biosynthetic gene clusters for secondary metabolites and genes associated with plant growth-promoting features. The results of this study provide a very useful basis for launching more in-depth research into agriculture and/or drug discovery.
Collapse
Affiliation(s)
- Imen Nouioui
- Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Alina Zimmermann
- Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | | | - Marlen Jando
- Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Gabriele Pötter
- Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| | - Yvonne Mast
- Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
- Technische Universität Braunschweig, Institut für Mikrobiologie, Braunschweig, Germany
| |
Collapse
|
7
|
Jasso-Arreola Y, Ibarra JA, Rosas-Cárdenas FDF, Estrada-de los Santos P. Beneficial Effects of ACC Deaminase-Producing Rhizobacteria on the Drought Stress Resistance of Coffea arabica L. PLANTS (BASEL, SWITZERLAND) 2025; 14:1084. [PMID: 40219151 PMCID: PMC11991408 DOI: 10.3390/plants14071084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025]
Abstract
Given the challenges of climate change, effective adaptation strategies for crops like coffee are crucial. This study evaluated twelve 1-aminocyclopropane-1-carboxylate deaminase-producing bacterial strains selectively isolated from the rhizosphere of Coffea arabica L. cv. Costa Rica 95 in a plantation located in Veracruz, Mexico, focusing on their potential to enhance drought resistance. The strains, representing seven genera from the Gamma-proteobacteria and Bacteroidota groups, were characterized for growth-promoting traits, including ACC deaminase activity, indole-3-acetic acid (IAA) synthesis, phosphates solubilization, siderophore production, and nitrogen fixation. Strains of the genus Pantoea exhibited higher ACC deaminase activity, phosphate solubilization, and IAA synthesis, while others, such as Sphingobacterium and Chryseobacterium, showed limited plant growth-promoting traits. A pot experiment was conducted with coffee plants subjected to either full irrigation (soil with 85% volumetric water content) or drought (soil with 55% volumetric water content) conditions, along with inoculation with the isolated strains. Plants inoculated with Pantoea sp. RCa62 demonstrated improved growth metrics and physiological traits under drought, including higher leaf area, relative water content (RWC), biomass, and root development compared to uninoculated controls. Similar results were observed with Serratia sp. RCa28 and Pantoea sp. RCa31 under full irrigation conditions. Pantoea sp. RCa62 exhibited superior root development under stress, contributing to overall plant development. Proline accumulation was significantly higher in drought-stressed, non-inoculated plants compared to those inoculated with Pantoea sp. RCa62. This research highlights the potential of Pantoea sp. RCa62 to enhance coffee plant resilience to drought and underscores the need for field application and further validation of these bioinoculants in sustainable agricultural practices.
Collapse
Affiliation(s)
- Yesenia Jasso-Arreola
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala s/n, Col. Santo Tomás, Alcaldía Miguel Hidalgo, Ciudad de México 11340, Mexico; (Y.J.-A.); (J.A.I.)
- Instituto Politécnico Nacional, Centro de Estudios Científicos y Tecnológicos 16 “Hidalgo”, Carretera Pachuca-Actopan km 1+500, San Agustín Tlaxiaca 42162, Mexico
| | - J. Antonio Ibarra
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala s/n, Col. Santo Tomás, Alcaldía Miguel Hidalgo, Ciudad de México 11340, Mexico; (Y.J.-A.); (J.A.I.)
| | - Flor de Fátima Rosas-Cárdenas
- Instituto Politécnico Nacional, Centro de Investigaciónen Biotecnología Aplicada, Ex-Hacienda SanJuan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, Tepetitla 90700, Mexico;
| | - Paulina Estrada-de los Santos
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala s/n, Col. Santo Tomás, Alcaldía Miguel Hidalgo, Ciudad de México 11340, Mexico; (Y.J.-A.); (J.A.I.)
| |
Collapse
|
8
|
Rao MCS, Rahul VD, Uppar P, Madhuri ML, Tripathy B, Vyas RDV, Swami DV, Raju SS. Enhancing the Phytoremediation of Heavy Metals by Plant Growth Promoting Rhizobacteria (PGPR) Consortium: A Narrative Review. J Basic Microbiol 2025; 65:e2400529. [PMID: 39462911 DOI: 10.1002/jobm.202400529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/05/2024] [Accepted: 10/02/2024] [Indexed: 10/29/2024]
Abstract
Heavy metal pollution has become a significant concern as the world continues to industrialize, urbanize, and modernize. Heavy metal pollutants impede the growth and metabolism of plants. The bioaccumulation of heavy metals in plants may create chlorophyll antagonism, oxidative stress, underdeveloped plant growth, and reduced photosynthetic system. Finding practical solutions to protect the environment and plants from the toxic effects of heavy metals is essential for long-term sustainable development. The direct use of suitable living plants for eliminating and degrading metal pollutants from ecosystems is known as phytoremediation. Phytoremediation is a novel and promising way to remove toxic heavy metals. Plant growth-promoting rhizobacteria (PGPR) can colonize plant roots and help promote their growth. Numerous variables, such as plant biomass yield, resistance to metal toxicity, and heavy metal solubility in the soil, affect the rate of phytoremediation. Phytoremediation using the PGPR consortium can speed up the process and increase the rate of heavy metal detoxification. The PGPR consortium has significantly increased the biological accumulation of various nutrients and heavy metals. This review sheds light on the mechanisms that allow plants to uptake and sequester toxic heavy metals to improve soil detoxification. The present review aids the understanding of eco-physiological mechanisms that drive plant-microbe interactions in the heavy metal-stressed environment.
Collapse
Affiliation(s)
- Merugu Chandra Surya Rao
- Department of Agricultural and Horticultural Sciences, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh, India
| | - Vadlamudi Dinesh Rahul
- Department of Agricultural and Horticultural Sciences, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh, India
| | - Pandu Uppar
- Department of Agricultural and Horticultural Sciences, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh, India
| | - Marpu Lakshmi Madhuri
- Department of Horticulture, NS College of Horticultural Sciences, Markapur, Ongole, India
| | - Barsha Tripathy
- Department of Vegetable Science, Institute of Agricultural Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, India
| | - Ryali Devi Veda Vyas
- Department of Soil Science and Agricultural Chemistry, College of Agriculture-Dharwad, University of Agricultural Sciences, Dharwad, Karnataka, India
| | - Dokka Venkata Swami
- Department of Horticulture, Dr. Y.S.R Horticultural University, Tadepalligudem, West Godavari, Andhra Pradesh, India
| | - Sirivuru Srinivasa Raju
- Department of Horticulture, Acharya N.G. Ranga Agricultural University, Lam, Guntur, Andhar Pradesh, India
| |
Collapse
|
9
|
Garrido-Sanz D, Keel C. Seed-borne bacteria drive wheat rhizosphere microbiome assembly via niche partitioning and facilitation. Nat Microbiol 2025:10.1038/s41564-025-01973-1. [PMID: 40140705 DOI: 10.1038/s41564-025-01973-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/26/2025] [Indexed: 03/28/2025]
Abstract
Microbial communities play a crucial role in supporting plant health and productivity. Reproducible, natural plant-associated microbiomes can help disentangle microbial dynamics across time and space. Here, using a sequential propagation strategy, we generated a complex and reproducible wheat rhizosphere microbiome (RhizCom) to study successional dynamics and interactions between the soil and heritable seed-borne rhizosphere microbiomes (SbRB) in a microcosm. Using 16S rRNA sequencing and genome-resolved shotgun metagenomics, we find that SbRB surpassed native soil microbes as the dominant rhizosphere-associated microbiome source. SbRB genomes were enriched in host-associated traits including degradation of key saccharide (niche partitioning) and cross-feeding interactions that supported partner strains (niche facilitation). In vitro co-culture experiments confirmed that helper SbRB strains facilitated the growth of partner bacteria on disaccharides as sole carbon source. These results reveal the importance of seed microbiota dynamics in microbial succession and community assembly, which could inform strategies for crop microbiome manipulation.
Collapse
Affiliation(s)
- Daniel Garrido-Sanz
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
| | - Christoph Keel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
10
|
Chowdhury AA, Basak N, Mondal M, Islam E. Methylobacterium sp. EIKU22 as a strategic bioinoculant for uranium and arsenic mitigation in agricultural soil: a microbial solution for sustainable agriculture. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:132. [PMID: 40131474 DOI: 10.1007/s10653-025-02444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 03/07/2025] [Indexed: 03/27/2025]
Abstract
Mitigation of potentially toxic elements (PTEs) such as uranium (U) and arsenic (As), and fulfilment of global food demand requires a sustainable approach. Therefore, a multiple PTE-tolerant Methylobacterium sp. EIKU22 was explored for its bioremediation and biofertilization potential. This multi-metal tolerant isolate removed 29.88% U (initial dose: 100 mg L-1, pH 4.0, biosorption 3.74 mg g-1) after 14 days, following pseudo-second-order (PSO) kinetics. The isolate also showed 54% As(III) [pseudo-first-order kinetic; 3.72 mg g-1]; and ~ 37% As(V) (PSO; 2.4 mg g-1) removal within 60 min with the same initial dosing of either As(III) or As(V). Moreover, the strain precipitated > 96.5% and ~ 97% of U using released phosphate from inorganic and organic sources, respectively. Further analysis with inorganic phosphate showed > 31%, > 41% and > 98% of U precipitation from initial doses of 1000, 500 and 100 mg L-1 within 5 min. Methylobacterium sp. EIKU22 expresses the potential to solubilize ~ 178% phosphate, 169.8% potassium, 156-213% zinc within 6 days, and was able to withstand a pH range of 4.0-8.0, temperature range of 20-35 °C, and exhibited resilience to up to 10% NaCl exposure despite being affected by UV exposure. Further, the isolate showed to grow in nitrogen-free media and produce IAA, ammonia, siderophore, ACC deaminase, cellulase and catalase, suggesting potential application in plant growth promotion. The isolate harbours amoA, and nifH genes and imparts better survivability and vegetative growth in the rice seedling. These findings showcase the strain's dual applicability. However, further investigation is needed to generalize the findings.
Collapse
Affiliation(s)
- Atif Aziz Chowdhury
- Department of Microbiology, University of Kalyani, Kalyani, West Bengal, 741235, India
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università, 1, 39100, Bolzano, Italy
| | - Nilendu Basak
- Department of Microbiology, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Monojit Mondal
- Department of Ecological Studies, University of Kalyani, Kalyani, Nadia, West Bengal, 741235, India
| | - Ekramul Islam
- Department of Microbiology, University of Kalyani, Kalyani, West Bengal, 741235, India.
| |
Collapse
|
11
|
Taman, Kaur J, Walia SS. Co-inoculation of Indigenous Pseudomonas sp. and Priestia sp. to Improve the Soil Health, Plant Growth, Yield and Fruit Quality Parameters of Tomato (Solanum lycopersicum L.). Curr Microbiol 2025; 82:210. [PMID: 40131557 DOI: 10.1007/s00284-025-04191-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 03/15/2025] [Indexed: 03/27/2025]
Abstract
This study investigated the impact of co-inoculating Pseudomonas sp. and Priestia sp. on soil microbial activity, plant growth, yield, and fruit quality parameters in tomato. From twenty-three morphologically distinct rhizobacteria, 12 exhibited phosphate solubilization capabilities (PSI: 0.5-4.1), while three showed zinc solubilization abilities (ZSI: 3.0, 2.6, and 3.0). All isolates produced IAA, and six demonstrated siderophore production (zones ranging from 1.2 to 3.1 cm). Based on their functional traits, five isolates (TM8, TM11, TM19, TM24, and TM26) were selected for further evaluation in a greenhouse experiment. In the pot experiment, isolates TM8 and TM19 significantly enhanced plant height (40.32%), available nitrogen (37.4%), available potassium (52.1%), and available phosphorus (25.56%) compared to the uninoculated control. Isolate TM8 showed 100% similarity with Pseudomonas sp. and TM19 showed 99% similarity with Priestia sp. based on 16S rRNA gene sequencing. The field evaluation of these selected isolates as a liquid consortium with Farm Yard Manure (FYM) and inorganic fertilizers revealed a synergistic increase in soil microbial population and enzyme activities. Treatment T10 (N100 FYM + Pseudomonas sp. and Priestia sp.) showed a significant 45.27% increase in available nitrogen and 49.54% in available phosphorus, while treatment T11 (N75 FYM + NP25 + Pseudomonas sp. and Priestia sp.) resulted in a 25.77% increase in available potassium. The inoculation of rhizobacterial strains significantly improved tomato growth parameters, with the maximum number of fruits (14.04), higher fruit weight (96.87 g), maximum fruit yield (1.36 kg/plant), and enhanced fruit quality attributes observed in treatment T10. This study has led to the identification of a novel plant growth-promoting bacterial liquid consortium as a potential inoculant for improving tomato growth, yield, and fruit quality.
Collapse
Affiliation(s)
- Taman
- Microbiology Department, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Jupinder Kaur
- Microbiology Department, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
| | - S S Walia
- School of Organic Farming, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| |
Collapse
|
12
|
Bashandy SR, Mohamed OA, Abdalla OA, Elfarash A, Abd-Alla MH. Harnessing plant growth-promoting bacteria to combat watermelon mosaic virus in squash. Sci Rep 2025; 15:9440. [PMID: 40108347 PMCID: PMC11923214 DOI: 10.1038/s41598-025-92268-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/26/2025] [Indexed: 03/22/2025] Open
Abstract
Plant diseases significantly threaten global food security, with viral infections, particularly Watermelon Mosaic Virus (WMV), causing substantial losses in economically important crops such as squash. This study aims to investigate the efficacy of beneficial bacteria isolated from various plants in promoting growth and mitigating the effects of WMV in squash. Understanding the interactions between plants and beneficial microbes could provide sustainable solutions for managing viral infections in agriculture. Sixty-two bacterial isolates were obtained from the rhizosphere of basil, mint, thyme, and squash plants. Among these, six strains exhibited notable plant growth-promoting activities, including the synthesis of indole acetic acid, solubilization of phosphate and zinc, ammonia production, and activity of 1-aminocyclopropane-1-carboxylate deaminase (ACCD). Morphological observations and 16S rRNA gene sequencing identified these isolates as Pseudomonas indica, Bacillus paramycoides, Bacillus thuringiensis, Bacillus mycoides, Paenibacillus glucanolyticus, and Niallia circulans. In pot experiments, squash plants inoculated with these bacterial strains demonstrated significant reductions in disease severity after being infected with WMV. Specifically, foliar applications of the bacteria resulted in the following reductions in disease severity: B. mycoides (87%), B. thuringiensis (73%), Paenibacillus glucanolyticus (73%), Niallia circulans (70%), B. paramycoides (65%), and Pseudomonas indica (65%). Additionally, plants treated with B. mycoides showed increased plant height and shoot dry weight, indicating enhanced growth performance relative to infected controls. Statistical analysis revealed that these growth promotions and disease severity reduction were significant (p < 0.05). GC-MS analysis of the six bacterial strains revealed a diverse array of 73 chemical metabolites, including common compounds such as 9-Octadecenoic acid (Z), benzene derivatives, and cyclopentanones. These findings suggest shared metabolic pathways among the strains and indicate potential roles in ecological interactions, plant defense mechanisms, and antiviral properties. These metabolites likely contribute to the observed reductions in viral severity and enhance plant resilience. The study indicates that inoculating squash plants with specific beneficial bacteria, especially B. mycoides, through foliar or soil application can significantly decrease the severity of WMV and promote plant growth. This approach offers an environmentally friendly alternative to chemical antiviral treatments and may reduce reliance on pesticides. This research highlights the potential of using plant growth-promoting bacteria (PGPB)as a sustainable approach to control viral infections in crops. Further field trials are necessary to PGPB validate the scalability of these findings and assess their effectiveness under diverse agricultural conditions. Incorporating these beneficial microbes into agricultural practices could enhance the resilience of cropping systems, ultimately fostering sustainable agriculture and enhancing food security.
Collapse
Affiliation(s)
- Shymaa R Bashandy
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | | | - Osama A Abdalla
- Plant Pathology Department Faculty of Agriculture, Assiut University, Assiut, 71516, Egypt
| | - A Elfarash
- Genetics Department Faculty of Agriculture, Assiut University, Assiut, 71516, Egypt
| | - Mohamed Hemida Abd-Alla
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
13
|
Yun YB, Park M, Lee Y, Um Y. Investigation of Growth and Ginsenoside Content of Wild-Simulated Ginseng Cultivated in Different Vegetation Environments for Establishing a Plant Growth Model. PLANTS (BASEL, SWITZERLAND) 2025; 14:906. [PMID: 40265833 PMCID: PMC11944855 DOI: 10.3390/plants14060906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 04/24/2025]
Abstract
Wild-simulated ginseng (WSG, Panax ginseng C.A. Meyer) is one of the most valuable medicinal plants in the world. This study aimed to investigate the correlation between growth and ginsenoside content of WSG in two different cultivation environments: coniferous and mixed forests. The results showed that air temperature, soil moisture content, and solar radiation were higher in mixed forest than in coniferous forest. Regarding soil properties, electrical conductivity, organic matter, total nitrogen, exchangeable potassium, and magnesium were higher in mixed forest than in coniferous forest. However, exchangeable sodium was lower in mixed forest than in coniferous forest. The analysis of growth characteristics revealed that the number of leaflets was significantly higher in WSG cultivated in mixed forest than in WSG cultivated in coniferous forest, whereas rhizome length, root diameter, root weight, and dry weight were significantly higher in coniferous forest. In contrast, total ginsenoside content and the content of each ginsenoside were much higher in WSG cultivated in mixed forest than in WSG cultivated in coniferous forest. The growth of WSG showed significantly positive correlations with electrical conductivity, organic matter, total nitrogen, exchangeable cations (K+, Mg2+, Na+), and cation exchange capacity. The number of leaflets per stem showed significantly positive correlations with six ginsenosides, whereas petiole length showed significantly negative correlations with mRb1, mRc, and Rb1. In conclusion, growth characteristics of WSG were higher in coniferous forest, but ginsenoside contents were higher in mixed forest. These results might be helpful for establishing the most optimal growth model of WSG, which is affected by various environmental factors.
Collapse
Affiliation(s)
- Yeong-Bae Yun
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju 36040, Republic of Korea; (Y.-B.Y.); (M.P.)
| | - Myeongbin Park
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju 36040, Republic of Korea; (Y.-B.Y.); (M.P.)
| | - Yi Lee
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju 28644, Republic of Korea;
| | - Yurry Um
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju 36040, Republic of Korea; (Y.-B.Y.); (M.P.)
| |
Collapse
|
14
|
Etesami H. Unveiling a Hidden Synergy: Empowering Biofertilizers for Enhanced Plant Growth With Silicon in Stressed Agriculture. PLANT, CELL & ENVIRONMENT 2025; 48:2411-2433. [PMID: 39618075 DOI: 10.1111/pce.15300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/04/2024] [Accepted: 11/09/2024] [Indexed: 02/04/2025]
Abstract
Food security is increasingly threatened by climate change and environmental pressures that hinder plant growth and development. Harnessing soil microorganisms, such as mycorrhizal fungi and plant growth-promoting bacteria, offers a promising approach to boost crop production. However, existing screening methods for these microorganisms often prove ineffective in real-world, stress-prone environments, limiting the efficacy of microbial biofertilizers. To address this challenge, this review proposes the integration of silicon-renowned for its stress-mitigating properties in plants-with biofertilizers. Silicon has been shown to work synergistically with plant growth-promoting microorganisms, enhancing plant resilience to environmental stress while improving colonization efficiency and plant-microbe interactions in stressful conditions. By combining silicon with biofertilizers to create silicon-enriched biofertilizers, this strategy has the potential to optimize microbial performance and fortify food security against global challenges. The review advocates for the co-application of silicon and microbial biofertilizers as a sustainable solution to boost plant resilience against environmental stressors, thereby contributing to agricultural sustainability.
Collapse
Affiliation(s)
- Hassan Etesami
- Department of Soil Science, University of Tehran, Tehran, Iran
| |
Collapse
|
15
|
Ding S, Li P, Tang Y, He Z, She X. Identification and genomic insights into Bacillus siamensis strains with host colonization potential and activity against tomato bacterial wilt. PEST MANAGEMENT SCIENCE 2025; 81:1547-1561. [PMID: 39582424 DOI: 10.1002/ps.8555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/27/2024] [Accepted: 11/09/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND Bacterial wilt (BW), caused by Ralstonia solanacearum species complex (RSSC), is considered as one of the most destructive plant diseases worldwide. In this study, two strains of Bacillus siamensis, BB605-1 and BB653, were screened and identified from endophytes in healthy tomato and mangrove plants, respectively. RESULTS Both strains demonstrated antagonistic activities against all 16 RSSC strains, representing eight sequevars from various hosts. The growth of RSSC was suppressed by the crude antimicrobial extracts produced by two strains. The pot inoculation experiment revealed the control efficiencies of two strains against tomato bacterial wilt as 59.63% and 63.98%, respectively. After imparting rifampicin resistance to the strains and applying them to tomato plants, both strains successfully established stable colonization in the rhizosphere, roots, stems, and leaves of tomato plants. Additionally, our study demonstrated that both strains exhibited significant plant growth-promoting properties. Complete genome sequencing revealed genome size of 3.868 M bp with 3594 protein-coding genes for BB605-1, and 3.857 M bp with 3600 protein-coding genes for BB653. Genome analysis of both strains identified seven secondary metabolite clusters with known antimicrobial properties and predicted three unknown compounds with potentially novel properties. Genome mining revealed several key genes associated with plant growth regulation, colonization, and biofilm formation, and we also detected these corresponding substances. CONCLUSIONS These findings provide a compelling case for the application of B. siamensis in agricultural practices. The isolates' multiple capacities to colonize, enhance plant growth, and exert antagonistic effects against BW positions them as highly promising candidates for an integrated biological solution. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shanwen Ding
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ping Li
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yafei Tang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zifu He
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiaoman She
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
16
|
Hassen AI, Muema EK, Diale MO, Mpai T, Bopape FL. Non-Rhizobial Endophytes (NREs) of the Nodule Microbiome Have Synergistic Roles in Beneficial Tripartite Plant-Microbe Interactions. Microorganisms 2025; 13:518. [PMID: 40142410 PMCID: PMC11945167 DOI: 10.3390/microorganisms13030518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/10/2025] [Accepted: 02/22/2025] [Indexed: 03/28/2025] Open
Abstract
Microbial symbioses deal with the symbiotic interactions between a given microorganism and another host. The most widely known and investigated microbial symbiosis is the association between leguminous plants and nitrogen-fixing rhizobia. It is one of the best-studied plant-microbe interactions that occur in the soil rhizosphere and one of the oldest plant-microbe interactions extensively studied for the past several decades globally. Until recently, it used to be a common understanding among scientists in the field of rhizobia and microbial ecology that the root nodules of thousands of leguminous species only contain nitrogen-fixing symbiotic rhizobia. With the advancement of molecular microbiology and the coming into being of state-of-the-art biotechnology innovations, including next-generation sequencing, it has now been revealed that rhizobia living in the root nodules of legumes are not alone. Microbiome studies such as metagenomics of the root nodule microbial community showed that, in addition to symbiotic rhizobia, other bacteria referred to as non-rhizobial endophytes (NREs) exist in the nodules. This review provides an insight into the occurrence of non-rhizobial endophytes in the root nodules of several legume species and the beneficial roles of the tripartite interactions between the legumes, the rhizobia and the non-rhizobial endophytes (NREs).
Collapse
Affiliation(s)
- Ahmed Idris Hassen
- ARC-Plant Health and Protection, P. Bag X134, Queenswood, Pretoria 0121, South Africa; (M.O.D.); (T.M.); (F.L.B.)
- Department of Plant and Soil Sciences, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, Limpopo, South Africa
| | - Esther K. Muema
- Department of Soil Science, Faculty of Agri-Sciences, Stellenbosch University, Stellenbosch 6201, Western Cape, South Africa;
| | - Mamonokane O. Diale
- ARC-Plant Health and Protection, P. Bag X134, Queenswood, Pretoria 0121, South Africa; (M.O.D.); (T.M.); (F.L.B.)
| | - Tiisetso Mpai
- ARC-Plant Health and Protection, P. Bag X134, Queenswood, Pretoria 0121, South Africa; (M.O.D.); (T.M.); (F.L.B.)
| | - Francina L. Bopape
- ARC-Plant Health and Protection, P. Bag X134, Queenswood, Pretoria 0121, South Africa; (M.O.D.); (T.M.); (F.L.B.)
| |
Collapse
|
17
|
Manzoor M, Guan DX, Ma LQ. Plant-microbiome interactions for enhanced crop production under cadmium stress: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178538. [PMID: 39879949 DOI: 10.1016/j.scitotenv.2025.178538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/20/2024] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
Cadmium (Cd) is a toxic heavy metal that has detrimental effects on agriculture crops and human health. Both natural and anthropogenic processes release Cd into the environment, elevating its contents in soils. Under Cd stress, strong plant-microbiome interactions are important in improving crop production, but a systematic review is still missing. This review demonstrates the importance of microbiomes and their interactions with plants in mitigating Cd toxicity and promoting crop growth. Endogenous and exogenous microbiomes play a role to enhance plant's ability to respond to Cd stress. Specifically, the rhizosphere microbiome, which includes plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi, endosphere microbiome, and phyllosphere microbiome, are involved in Cd accumulation, immobilization, and translocation, and Cd-induced stress management. The mechanisms underlying these plant-microbiome interactions vary depending on the species and varieties of crops, composition and diversity of the microbiome, and level of Cd stress. Among the microbiome-mediated approaches, biosorption, bioprecipitation, and bioaccumulation are promising for Cd remediation in soil. Additionally, the endosphere microbiome, particularly Cd resistant endophytes, reduces Cd toxicity, increases the expression of Cd efflux genes, and enhances crop growth through regulating crops' antioxidant machinery and endogenous hormones. Furthermore, improved agricultural practices modulate the soil and plant microbiomes, thereby reducing Cd stress and increasing crop productivity.
Collapse
Affiliation(s)
- Maria Manzoor
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| | - Lena Q Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
18
|
Raza MAS, Muhammad F, Farooq M, Aslam MU, Akhter N, Toleikienė M, Binobead MA, Ali MA, Rizwan M, Iqbal R. ZnO-nanoparticles and stage-based drought tolerance in wheat (Triticum aestivum L.): effect on morpho-physiology, nutrients uptake, grain yield and quality. Sci Rep 2025; 15:5309. [PMID: 39939384 PMCID: PMC11822009 DOI: 10.1038/s41598-025-89718-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 02/07/2025] [Indexed: 02/14/2025] Open
Abstract
Drought-stressed and zinc-deficient soils are major contributors to reduced wheat yields and low-quality grains, especially in semi-arid regions of the world. Zinc-oxide nanoparticles (ZnO-NPs) are adept enough to avoid these losses if applied under the right dose at the right growth stage of many crops including wheat (Triticum aestivum L.). Therefore, a pot experiment was conducted with four levels of ZnO-NPs (0, 50, 100 and 150 ppm), and drought imposed at tillering (D1) and grain filling (D2) stages, considering normal irrigation as control (D0), to explore interactive effects of ZnO-NPs and drought episodes on growth, eco-physiology, yield, and grain quality of wheat. The results depicted dose and growth stage-dependent variations in all recorded parameters. ZnO-NPs (150 ppm) significantly increased the number of grains (12.5%), grain weight (12.4%), total yield (25.5%), and zinc contents (58.6%) when the crop was exposed to drought stress at tillering stage, compared to the control treatment. Likewise, drought at grain filling stage with ZnO-NPs (150 ppm) significantly enhanced plant height, spike length, biomass, zinc contents, and grain protein by 15.5%, 3.2%, 16.7%, 100.0%, and 53.8%, respectively, when compared with control treatment. Thus, ZnO-NPs emerged as a potential drought alleviator and yield-oriented safe nano-fertilizer for wheat in semi-arid regions facing irrigation challenges.
Collapse
Affiliation(s)
- Muhammad Aown Sammar Raza
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Faqeer Muhammad
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Farooq
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000, Pakistan
| | - Muhammad Usman Aslam
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Naseem Akhter
- Department of Chemistry, Government Sadiq College Women University, Bahawalpur, 63100, Pakistan
| | - Monika Toleikienė
- Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituo Al. 1, LT- 58344, Akademija, Kedainiai, Lithuania
| | - Manal Abdulaziz Binobead
- Department of Food Science and Nutrition, College of Agriculture Food Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - M Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Muhammad Rizwan
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53115, Bonn, Germany.
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan.
| |
Collapse
|
19
|
Beitsayahi F, Enayatizamir N, Nejadsadeghi L, Nasernakhaei F. Plant Growth-Promoting Bacteria Associated With Some Salt-Tolerant Plants. J Basic Microbiol 2025; 65:e2400446. [PMID: 39551977 DOI: 10.1002/jobm.202400446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024]
Abstract
Given the benefits of bacteria associated with the rhizosphere and phytoplane of halophytes, this research focused on examining the plant growth-promoting characteristics of bacteria isolated from Cressa cretica, Suaeda aegyptiaca, and Alhagi graecorum. From the 33 isolates tested, 9 exhibited plant growth-promoting traits. Bacillus rugosus strain CS5 and Bacillus sp. strain SS4 exhibited the notable growth inhibition of the pathogenic fungus Fusarium oxysporum, with values of 47% and 45%, respectively. Bacillus sp. strains SS4 and CS1 demonstrated impressive results in solubilizing phosphorus and zinc, respectively, achieving concentrations of 259 and 271 mg L-1. Additionally, Staphylococcus xylosus strain SR2, Bacillus sp. strain SS4, and Bacillus paralicheniformis strain CR1 thrived in nitrogen-free media. The Priestia filamentosa strain AL4 showed the greatest HCN production, whereas B. paralicheniformis strain CR1 was notable for higher auxin production. The Bacillus sp. strains SS4 and CS1 exhibited greater tolerance than other isolates in a medium containing 600 mM of NaCl. Additionally, inoculating these isolates into soil significantly alleviated the salinity and drought stress on Zea mays seedlings. These findings suggest that further investigation into these strains as microbial inoculants could be beneficial for mitigating salt and drought stress in plants.
Collapse
Affiliation(s)
- Fatemeh Beitsayahi
- Department of Soil Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Naeimeh Enayatizamir
- Department of Soil Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Leila Nejadsadeghi
- Department of Plant Production Engineering and Genetics, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Fatemeh Nasernakhaei
- Department of Plant Production Engineering and Genetics, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
20
|
Teja BS, Jamwal G, Gupta V, Verma M, Sharma A, Sharma A, Pandit V. Biological control of bacterial leaf blight (BLB) in rice-A sustainable approach. Heliyon 2025; 11:e41769. [PMID: 39872461 PMCID: PMC11770542 DOI: 10.1016/j.heliyon.2025.e41769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
Bacterial leaf blight (BLB) in rice, caused by the pathogen Xanthomonas oryzae pv. oryzae, is a significant agricultural problem managed through chemical control and cultivating rice varieties with inherent resistance to the bacterial pathogen. Research has highlighted the potential of using antagonistic microbes which can suppress the BLB pathogen through the production of secondary metabolites like siderophores, rhamnolipids, and hydroxy-alkylquinolines offering a sustainable alternative for BLB management. Additionally, the induction of plant immunity and defense-related enzymes in rice further enhances the resistance against the disease. Therefore, implementation of biological controls can complement chemical treatments in contributing towards the sustainability of rice production systems by aiming at host immunity improvement and killing of pathogen. It is crucial to continue exploring and understanding the complex interactions between various beneficial microbes, the rice plants, and the BLB pathogen to optimize and implement effective biocontrol strategies in future.
Collapse
Affiliation(s)
- Bestha Sai Teja
- Division of Plant Pathology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Chatha, 180009, India
| | - Gayatri Jamwal
- Division of Plant Pathology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Chatha, 180009, India
| | - Vishal Gupta
- Division of Plant Pathology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Chatha, 180009, India
| | - Mansi Verma
- Division of Plant Pathology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Chatha, 180009, India
| | - Ayushi Sharma
- Division of Plant Pathology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Chatha, 180009, India
| | - Akash Sharma
- Division of Fruit Science, Faculty of Horticulture and Forestry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Chatha, 180009, India
| | - Vinod Pandit
- Centre for Agriculture and Bioscience International (CABI), New Delhi, 110012, India
| |
Collapse
|
21
|
Di Sario L, Boeri P, Matus JT, Pizzio GA. Plant Biostimulants to Enhance Abiotic Stress Resilience in Crops. Int J Mol Sci 2025; 26:1129. [PMID: 39940896 PMCID: PMC11817731 DOI: 10.3390/ijms26031129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/17/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
The escalating impact of abiotic stress on crop productivity requires innovative strategies to ensure sustainable agriculture. This review examines the promising role of biostimulants in mitigating the adverse effects of abiotic stress on crops. Biostimulants, ranging from simple organic compounds to complex living microorganisms, have demonstrated significant potential in enhancing plant resilience, stress tolerance, and overall performance. The mechanisms underlying biostimulant action-such as enhancing antioxidant defenses, regulating hormonal pathways, and inducing metabolic adjustments-are reviewed. Furthermore, we incorporate the latest research findings, methodologies, and advancements in biostimulant applications for addressing abiotic stressors, including drought, salinity, high temperatures, and nutrient deficiencies. This review also highlights current challenges and future opportunities for optimizing biostimulant use in sustainable crop production. This revision aims to guide researchers and agronomists in applying biostimulants to improve crop resilience in the context of climate change.
Collapse
Affiliation(s)
- Luciana Di Sario
- CIT Río Negro, Universidad Nacional de Río Negro, Viedma CP8500, Río Negro, Argentina; (L.D.S.); (P.B.)
| | - Patricia Boeri
- CIT Río Negro, Universidad Nacional de Río Negro, Viedma CP8500, Río Negro, Argentina; (L.D.S.); (P.B.)
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46908 Paterna, Valencia, Spain;
| | - Gastón A. Pizzio
- CIT Río Negro, Universidad Nacional de Río Negro, Viedma CP8500, Río Negro, Argentina; (L.D.S.); (P.B.)
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46908 Paterna, Valencia, Spain;
| |
Collapse
|
22
|
de Pontes FCF, Machado IP, Silveira MVDS, Lobo ALA, Sabadin F, Fritsche-Neto R, DoVale JC. Combining genotyping approaches improves resolution for association mapping: a case study in tropical maize under water stress conditions. FRONTIERS IN PLANT SCIENCE 2025; 15:1442008. [PMID: 39917602 PMCID: PMC11798985 DOI: 10.3389/fpls.2024.1442008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 12/31/2024] [Indexed: 02/09/2025]
Abstract
Genome-wide Association Studies (GWAS) identify genome variations related to specific phenotypes using Single Nucleotide Polymorphism (SNP) markers. Genotyping platforms like SNP-Array or sequencing-based techniques (GBS) can genotype samples with many SNPs. These approaches may bias tropical maize analyses due to reliance on the temperate line B73 as the reference genome. An alternative is a simulated genome called "Mock," adapted to the population using bioinformatics. Recent studies show SNP-Array, GBS, and Mock yield similar results for population structure, heterotic groups definition, tester selection, and genomic hybrid prediction. However, no studies have examined the results generated by these different genotyping approaches for GWAS. This study aims to test the equivalence among the three genotyping scenarios in identifying significant effect genes in GWAS. To achieve this, maize was used as the model species, where SNP-Array genotyped 360 inbred lines from a public panel via the Affymetrix platform and GBS. The GBS data were used to perform SNP calling using the temperate inbred line B73 as the reference genome (GBS-B73) and a simulated genome "Mock" obtained in-silico (GBS-Mock). The study encompassed four above-ground traits with plants grown under two levels of water supply: well-watered (WW) and water-stressed (WS). In total, 46, 34, and 31 SNP were identified in the SNP-Array, GBS-B73, and GBS-Mock scenarios, respectively, across the two water levels, associated with the evaluated traits following the comparative analysis of each genotyping method individually. Overall, the identified candidate genes varied along the various scenarios but had the same functionality. Regarding SNP-Array and GBS-B73, genes with functional similarity were identified even without coincidence in the physical position of the SNPs. These genes and regions are involved in various processes and responses with applications in plant breeding. In terms of accuracy, the combination of genotyping scenarios compared to those isolated is feasible and recommended, as it increased all traits under both water conditions. In this sense, it is worth highlighting the combination of GBS-B73 and GBS-Mock scenarios, not only due to the increase in the resolution of GWAS results but also the reduction of costs associated with genotyping and the possibility of conducting genomic breeding methods.
Collapse
Affiliation(s)
| | - Ingrid Pinheiro Machado
- Postgraduate Program of Plant Science, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | - Felipe Sabadin
- College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | | | - Júlio César DoVale
- Postgraduate Program of Plant Science, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
23
|
Kumari M, Tamang A, Swarnkar M, Kumar P, Kumar D, Warghat AR, Hallan V, Pandey SS. Deciphering the endomicrobiome of Podophyllum hexandrum to reveal the endophytic bacterial-association of in-planta podophyllotoxin biosynthesis. World J Microbiol Biotechnol 2025; 41:38. [PMID: 39815146 DOI: 10.1007/s11274-024-04245-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 12/29/2024] [Indexed: 01/18/2025]
Abstract
Understanding the change in plant-associated microbial diversity and secondary metabolite biosynthesis in medicinal plants due to their cultivation in non-natural habitat (NNH) is important to maintain their therapeutic importance. Here, the bacterial endomicrobiome of Podophyllum hexandrum plants of natural habitat (NH; Kardang and Triloknath locations) and NNH (Palampur location) was identified and its association with the biosynthesis of podophyllotoxin (PTOX) was revealed. Rhizomes (source of PTOX) of plants of NH had highest endophytic bacterial diversity compared to NNH-plants. Presence of plant-location and tissue-specific distinct and common taxa were also identified. Acinetobacter, Ralstonia and Pseudomonas were identified as core taxa, present in plants of both NH and NNH. Predictive functional analysis of endophytic communities revealed abundant presence of genes encoding initial enzymes of PTOX biosynthesis and plant growth promotion in the rhizomes and roots of Kardang locations. Higher accumulations of secondary metabolites such as PTOX (2.78 and 2.11 folds in Kardang and Triloknath rhizomes, respectively; 1.48 and 1.71 fold in Kardang and Triloknath roots, respectively), Picropodophyllotoxin (3.08 fold in Kardang rhizomes), Quercetin (1.65 fold in Kardang and 1.32 fold in Triloknath rhizomes; 3.07-fold in Kardang and 1.60 fold in Triloknath roots) and Kaempferol (1.66 and 1.24-fold in Kardang and Triloknath rhizomes, respectively; 2.91 and 1.94-fold in Kardang and Triloknath roots, respectively) were also found in NH compared to NNH. This study provides novel insight into the change in the endomicrobiome of NH and NNH-plants and their correlation to secondary metabolites biosynthesis, and that must be considered for cultivation practices.
Collapse
Affiliation(s)
- Manju Kumari
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anish Tamang
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohit Swarnkar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, 176061, India
| | - Pawan Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, 176061, India
| | - Dinesh Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, 176061, India
| | - Ashish Rambau Warghat
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vipin Hallan
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shiv Shanker Pandey
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
24
|
Dolu H, Killi D, Bas S, Bilecen DS, Seymen M. Effectiveness of salt priming and plant growth-promoting bacteria in mitigating salt-induced photosynthetic damage in melon. PHOTOSYNTHESIS RESEARCH 2025; 163:7. [PMID: 39820779 DOI: 10.1007/s11120-024-01128-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 12/16/2024] [Indexed: 01/19/2025]
Abstract
Seed priming and plant growth-promoting bacteria (PGPB) may alleviate salt stress effects. We exposed a salt-sensitive variety of melon to salinity following seed priming with NaCl and inoculation with Bacillus. Given the sensitivity of photosystem II (PSII) to salt stress, we utilized dark- and light-adapted chlorophyll fluorescence alongside analysis of leaf stomatal conductance of water vapour (Gsw). Priming increased total seed germination by 15.5% under salt-stress. NaCl priming with Bacillus inoculation (PB) increased total leaf area (LA) by 45% under control and 15% under stress. Under the control condition, priming (P) reduced membrane permeability (RMP) by 36% and PB by 55%, while under stress Bacillus (BS) reduced RMP by 10%. Although Bacillus inoculation (B) and priming (P) treatments did not show significant effects on some PSII efficiency parameters (FV/FM, ABS/RC, PIABS, FM), the BS treatment induced a significantly higher quantum efficiency of PSII (ΦPSII) and increased Gsw by 159% in the final week of the experiment. The BS treatment reduced electron transport rate per reaction center (ETO/RC) by 10% in comparison to the salt treatment, which showed less reaction centre damage. Bacillus inoculation and seed priming treatment under the stressed condition (PBS) induced an increase in electron transport rate of 40%. Salt stress started to show significant effects on PSII after 12 days, and adversely impacted all morphological and photosynthetic parameters after 22 days. Salt priming and PGPB mitigated the negative impacts of salt stress and may serve as effective tools in future-proofing saline agriculture.
Collapse
Affiliation(s)
- Hüsna Dolu
- National Research Council of Italy-Institute of Sustainable Plant Protection (CNR-IPSP), Firenze, Italy
- Department of Plant Production and Technologies, Konya Food and Agriculture University, Konya, Turkey
| | - Dilek Killi
- National Research Council of Italy-Institute of Sustainable Plant Protection (CNR-IPSP), Firenze, Italy.
- Department of Plant Production and Technologies, Konya Food and Agriculture University, Konya, Turkey.
| | - Serpil Bas
- Department of Biotechnology, Konya Food and Agriculture University, Konya, Turkey
| | - Deniz Sezlev Bilecen
- Department of Molecular Biology and Genetics, Konya Food and Agriculture University, Konya, Turkey
| | - Musa Seymen
- Horticulture Department of Agriculture Faculty, Selcuk University, Konya, Turkey
| |
Collapse
|
25
|
Wu L, Zhang L, Wang N, Huang W, Wang Y, Sun M, Zheng G, Wang W, Shi C. Bioprospecting of a Native Plant Growth-Promoting Bacterium Bacillus cereus B6 for Enhancing Uranium Accumulation by Sudan Grass ( Sorghum sudanense (Piper) Stapf). BIOLOGY 2025; 14:58. [PMID: 39857289 PMCID: PMC11762556 DOI: 10.3390/biology14010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/25/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025]
Abstract
Phytoremediation technology is viewed as a potential solution for addressing soil uranium contamination. Sudan grass (Sorghum sudanense (Piper) Stapf.), noted for its robust root structure and resilience to heavy metals, has garnered significant attention. This paper investigates a strain of uranium-tolerant bacterium, B6, obtained from the inter-root environment of native plants in soil contaminated with uranium tailings. The bacterium was identified as Bacillus cereus. Genomic analyses and assessment of uranium tolerance-promoting properties showed that strain B6 not only exhibited high uranium tolerance, but also possessed beneficial properties such as phosphorus solubilization and iron-producing carriers. In this study, we used strain B6 as an inoculant in combination with Sudan grass for germination and potting experiments. The findings demonstrated that Bacillus cereus B6 could substantially mitigate the adverse effects of uranium stress on Sudan grass, boost the plant's antioxidant response, significantly increase the root length and dry biomass of Sudan grass, and facilitate the accumulation of uranium in the roots, as well as its translocation to the aboveground portions. The study showed that PGPB strain B6 can significantly enhance the effect of plant accumulation of uranium and increase the potential of Sudan grass to become a uranium-rich plant, which provides an important scientific basis and application prospect for the use of microbial-assisted Sudan grass remediation technology to treat uranium-contaminated soil.
Collapse
Affiliation(s)
- Longyuan Wu
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China; (L.W.); (Y.W.); (M.S.)
| | - Lijuan Zhang
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences/Xinjiang Laboratory Special Environmental Microbiology, Urumqi 830091, China; (L.Z.); (N.W.); (W.H.)
- College of Grassland Science, Xinjiang Agricultural University, Urumqi 830091, China
| | - Ning Wang
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences/Xinjiang Laboratory Special Environmental Microbiology, Urumqi 830091, China; (L.Z.); (N.W.); (W.H.)
| | - Wei Huang
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences/Xinjiang Laboratory Special Environmental Microbiology, Urumqi 830091, China; (L.Z.); (N.W.); (W.H.)
| | - Yanzhi Wang
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China; (L.W.); (Y.W.); (M.S.)
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences/Xinjiang Laboratory Special Environmental Microbiology, Urumqi 830091, China; (L.Z.); (N.W.); (W.H.)
| | - Meng Sun
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China; (L.W.); (Y.W.); (M.S.)
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences/Xinjiang Laboratory Special Environmental Microbiology, Urumqi 830091, China; (L.Z.); (N.W.); (W.H.)
| | - Guofeng Zheng
- Nuclear and Radiation Safety Center, Beijing 100082, China;
| | - Wei Wang
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences/Xinjiang Laboratory Special Environmental Microbiology, Urumqi 830091, China; (L.Z.); (N.W.); (W.H.)
| | - Chong Shi
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China; (L.W.); (Y.W.); (M.S.)
| |
Collapse
|
26
|
Abd El-Daim IA, Raynes G, Fernandez-Fuentes N, Hawkins S, Cookson A, Farrar K. Halotolerant bacterial endophyte Bacillus velezensis CBE mediates abiotic stress tolerance with minimal transcriptional modifications in Brachypodium distachyon. FRONTIERS IN PLANT SCIENCE 2025; 15:1485391. [PMID: 39866317 PMCID: PMC11757260 DOI: 10.3389/fpls.2024.1485391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/10/2024] [Indexed: 01/28/2025]
Abstract
Nitrogen and water are the primary resources limiting agricultural production worldwide. We have demonstrated the ability of a novel halotolerant bacterial endophyte, Bacillus velezensis CBE, to induce osmotic stress tolerance in Brachypodium distachyon under nitrogen-deprived conditions. Additionally, we aimed to identify the molecular factors in plants that contribute to the beneficial effects induced by B. velezensis CBE in B. distachyon. To achieve this, we conducted transcriptomic profiling using RNA-seq on 18-day-old B. distachyon seedlings treated with B. velezensis CBE in the presence or absence of available nitrogen, with and without osmotic stress. These profiles were then compared to those obtained from B. distachyon treated with known plant growth-promoting bacterial strains, Azospirillum brasilense Cd and Azoarcus olearius DQS4, under the same growth conditions. We identified differentially expressed genes (DEGs) in response to the combinations of bacterial strains and stress treatments. Interestingly, only 73 transcripts showed significant differential expression in B. velezensis CBE-treated plants under stress conditions, compared to 1,078 DEGs in plants treated with A. brasilense Cd and 2,015 DEGs in A. olearius DQS4. Our findings suggest that the novel endophyte B. velezensis CBE mediates osmotic stress tolerance in B. distachyon through the fine-tuning of molecular mechanisms with minimal transcriptional modifications.
Collapse
Affiliation(s)
- Islam A. Abd El-Daim
- Institute of Biological, Environmental and Rural Sciences (IBERS) Aberystwyth University, Aberystwyth, United Kingdom
- Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Centre, Giza, Egypt
| | - Gareth Raynes
- Institute of Biological, Environmental and Rural Sciences (IBERS) Aberystwyth University, Aberystwyth, United Kingdom
| | - Narcis Fernandez-Fuentes
- Institute of Biological, Environmental and Rural Sciences (IBERS) Aberystwyth University, Aberystwyth, United Kingdom
| | - Sarah Hawkins
- Institute of Biological, Environmental and Rural Sciences (IBERS) Aberystwyth University, Aberystwyth, United Kingdom
| | - Alan Cookson
- Institute of Biological, Environmental and Rural Sciences (IBERS) Aberystwyth University, Aberystwyth, United Kingdom
| | - Kerrie Farrar
- Institute of Biological, Environmental and Rural Sciences (IBERS) Aberystwyth University, Aberystwyth, United Kingdom
| |
Collapse
|
27
|
Pylak M, Oszust K, Panek J, Siegieda D, Cybulska J, Zdunek A, Orzeł A, Frąc M. Impact of microbial-based biopreparations on soil quality, plant health, and fruit chemistry in raspberry cultivation. Food Chem 2025; 462:140943. [PMID: 39217744 DOI: 10.1016/j.foodchem.2024.140943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/27/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Application of microbial-based biopreparations as a pre-harvest strategy offers a method to obtain sustainable agricultural practices and could be an important approach for advancing food science, promoting sustainability, and meeting global food market demands. The impact of a bacterial-fungal biopreparation mixture on soil-plant-microbe interactions, fruit chemical composition and yield of 7 raspberry clones was investigated by examining the structural and functional profiles of microbial communities within leaves, fruits, and soil. Biopreparation addition caused the enhancement of the microbiological utilization of specific compounds, such as d-mannitol, relevant in plant-pathogen interactions and overall plant health. The biopreparation treatment positively affected the nitrogen availability in soil (9-160%). The analysis of plant stress marker enzymes combined with the evaluation of fruit quality and chemical properties highlight changes inducted by the pre-harvest biopreparation application. Chemical analyses highlight biopreparations' role in soil and fruit quality improvement, promoting sustainable agriculture. This effect was dependent on tested clones, showing increase of soluble solid content in fruits, concentration of polyphenols or the sensory quality of the fruits. The results of the next-generation sequencing indicated increase in the effective number of bacterial species after biopreparation treatment. The network analysis showed stimulating effect of biopreparation on microbial communities by enhancing microbial interactions (increasing the number of network edges up to 260%) of and affecting the proportions of mutual relationships between both bacteria and fungi. These findings show the potential of microbial-based biopreparation in enhancing raspberry production whilst promoting sustainable practices and maintaining environmental homeostasis and giving inshght in holistic understanding of microbial-based approaches for advancing food science monitoring.
Collapse
Affiliation(s)
- Michał Pylak
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Karolina Oszust
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Jacek Panek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Dominika Siegieda
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Justyna Cybulska
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Agnieszka Orzeł
- Dr. Berry Innowacje i Tradycja, Juraszowa 73, 33-386 Podegrodzie, Poland.
| | - Magdalena Frąc
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| |
Collapse
|
28
|
Abdallah-Ruiz A, Esteban-Perez C, White SB, Schilling W, Zhang X, Stafne ET, Rodríguez-Magaña A, Peña-Baracaldo F, Moreno-Ortiz CA, Silva JL. Baseline microbiota of blueberries, soil, and irrigation water from blueberry farms located in three geographical regions. Heliyon 2024; 10:e40762. [PMID: 39717570 PMCID: PMC11664272 DOI: 10.1016/j.heliyon.2024.e40762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 11/15/2024] [Accepted: 11/27/2024] [Indexed: 12/25/2024] Open
Abstract
Bacterial microbiota was determined in fruit, soil, and irrigation water from blueberry (Vaccinium spp.) farms located in Cundinamarca, Colombia; Mississippi, United States; and Jalisco, Mexico. Bacterial communities were studied using 16S ribosomal ribonucleic acid (rRNA) gene amplification by targeting the V3-V4 hypervariable region. The most abundant phylum in fruit was Proteobacteria in Colombia and the United States and Firmicutes in Mexico. The most abundant phylum in soil and water was Proteobacteria for all regions. The top three genera found in fruit were Heliorestis (9.2 %), Rhodanobacter (3.3 %), and Sphingomonas (2.8 %) for Colombia, Heliorestis (23.1 %), Thiomonas (8.5 %), and Methylobacterium (3.3 %) for the United States, and Heliorestis (47.4 %), Thiomonas (9.1 %), and Bacillus (4.6 %) for Mexico. Colombia reported the highest (Padj < 0.05) alpha diversity for blueberries, and United States and Mexico had similar (Padj > 0.05) results. Beta diversity revealed bacterial communities in fruit differed (P < 0.05) by region. Bacterial differences existed between Colombia, United States, and Mexico for soil and fruit (P = 0.021, 0.003, and 0.006, respectively) and water and fruit (P = 0.003, 0.003, and 0.033, respectively). Blueberries grown in the three different regions have unique microbiota. Fruit and fruit-environment microbial composition also differed by region. These results provide a more complete profile of the bacterial communities on blueberries and their agricultural environments and could contribute to better management and decision-making practices in terms of plant health, food quality, and food safety.
Collapse
Affiliation(s)
- Angelica Abdallah-Ruiz
- Department of Biochemistry, Nutrition, and Health Promotion, Mississippi State University, Mississippi State, MS, 39762, USA
| | | | - Shecoya B. White
- Department of Biochemistry, Nutrition, and Health Promotion, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Wes Schilling
- Department of Biochemistry, Nutrition, and Health Promotion, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Xue Zhang
- Department of Biochemistry, Nutrition, and Health Promotion, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Eric T. Stafne
- South Branch Experiment Station, Coastal Research and Extension Center, Mississippi State University, Poplarville, MS, 39470, USA
| | - Alejandro Rodríguez-Magaña
- Facultad de Ciencias Económicas y Empresariales, Universidad Panamericana de Guadalajara, Guadalajara, 45010, Mexico
| | - Fernando Peña-Baracaldo
- Facultad de Ciencias Agropecuarias, Universidad de Ciencias Aplicadas y Ambientales U.D.C.A., Bogotá, 111166, Colombia
| | - Carlos A. Moreno-Ortiz
- Facultad de Ciencias Administrativas y Comerciales, Universidad de Ciencias Aplicadas y Ambientales U.D.C.A., Bogotá, 111166, Colombia
| | - Juan L. Silva
- Department of Biochemistry, Nutrition, and Health Promotion, Mississippi State University, Mississippi State, MS, 39762, USA
| |
Collapse
|
29
|
Jones-Held S, White JF. Effects of endophytes on early growth and ascorbate metabolism in Brassica napus. FRONTIERS IN PLANT SCIENCE 2024; 15:1480387. [PMID: 39726430 PMCID: PMC11669529 DOI: 10.3389/fpls.2024.1480387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024]
Abstract
Understanding the early interactions between plants and endophytes will contribute to a more systematic approach to enhancing endophyte-mediated effects on plant growth and environmental stress resistance. This study examined very early growth and ascorbate metabolism after seed treatment of Brassica napus with three different endophytes. The three endophytes used were Bacillus amyloliquefaciens pb1(Bapb1), Micrococcus luteus (Ml) and Pseudomonas fluorescens SLB4 (SLB4). Seeds of Brassica napus cv. trophy were surface sterilized and plated on 1/2 MS Basal salts (pH 5.7 -5.8) + 0.8% agarose. Under sterile conditions, endophyte suspensions or sterile distilled water (controls) were applied to plated seeds. After two days, all plates were scanned to produce digital images for subsequent growth analysis. Then, seedlings were gently removed from the plates and placed in sterile microfuge tubes. For biochemical analyses, extracts were prepared from samples and assayed spectrophotometrically. We detected slight changes in seedling root tip and/or primary root growth with Bapb1 and Ml. Seedlings treated with SLB4 exhibited significantly increased primary root and root tip length after two days of growth. Ascorbate oxidation, however, was the primary significant change common to all endophyte-treated seedlings. In relation to ascorbate oxidation, soluble ascorbate oxidase (AO) was slightly reduced in Bapb1 and Ml-treated seedlings, whereas ionically-bound AO was reduced in Bapb1 and SLB4-treated seedlings. Total AO activity was significantly reduced in Bapb1-treated seedlings. There were no differences in cytosolic APX activity or glutathione levels between endophyte-treated seedlings and controls. Like pathogens, endophytes can trigger an oxidative burst in the plant. A level of ascorbate oxidation seems required to propagate ROS as signaling molecules as part of the plant immune response. The slight to moderate reductions in plant AO activity that we found mimic the inhibitory effects of pathogens on AO activity, but there was still a level of AO activity that may have been sufficient for the apoplastic ascorbate oxidation required for subsequent ROS signaling. Other studies have suggested that endophytes may elicit a more moderate plant immune response relative to pathogens to facilitate colonization. The AO, APX, and glutathione results would be consistent with a moderate plant immune response to endophytes.
Collapse
Affiliation(s)
- Susan Jones-Held
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
| | | |
Collapse
|
30
|
Laevens GCS, Dolson WC, Drapeau MM, Telhig S, Ruffell SE, Rose DM, Glick BR, Stegelmeier AA. The Good, the Bad, and the Fungus: Insights into the Relationship Between Plants, Fungi, and Oomycetes in Hydroponics. BIOLOGY 2024; 13:1014. [PMID: 39765681 PMCID: PMC11673877 DOI: 10.3390/biology13121014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/25/2024] [Accepted: 11/30/2024] [Indexed: 01/11/2025]
Abstract
Hydroponic systems are examples of controlled environment agriculture (CEA) and present a promising alternative to traditional farming methods by increasing productivity, profitability, and sustainability. In hydroponic systems, crops are grown in the absence of soil and thus lack the native soil microbial community. This review focuses on fungi and oomycetes, both beneficial and pathogenic, that can colonize crops and persist in hydroponic systems. The symptomatology and mechanisms of pathogenesis for Botrytis, Colletotrichum, Fulvia, Fusarium, Phytophthora, Pythium, and Sclerotinia are explored for phytopathogenic fungi that target floral organs, leaves, roots, and vasculature of economically important hydroponic crops. Additionally, this review thoroughly explores the use of plant growth-promoting fungi (PGPF) to combat phytopathogens and increase hydroponic crop productivity; details of PGP strategies and mechanisms are discussed. The benefits of Aspergillus, Penicillium, Taloromyces, and Trichoderma to hydroponics systems are explored in detail. The culmination of these areas of research serves to improve the current understanding of the role of beneficial and pathogenic fungi, specifically in the hydroponic microbiome.
Collapse
Affiliation(s)
- Grace C. S. Laevens
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada (W.C.D.); (M.M.D.)
| | - William C. Dolson
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada (W.C.D.); (M.M.D.)
| | - Michelle M. Drapeau
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada (W.C.D.); (M.M.D.)
| | - Soufiane Telhig
- Ceragen Inc., 151 Charles St W, Suite 199, Kitchener, ON N2G 1H6, Canada; (S.T.)
| | - Sarah E. Ruffell
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada (W.C.D.); (M.M.D.)
| | - Danielle M. Rose
- Ceragen Inc., 151 Charles St W, Suite 199, Kitchener, ON N2G 1H6, Canada; (S.T.)
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada (W.C.D.); (M.M.D.)
| | | |
Collapse
|
31
|
Moheb N, Mohamed AF, Elbaghdady KZ, Saeed AM, Abu-Elghait M. Monitoring and controlling bacteria in cleanrooms of pharmaceutical plant model: an in vitro study. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 197:3. [PMID: 39621119 DOI: 10.1007/s10661-024-13445-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/16/2024] [Indexed: 01/23/2025]
Abstract
This work aims to screen the major species of bacteria distributed in the filling area in one of the new pharmaceutical facilities in the 6th of October city in Egypt and their phylogenic relationship. One hundred percent of collected Gram-positive and Gram-negative isolates of bacteria were sensitive to Levofloxacin. There were five Gram-positive multidrug-resistant (MDR) bacterial isolates and one Gram-negative (MDR) bacterial isolate (three (from personnel), two (from surface), and one (from air)). The five Gram-positive MDR bacterial isolates were resistant to Tobramycin, Gentamicin, Piperacillin, Cefaclor, and Amikacin while the one Gram-negative MDR bacterial isolate was resistant to Ceftazidime, Cefotaxime, Tobramycin, Gentamicin, Piperacillin, Cefoperazone/Sulbactam, Ofloxacin, and Polymixin b. The existence of multidrug-resistant bacteria inside cleanrooms of pharmaceutical plants signifies a life-threatening danger on human through generating contaminated drugs and/or vaccines that undoubtedly harm the consumer's healthiness. The technique of 16SrRNA gene sequencing was used to identify multidrug-resistant bacterial isolates. All tested disinfectants were bactericidal except Dettol that was found to be a bacteriostatic agent and had an anti-biofilm effect. Clorox was the most potent disinfectant that had the least MIC and MBC of 0.0002% and 0.0004%, respectively. Ethanol and Klericide were excellent sanitizing agents. The strongest biofilm formed by Staphylococcus gallinarum strain MN1812 was disrupted by Clorox with a concentration of 0.000098%. Only Dettol with a concentration of 6.3% achieved the highest disruption for the biofilm of Staphylococcus gallinarum strain NM2009. Staphylococcus gallinarum strain MN1812 followed by Bacillus amyloliquefaciens showed the highest adhesion and invasion efficiencies to Caco-cells among the investigated bacterial strains. Klericide and Dettol mixture showed more anti adhesion and invasion effects against Staphylococcus gallinarum strain NM2009 and strain MN1812 and Pseudomonas putida compared to using Klericide alone. Ethanol and Klericide had the least contact time (30 s) against most of the tested bacteria.
Collapse
Affiliation(s)
- Nahla Moheb
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
- The Holding Company for Production of Vaccines Sera, and Drug (EGYVAC, VACSERA), Giza, Egypt
| | - Aly Fahmy Mohamed
- The International Center for Advanced Research (ICTAR), Cairo, Egypt
- The Holding Company for Production of Vaccines Sera, and Drug (EGYVAC, VACSERA), Giza, Egypt
| | | | - Ali M Saeed
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohammed Abu-Elghait
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, Egypt.
| |
Collapse
|
32
|
Hasanović M, Hrelja E, Hajro AA, Murtić S, Durmić-Pašić A. Exploring the Plant Growth-Promotion Properties of Rhizospheric and Endophytic Bacteria Associated with Robinia pseudoacacia L. in Serpentine Soil. Pol J Microbiol 2024; 73:515-527. [PMID: 39670638 PMCID: PMC11639387 DOI: 10.33073/pjm-2024-044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/08/2024] [Indexed: 12/14/2024] Open
Abstract
Serpentine soils are characterized as a unique environment with low nutrient availability and high heavy metal concentrations, often hostile to many plant species. Even though these unfavorable conditions hinder the growth of various plants, particular vegetation with different adaptive mechanisms thrives undisturbed. One of the main contributors to serpentine adaptation represents serpentine bacteria with plant growth-promoting properties that assemble delicate interactions with serpentine plants. Robinia pseudoacacia L. is an invasive but adaptive species with phytoremediation potential and demonstrates extraordinary success in this environment. To explore more in-depth the role of plant growth-promoting serpentine bacteria, we isolated them and tested their various plant growth-promoting traits both from the rhizosphere and roots of R. pseudoacacia. Based on the demonstrated plant growth-promoting traits such as siderophore production, phosphate solubilization, nitrogen fixation, indole-3-acetic acid production, and ACC deaminase production, we sequenced overall 25 isolates, 14 from the rhizosphere and 11 from the roots. Although more efficient in exhibiting plant growthpromoting traits, rhizospheric bacteria showed a low rate of diversity in comparison to endophytic bacteria. The majority of the isolates from the rhizosphere belong to Pseudomonas, while isolates from the roots exhibited higher diversity with genera Pseudomonas, Bacillus, Staphylococcus, Lysinibacillus and Brevibacterium/Peribacillus/Bacillus. The capacity of the described bacteria to produce siderophores, solubilize phosphate, and fix nitrogen highlights their central role in enhancing nutrient availability and facilitating R. pseudoacacia adaptation to serpentine soils. The findings highlight the potential significance of serpentine bacteria, particularly Pseudomonas, in contributing to the resilience and growth of R. pseudoacacia in serpentine environments.
Collapse
Affiliation(s)
- Mujo Hasanović
- University of Sarajevo-Institute for Genetic Engineering and Biotechnology, Sarajevo, Bosnia and Herzegovina
| | | | - Anesa Ahatović Hajro
- University of Sarajevo-Institute for Genetic Engineering and Biotechnology, Sarajevo, Bosnia and Herzegovina
| | - Senad Murtić
- University of Sarajevo, Faculty of Agriculture and Food Science, Sarajevo, Bosnia and Herzegovina
| | - Adaleta Durmić-Pašić
- University of Sarajevo-Institute for Genetic Engineering and Biotechnology, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
33
|
Grossi CEM, Tani A, Mori IC, Matsuura T, Ulloa RM. Plant growth-promoting abilities of Methylobacterium sp. 2A involve auxin-mediated regulation of the root architecture. PLANT, CELL & ENVIRONMENT 2024; 47:5343-5357. [PMID: 39189962 DOI: 10.1111/pce.15116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024]
Abstract
Methylobacterium sp. 2A, a plant growth-promoting rhizobacteria (PGPR) able to produce indole-3-acetic acid (IAA), significantly promoted the growth of Arabidopsis thaliana plants in vitro. We aimed to understand the determinants of Methylobacterium sp. 2A-A. thaliana interaction, the factors underlying plant growth-promotion and the host range. Methylobacterium sp. 2A displayed chemotaxis to methanol and formaldehyde and was able to utilise 1-aminocyclopropane carboxylate as a nitrogen source. Confocal microscopy confirmed that fluorescent protein-labelled Methylobacterium sp. 2A colonises the apoplast of A. thaliana primary root cells and its inoculation increased jasmonic and salicylic acid in A. thaliana, while IAA levels remained constant. However, inoculation increased DR5 promoter activity in root tips of A. thaliana and tomato plants. Inoculation of this PGPR partially restored the agravitropic response in yucQ mutants and lateral root density was enhanced in iaa19, arf7, and arf19 mutant seedlings. Furthermore, Methylobacterium sp. 2A volatile organic compounds (VOCs) had a dose-dependent effect on the growth of A. thaliana. This PGPR is also able to interact with monocots eliciting positive responses upon inoculation. Methylobacterium sp. 2A plant growth-promoting effects can be achieved through the regulation of plant hormone levels and the emission of VOCs that act either locally or at a distance.
Collapse
Affiliation(s)
- Cecilia E M Grossi
- Laboratorio de Transducción de Señales en Plantas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Akio Tani
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Izumi C Mori
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Takakazu Matsuura
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Rita M Ulloa
- Laboratorio de Transducción de Señales en Plantas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Química Biológica, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
34
|
Marasco R, Mosqueira MJ, Seferji KA, Al Romaih SM, Michoud G, Xu J, Bez C, Castillo Hernandez T, Venturi V, Blilou I, Daffonchio D. Desert-adapted plant growth-promoting pseudomonads modulate plant auxin homeostasis and mitigate salinity stress. Microb Biotechnol 2024; 17:e70043. [PMID: 39692704 PMCID: PMC11653947 DOI: 10.1111/1751-7915.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 10/17/2024] [Indexed: 12/19/2024] Open
Abstract
By providing adaptive advantages to plants, desert microorganisms are emerging as promising solutions to mitigate the negative and abrupt effects of climate change in agriculture. Among these, pseudomonads, commonly found in soil and in association with plants' root system, have been shown to enhance plant tolerance to salinity and drought, primarily affecting root system architecture in various hosts. However, a comprehensive understanding of how these bacteria affect plant responses at the cellular, physiological and molecular levels is still lacking. In this study, we investigated the effects of two Pseudomonas spp. strains, E102 and E141, which were previously isolated from date palm roots and have demonstrated efficacy in promoting drought tolerance in their hosts. These strains colonize plant roots, influencing root architecture by inhibiting primary root growth while promoting root hair elongation and lateral root formation. Strains E102 and E141 increased auxin levels in Arabidopsis, whereas this effect was diminished in IAA-defective mutant strains, which exhibited reduced IAA production. In all cases, the effectiveness of the bacteria relies on the functioning of the plant auxin response and transport machinery. Notably, such physiological and morphological changes provide an adaptive advantage to the plant, specifically under stress conditions such as salinity. Collectively, this study demonstrates that by leveraging the host's auxin signalling machinery, strains E102 and E141 significantly improve plant resilience to abiotic stresses, positioning them as potential biopromoters/bioprotectors for crop production and ecosystem restoration in alignment with Nature-based Solution approaches.
Collapse
Affiliation(s)
- Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Maria J. Mosqueira
- Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Kholoud A. Seferji
- Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Sarah M. Al Romaih
- Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Grégoire Michoud
- Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Jian Xu
- Plant Systems PhysiologyRadboud UniversityNijmegenThe Netherlands
| | - Cristina Bez
- International Centre for Genetic Engineering and BiotechnologyTriesteItaly
| | - Tatiana Castillo Hernandez
- Laboratory of Plant Cell and Developmental Biology, Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Vittorio Venturi
- International Centre for Genetic Engineering and BiotechnologyTriesteItaly
- African Genome CenterUniversity Mohammed VI PolytechnicBen GuerirMorocco
| | - Ikram Blilou
- Laboratory of Plant Cell and Developmental Biology, Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| |
Collapse
|
35
|
Duque TS, Pinheiro RA, Souza IM, Silva GG, Soares MA, Barbosa Dos Santos J. Herbicides and bio-inputs: Compatibility and challenges for sustainable agriculture. CHEMOSPHERE 2024; 369:143878. [PMID: 39638133 DOI: 10.1016/j.chemosphere.2024.143878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/11/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
With population growth and the contamination of ecosystems by pesticides and chemical fertilisers, agriculture faces the challenge of increasing productivity in a sustainable manner. In response to this demand, the global ecological transition has promoted the use of bio-inputs, such as fungi and bacteria, which are essential for agricultural sustainability. However, the extensive use of herbicides in modern agriculture may compromise the effectiveness of these bio-inputs by interfering with their biochemical pathways. This review compiles and analyses information on the compatibility between herbicides and bio-inputs, focusing on the effects of herbicides on microbiological control agents and biofertilising bacteria. Based on scientific publications from the past four decades, the results indicate that herbicides can significantly interfere with different groups of microorganisms, depending on the variables assessed and the selectivity of the products. To mitigate these impacts, the prioritised use of selective herbicides, bio-inputs protected by specific molecules, and management practices that avoid direct contact between herbicides and bio-inputs is suggested. This study contributes to the understanding of interactions between herbicides and bio-inputs, promoting more sustainable agricultural practices aligned with global objectives for food security and environmental preservation.
Collapse
Affiliation(s)
- Tayna Sousa Duque
- Department of Agronomy, Federal University of Vales do Jequitinhonha and Mucuri, 39100-000, Diamantina, Minas Gerais, Brazil.
| | - Rodrigo Almeida Pinheiro
- Department of Agronomy, Federal University of Vales do Jequitinhonha and Mucuri, 39100-000, Diamantina, Minas Gerais, Brazil.
| | - Iasmim Marcella Souza
- Department of Agronomy, Federal University of Vales do Jequitinhonha and Mucuri, 39100-000, Diamantina, Minas Gerais, Brazil.
| | - Gabriele Gonçalves Silva
- Department of Agronomy, Federal University of Vales do Jequitinhonha and Mucuri, 39100-000, Diamantina, Minas Gerais, Brazil.
| | - Marcus Alvarenga Soares
- Department of Agronomy, Federal University of Vales do Jequitinhonha and Mucuri, 39100-000, Diamantina, Minas Gerais, Brazil
| | - José Barbosa Dos Santos
- Department of Agronomy, Federal University of Vales do Jequitinhonha and Mucuri, 39100-000, Diamantina, Minas Gerais, Brazil.
| |
Collapse
|
36
|
Thompson RM, George D, del Carmen Montero‐Calasanz M. Actinorhizal plants and Frankiaceae: The overlooked future of phytoremediation. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70033. [PMID: 39496278 PMCID: PMC11534348 DOI: 10.1111/1758-2229.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024]
Abstract
Bioremediation of degraded soils is increasingly necessary due to rising food demand, reductions in agricultural productivity, and limitations in total available arable area. Several bioremediation strategies could be utilized to combat soil degradation, with phytoremediation emerging as a standout option due to its in situ approach and low implementation and maintenance costs compared to other methods. Phytoremediation is also a sustainable solution, which is increasingly desirable to blunt the progression of global warming. Actinorhizal plants display several desirable traits for application in phytoremediation, including the ability to revegetate saline soil and sequester heavy metals with low foliar translocation. Additionally, when grown in association with Frankiaceae endophytes, these abilities are improved and expanded to include the degradation of anthropogenic pollutants and the restoration of soil fertility. However, despite this significant potential to remediate marginalized land, the actinorhizal-Frankiaceae symbiosis remains heavily understudied and underutilized. This review aims to collate the scattered studies that demonstrate these bioremediation abilities and explain the mechanics behind such abilities to provide the necessary insight. Finally, this review will conclude with proposed future directions for utilizing this symbiosis and how it can be optimized further to facilitate improved bioremediation outcomes.
Collapse
Affiliation(s)
- Ryan Michael Thompson
- School of Natural and Environmental Sciences, Newcastle UniversityNewcastle upon TyneUK
| | - David George
- School of Natural and Environmental Sciences, Newcastle UniversityNewcastle upon TyneUK
| | - Maria del Carmen Montero‐Calasanz
- School of Natural and Environmental Sciences, Newcastle UniversityNewcastle upon TyneUK
- IFAPA Las Torres‐Andalusian Institute of Agricultural and Fisheries Research and Training, Junta de AndalucíaSevilleSpain
| |
Collapse
|
37
|
Mekni M, Chamekh A, Yagoubi A, Kharbech O, Driss R, Fersi C, Djebali W, Chouari R. Combining gamma-radiation and bioaugmentation enhances wastewater's quality for its reuse in agricultural purposes. ENVIRONMENTAL TECHNOLOGY 2024:1-11. [PMID: 39607803 DOI: 10.1080/09593330.2024.2430797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024]
Abstract
The reuse of wastewater in agriculture can be environmentally beneficial due to its abundance of nutrients that promote plant growth and soil fertility. However, wastewater effluents (WWE) are often considered sources of dissemination of bacteria, antibiotics, heavy metal resistance genes, and pathogens. In this study, we employed a combination of gamma irradiation and bioaugmentation as a strategy for WWE treatment. Gamma irradiation facilitates the elimination of pathogens and the degradation of complex organic matter, while bioaugmentation utilises a consortium of microorganisms specialised in metal sorption. Bacterial strains were isolated from soils irrigated with WWE and selected based on their tolerance to Cd (0.2 g L-1), Pb (1 g L-1) and Cu (1.5 g L-1). A consortium composed of Bacillus selenatarsenatis S53, Bacillus thuringiensis S15, and Staphylococcus edaphicus S107 was selected for their metal biosorption capacity, which was evaluated after 24 h of incubation in gamma-irradiated WWE (WWEI). The treated WWE was then used for pea (Pisum sativum L.) seeds germination over a 9 days' period. The bacterial consortium successfully biosorbed 180, 8085, and 125 µg g-1 dry weight of Cd, Pb, and Cu, respectively, when incubated in WWEI. Seed imbibition with bioaugmented WWEI (WWEIB) resulted in significant increases in radicle and epicotyl elongation compared to germination in WWE (+91.6% and +123.7%, respectively). Additionally, there was an improvement in fresh biomass production for seedlings hydrated with WWEIB compared to WWE. Overall, this strategy appears highly promising for the safe reuse of WWE and enhancing crop productivity by mitigating contaminant-induced plant stress.
Collapse
Affiliation(s)
- Marwa Mekni
- Faculty of Sciences of Bizerte. Laboratory of Plant Toxicology and Environmental Microbiology (LR18ES38), University of Carthage, Zarzouna, 7021 Bizerte, Tunisia
| | - Anissa Chamekh
- Faculty of Sciences of Bizerte. Laboratory of Plant Toxicology and Environmental Microbiology (LR18ES38), University of Carthage, Zarzouna, 7021 Bizerte, Tunisia
| | - Amira Yagoubi
- Faculty of Sciences of Bizerte. Laboratory of Plant Toxicology and Environmental Microbiology (LR18ES38), University of Carthage, Zarzouna, 7021 Bizerte, Tunisia
| | - Oussema Kharbech
- Faculty of Sciences of Bizerte. Laboratory of Plant Toxicology and Environmental Microbiology (LR18ES38), University of Carthage, Zarzouna, 7021 Bizerte, Tunisia
| | - Rim Driss
- Faculty of Sciences of Bizerte. Laboratory of Plant Toxicology and Environmental Microbiology (LR18ES38), University of Carthage, Zarzouna, 7021 Bizerte, Tunisia
- National Center for Nuclear Sciences and Technologies (CNSTN), 2020 Sidi Thabet, Tunisia
| | - Cheima Fersi
- National Institute for Research and Physico-chemical Analyses (INRAP), 2020 Sidi Thabet, Tunisia
| | - Wahbi Djebali
- Faculty of Sciences of Bizerte. Laboratory of Plant Toxicology and Environmental Microbiology (LR18ES38), University of Carthage, Zarzouna, 7021 Bizerte, Tunisia
| | - Rakia Chouari
- Faculty of Sciences of Bizerte. Laboratory of Plant Toxicology and Environmental Microbiology (LR18ES38), University of Carthage, Zarzouna, 7021 Bizerte, Tunisia
| |
Collapse
|
38
|
Ki DU, Choi HJ, Song WS, Yoon SI. Structural analysis of the CJ0600 protein from Campylobacter jejuni. Biochem Biophys Res Commun 2024; 735:150810. [PMID: 39418773 DOI: 10.1016/j.bbrc.2024.150810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
The Campylobacter jejuni bacterium, which causes foodborne enteritis in humans, expresses the uncharacterized protein CJ0600. Based on sequence analysis, CJ0600 has been proposed to function as a 1-aminocyclopropane-1-carboxylate (ACC) deaminase (AccDA) or cysteine desulfhydrase (CysDS). However, it has never been investigated whether CJ0600 exerts AccDA or CysDS activity or how CJ0600 mediates its enzymatic activity. To reveal the structural features necessary for the function of CJ0600, we determined the crystal structure of CJ0600 and characterized its enzymatic activity. CJ0600 contains two domains and features an interdomain pocket, which accommodates a pyridoxal 5'-phosphate (PLP) molecule as a Schiff base with its lysine residue (K35), as observed in its structural homologs, including AccDA, CysDS, and serine deaminase (SerDA). However, unlike its structural homologs, CJ0600 exists as a monomer and exhibits unique structural features throughout its structure. Moreover, CJ0600 contains unique active site residues that are not observed in AccDA, CysDS, or SerDA. Consistently, phylogenetic analysis indicates that CJ0600 and its orthologs are evolutionarily distinct from AccDA, CysDS, and SerDA. Indeed, CJ0600 showed no CysDS or SerDA activity and extremely weak AccDA activity. These observations suggest that CJ0600 functions as a unique PLP-dependent enzyme that has not been reported.
Collapse
Affiliation(s)
- Dong Uk Ki
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hong Joon Choi
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Wan Seok Song
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sung-Il Yoon
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea; Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
39
|
Zhu L, Zhang P, Ma S, Yu Q, Wang H, Liu Y, Yang S, Chen Y. Enhancing carrot ( Daucus carota var. sativa Hoffm.) plant productivity with combined rhizosphere microbial consortium. Front Microbiol 2024; 15:1466300. [PMID: 39633805 PMCID: PMC11615968 DOI: 10.3389/fmicb.2024.1466300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Background Plant growth-promoting rhizobacteria (PGPR) are an integral part of agricultural practices due to their roles in promoting plant growth, improving soil conditions, and suppressing diseases. However, researches on the PGPR in the rhizosphere of carrots, an important vegetable crop, is relative limited. Therefore, this study aimed to isolate and characterize PGPR strains from the rhizosphere soil of greenhouse-grown carrots, with a focus on their potential to stimulate carrot growth. Methods Through a screening process, 12 high-efficiency phosphorus-solubilizing bacteria, one nitrogen-fixing strain, and two potassium-solubilizing strains were screened. Prominent among these were Bacillus firmus MN3 for nitrogen fixation ability, Acinetobacter pittii MP41 for phosphate solubilization, and Bacillus subtilis PK9 for potassium-solubilization. These strains were used to formulate a combined microbial consortium, N3P41K9, for inoculation and further analysis. Results The application of N3P41K9, significantly enhanced carrot growth, with an increase in plant height by 17.1% and root length by 54.5% in a pot experiment, compared to the control group. This treatment also elevated alkaline-hydrolyzable nitrogen levels by 72.4%, available phosphorus by 48.2%, and available potassium by 23.7%. Subsequent field trials confirmed the efficacy of N3P41K9, with a notable 12.5% increase in carrot yields. The N3P41K9 treatment had a minimal disturbance on soil bacterial diversity and abundance, but significantly increased the prevalence of beneficial genera such as Gemmatimonas and Nitrospira. Genus-level redundancy analysis indicated that the pH and alkali-hydrolyzable nitrogen content were pivotal in shaping the bacterial community composition. Discussion The findings of this study highlight the feasibility of combined microbial consortium in promoting carrot growth, increasing yield, and enriching the root environment with beneficial microbes. Furthermore, these results suggest the potential of the N3P41K9 consortium for soil amelioration, offering a promising strategy for sustainable agricultural practices.
Collapse
Affiliation(s)
- Liping Zhu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, College of Resource and Environment Science, Qingdao Agricultural University, Qingdao, Shandong, China
- Postdoctoral Research Station, Rushan Hanwei Bio-Technical & Science CO., LTD., Weihai, Shandong, China
| | - Peiqiang Zhang
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, College of Resource and Environment Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Shunan Ma
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, College of Resource and Environment Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Quan Yu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, College of Resource and Environment Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Haibing Wang
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, College of Resource and Environment Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yuexuan Liu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, College of Resource and Environment Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Song Yang
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, College of Resource and Environment Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yanling Chen
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, College of Resource and Environment Science, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
40
|
Zhang Y, Zhu Z, Qin T, Li X, Yu R, Tang Z, Zhang C, Yan Y, Yin K, Xu Z, Chen G, Zou L, Xiao Y. Whole Genome Sequencing and Comparative Genomic Analysis of Pseudomonas aeruginosa SF416, a Potential Broad-Spectrum Biocontrol Agent Against Xanthomonas oryzae pv. oryzae. Microorganisms 2024; 12:2263. [PMID: 39597652 PMCID: PMC11596105 DOI: 10.3390/microorganisms12112263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Rice is one of the most important staple crops worldwide. However, the bacterial blight of rice caused by Xanthomonas oryzae pv. oryzae (Xoo) poses a major threat to the production of rice. In this study, we isolated and identified the strain Pseudomonas aeruginosa SF416, which exhibited significant antagonistic activity against Xoo, from a soil sample collected in a winter wheat field in Shannanzhalang County, Tibet, China. The bacterial solution (BS) and cell-free supernatant (CFS) of SF416 had significant prevention effects for the bacterial blight of rice, with an efficacy of 45.1% and 34.18%, respectively, while they exhibited a slightly lower therapeutic efficiency of 31.64% and 25.09%. The genomic analysis showed that P. aeruginosa SF416 contains genes involved in cell motility, colonization, cold and hot shock proteins, antibiotic resistance, and plant growth promotion. SF416 also harbors two sets of phenazine-1-carboxylic acid (PCA) synthesis gene clusters, phz1 (phzA1-G1) and phz2 (phzA2-G2), and other phenozine product-synthesis--related genes phzS, phzM, and phzH, as well as genes in the SF416 genome that share high similarity with the ones in the genomes of P. aeruginosa M18, suggesting that the two sets of PCA synthesis gene clusters are responsible for the antagonistic effect of SF416 against Xoo. A comparative antiSMASH analysis revealed that P. aeruginosa SF416 contains 17 gene clusters related to secondary metabolite synthesis, 7 of which, encoding for pyochelin, azetidomonamide A/B, L-2-amino-4-methoxy-trans-3-butenoic acid, hydrogen cyanide, pyocyanine, pseudopaline, and bicyclomycin, are conserved in strains of P. aeruginosa. Moreover, SF416 can produce protease and siderophores and display a broad-spectrum antagonistic activity against various major plant pathogenic bacteria and fungi. The results suggest that P. aeruginosa SF416 could be a potential candidate agent for the bacterial blight of rice.
Collapse
Affiliation(s)
- Yikun Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (Z.Z.); (T.Q.); (Z.T.); (C.Z.); (Y.Y.); (K.Y.); (Z.X.); (G.C.)
| | - Zhongfeng Zhu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (Z.Z.); (T.Q.); (Z.T.); (C.Z.); (Y.Y.); (K.Y.); (Z.X.); (G.C.)
| | - Tian Qin
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (Z.Z.); (T.Q.); (Z.T.); (C.Z.); (Y.Y.); (K.Y.); (Z.X.); (G.C.)
| | - Xiaojuan Li
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - RuoChen Yu
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Zifan Tang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (Z.Z.); (T.Q.); (Z.T.); (C.Z.); (Y.Y.); (K.Y.); (Z.X.); (G.C.)
| | - Chenjiayi Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (Z.Z.); (T.Q.); (Z.T.); (C.Z.); (Y.Y.); (K.Y.); (Z.X.); (G.C.)
| | - Yichao Yan
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (Z.Z.); (T.Q.); (Z.T.); (C.Z.); (Y.Y.); (K.Y.); (Z.X.); (G.C.)
| | - Ke Yin
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (Z.Z.); (T.Q.); (Z.T.); (C.Z.); (Y.Y.); (K.Y.); (Z.X.); (G.C.)
| | - Zhengyin Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (Z.Z.); (T.Q.); (Z.T.); (C.Z.); (Y.Y.); (K.Y.); (Z.X.); (G.C.)
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Gongyou Chen
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (Z.Z.); (T.Q.); (Z.T.); (C.Z.); (Y.Y.); (K.Y.); (Z.X.); (G.C.)
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lifang Zou
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (Z.Z.); (T.Q.); (Z.T.); (C.Z.); (Y.Y.); (K.Y.); (Z.X.); (G.C.)
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Youlun Xiao
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| |
Collapse
|
41
|
Rojas-Pirela M, Carillo P, Lárez-Velásquez C, Romanazzi G. Effects of chitosan on plant growth under stress conditions: similarities with plant growth promoting bacteria. FRONTIERS IN PLANT SCIENCE 2024; 15:1423949. [PMID: 39582624 PMCID: PMC11581901 DOI: 10.3389/fpls.2024.1423949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/16/2024] [Indexed: 11/26/2024]
Abstract
The agricultural use of synthetic pesticides, fertilizers, and growth regulators may represent a serious public health and environmental problem worldwide. All this has prompted the exploration of alternative chemical compounds, leading to exploring the potential of chitosan and PGPB in agricultural systems as a potential biotechnological solution to establish novel agricultural production practices that not only result in fewer adverse impacts on health and the environment but also improve the resilience and growth of the plants. In this work, an analysis of the impact of plant growth-promoting bacteria (PGPB) and chitosan on plant growth and protection has been conducted, emphasizing the crucial bioactivities of the resistance of the plants to both biotic and abiotic stressors. These include inducing phytohormone production, mobilization of insoluble soil nutrients, biological nitrogen fixation, ethylene level regulation, controlling soil phytopathogens, etc. Moreover, some relevant aspects of chitin and chitosan are discussed, including their chemical structures, sources, and how their physical properties are related to beneficial effects on agricultural applications and mechanisms of action. The effects of PGPB and chitosan on photosynthesis, germination, root development, and protection against plant diseases have been compared, emphasizing the intriguing similarities and synergistic effects observed in some of these aspects. Although currently there are limited studies focused on the combined application of PGPB and chitosan, it would be important to consider the similarities highlighted in this work, and those that may emerge in future studies or through well-designed investigations, because these could permit advancing towards a greater knowledge of these systems and to obtain better formulations by combining these bioproducts, especially for use in the new contexts of sustainable agriculture. Thus, it seems feasible to augur a promising near future for these combinations, considering the wide range of possibilities offered by chitinous biomaterials for the development of innovative formulations, as well as allowing different application methods. Likewise, the studies related to the PGPB effects on plant growth appear to be expanding due to ongoing research to test on plants the impacts of microorganisms derived from different environments, whether known or recently discovered, making it a very exciting field of research.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Petronia Carillo
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania, Caserta, Italy
| | | | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
42
|
Huo Q, Gong M, Jiang Y, Yang X, Kong M, He J, Zhang Q, Song J, Li X, Han W, Mei X, Lv G. Microencapsulated Microbial Seed Coating Could Improve Soil Environment and Maize Grain Yield in Saline Soil. PLANTS (BASEL, SWITZERLAND) 2024; 13:3139. [PMID: 39599348 PMCID: PMC11597701 DOI: 10.3390/plants13223139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024]
Abstract
Soil salinization is one of the major challenges for modern agriculture, posing a great threat to soil health and food security. Field experiments were conducted to evaluate the effect of seed coating on soil environment and maize growth in saline soils. Three treatments were applied to maize seeds: coating with a microencapsulated microbial agent (ME), coating with microbial only (MB), and no coating (CK). High-throughput sequencing of soil bacterial and fungal 16S and ITS rRNA genes was performed using the Illumina HiSeq platform to analyze the effects of these treatments on soil bacterial and fungal diversity and community structure. Additionally, the influence of different treatments on endogenous hormones and yield of maize were investigated. It was found that the coating with a microencapsulated microbial agent led to decreases in pH and electrical conductivity (EC), while increasing the content of soil available phosphorus. This coating improved soil microbial diversity, significantly increasing the relative abundance of the main bacteria genera, Bacillus (34.9%), and the main fungal genera, Mortierella (190.4%). The treatment also significantly enhanced indole-3-acetic acid (IAA) by 51.2%, contributing to improvements in resistance to salt stress. The germination rate increased by 22.9%, the 100-grain weight increased by 12.7%, and grain yield increased by 14.3%. The use of the microencapsulated microbial agent effectively mitigated the adverse effects of salt stress on maize plants. This approach is beneficial for promoting sustainable agriculture in saline soils.
Collapse
Affiliation(s)
- Qiuyan Huo
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.H.); (M.G.); (X.Y.); (M.K.); (J.H.)
| | - Min Gong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.H.); (M.G.); (X.Y.); (M.K.); (J.H.)
| | - Yawen Jiang
- College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030801, China;
| | - Xi Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.H.); (M.G.); (X.Y.); (M.K.); (J.H.)
| | - Meng Kong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.H.); (M.G.); (X.Y.); (M.K.); (J.H.)
| | - Jiuxing He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.H.); (M.G.); (X.Y.); (M.K.); (J.H.)
| | - Qiang Zhang
- Kingenta Ecological Engineering Group Co., Ltd., Linyi 276720, China; (Q.Z.); (J.S.); (X.L.)
| | - Jiqing Song
- Kingenta Ecological Engineering Group Co., Ltd., Linyi 276720, China; (Q.Z.); (J.S.); (X.L.)
| | - Xinzhu Li
- Kingenta Ecological Engineering Group Co., Ltd., Linyi 276720, China; (Q.Z.); (J.S.); (X.L.)
| | - Wei Han
- Shandong Agri-Tech Extension Center, Jinan 250013, China
| | - Xurong Mei
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.H.); (M.G.); (X.Y.); (M.K.); (J.H.)
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, China Agricultural University/Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guohua Lv
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.H.); (M.G.); (X.Y.); (M.K.); (J.H.)
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, China Agricultural University/Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
43
|
Vimal SR, Singh JS, Prasad SM. Paddy seeds bacterization with ACC deaminase producing endophyte Alcaligenes faecalis SSP8 regulates physiology, leaves gas exchange parameters, PSII photochemistry and antioxidant enzymes metabolism in NaCl stressed seedlings. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100299. [PMID: 39629479 PMCID: PMC11613201 DOI: 10.1016/j.crmicr.2024.100299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
The endophytic microbes play crucial roles to crop development under stress environmental conditions. In this research, 36 endophytic bacterial strains having diverse morphology were isolated from exotic wild plant Croton bonplandianus. The strain SSP8 was selected for experimental study as it efficiently tolerate NaCl (0-1200 mM), produced Indole-3-acetic acid (IAA) (46 μg mL-1) and 1-amino-1-cyclopropane-1-carboxylate (ACC) deaminase (176.70 nmol α-ketobutyrate mg-1 protein h-1). The SSP8 was identified as Alcaligenes faecalis with 16 S r-RNA gene sequencing and submitted to NCBI-USA with accession number OR225818. The A. faecalis SSP8 significantly enhanced paddy seeds germination percentage, seedlings vigour index and vegetative growth parameters under different NaCl (0-180 mM) regimes. The paddy seedlings chlorophyll contents, Chl-a fluorescence transient (PSII photochemistry), leaves gas exchange parameters were significantly enhanced in A. faecalis SSP8+NaCl (0-180 mM) conditions. The oxidative stress biomarkers and antioxidant enzymes activities were significantly declined in A. faecalis SSP8+NaCl (0-180 mM) treated seedlings. In conclusion, based on the above results the paddy seeds bacterization with A. faecalis SSP8 could be a bio-prospective tool to alleviate the NaCl stress and enhance the paddy crop agriculture productivity in salt affected marginal soils.
Collapse
Affiliation(s)
- Shobhit Raj Vimal
- Ranjan Plant Physiology & Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, 221102, India
| | - Jay Shankar Singh
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology & Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, 221102, India
| |
Collapse
|
44
|
Hou M, Leng C, Zhu J, Yang M, Yin Y, Xing Y, Chen J. Alpine and subalpine plant microbiome mediated plants adapt to the cold environment: A systematic review. ENVIRONMENTAL MICROBIOME 2024; 19:82. [PMID: 39487507 PMCID: PMC11529171 DOI: 10.1186/s40793-024-00614-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/02/2024] [Indexed: 11/04/2024]
Abstract
With global climate change, ecosystems are affected, some of which are more vulnerable than others, such as alpine ecosystems. Microbes play an important role in environmental change in global ecosystems. Plants and microbes are tightly associated, and symbiotic or commensal microorganisms are crucial for plants to respond to stress, particularly for alpine plants. The current study of alpine and subalpine plant microbiome only stays at the community structure scale, but its ecological function and mechanism to help plants to adapt to the harsh environments have not received enough attention. Therefore, it is essential to systematically understand the structure, functions and mechanisms of the microbial community of alpine and subalpine plants, which will be helpful for the conservation of alpine and subalpine plants using synthetic microbial communities in the future. This review mainly summarizes the research progress of the alpine plant microbiome and its mediating mechanism of plant cold adaptation from the following three perspectives: (1) Microbiome community structure and their unique taxa of alpine and subalpine plants; (2) The role of alpine and subalpine plant microbiome in plant adaptation to cold stress; (3) Mechanisms by which the microbiome of alpine and subalpine plants promotes plant adaptation to low-temperature environments. Finally, we also discussed the future application of high-throughput technologies in the development of microbial communities for alpine and subalpine plants. The existing knowledge could improve our understanding of the important role of microbes in plant adaptation to harsh environments. In addition, perspective further studies on microbes' function confirmation and microbial manipulations in microbiome engineering were also discussed.
Collapse
Affiliation(s)
- Mengyan Hou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Chunyan Leng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Jun Zhu
- Xinjiang Institute of Chinese and Ethnic Medicine, Urumqi, 830002, People's Republic of China
| | - Mingshu Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Yifei Yin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Yongmei Xing
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Juan Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China.
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, People's Republic of China.
| |
Collapse
|
45
|
Aunkam P, Sibponkrung S, Limkul S, Seabkongseng T, Mahanil K, Umnajkitikorn K, Boonkerd N, Teaumroong N, Sato S, Tittabutr P, Boonchuen P. Mechanisms of Cannabis Growth Promotion by Bacillus velezensis S141. PLANTS (BASEL, SWITZERLAND) 2024; 13:2971. [PMID: 39519890 PMCID: PMC11547760 DOI: 10.3390/plants13212971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Cannabis sativa L. has a variety of uses, including fiber production, food, oil, and medicine. In response to environmental concerns regarding chemical fertilizers, Bacillus velezensis S141 was examined as a plant-growth-promoting bacterium (PGPB) for cannabis. This study evaluated the effects of S141 on cannabis growth and utilized transcriptomic analysis to identify the responsive pathways. Inoculation with S141 significantly increased growth in laboratory and field environments, with most of the bacteria residing in the leaves, followed by the stems and roots, as determined by quantitative polymerase chain reaction (qPCR). Transcriptomic analysis revealed 976 differentially expressed genes. Upregulated genes were associated with metabolism, cellular processes, and catalytic activities, especially in the biosynthesis of phenylpropanoid, plant-pathogen interactions, and hormone signaling pathways. S141 mutants deficient in the production of auxin and cytokinin displayed reduced growth enhancement, which affirmed the roles of these hormones in cannabis development. These findings emphasize the potential of S141 as a sustainable growth promoter for cannabis and provide insights into the underlying pathways it influences.
Collapse
Affiliation(s)
- Phirom Aunkam
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Surachat Sibponkrung
- Center of Excellent in Agricultural Product Innovation, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Sirawich Limkul
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Tuangrak Seabkongseng
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Kanjana Mahanil
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Kamolchanok Umnajkitikorn
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Nantakorn Boonkerd
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Neung Teaumroong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Panlada Tittabutr
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pakpoom Boonchuen
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
46
|
Ali MH, Khan MI, Amjad F, Khan N, Seleiman MF. Improved chickpea growth, physiology, nutrient assimilation and rhizoremediation of hydrocarbons by bacterial consortia. BMC PLANT BIOLOGY 2024; 24:984. [PMID: 39425086 PMCID: PMC11490054 DOI: 10.1186/s12870-024-05709-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Soil pollution by petroleum hydrocarbons (PHCs) reduces yield by changing the physico-chemical properties of soil and plants due to PHCs' biotoxicity and persistence. Thus, removing PHCs from the soil is crucial for ecological sustainability. Microbes-assisted phytoremediation is an economical and eco-friendly solution. The current work aimed to develop and use bacterial consortia (BC) for PHCs degradation and plant growth enhancement in hydrocarbon-contaminated soil. Initially, the enriched microbial cultures (that were prepared from PHCs-contaminated soils from five distinct regions) were obtained via screening through microcosm experiments. Afterward, two best microbial cultures were tested for PHCs degradation under various temperature and pH ranges. After culture optimization, isolation and characterization of bacterial strains were done to construct two BC. These constructed BC were tested in a pot experiment for hydrocarbons degradation and chickpea growth in PHCs contaminated soil. RESULTS Findings revealed that PHCs exerted significant phytotoxic effects on chickpea growth and physiology when cultivated in PHCs contaminated soil, reducing agronomic and physiological traits by 13-29% and 12-43%, respectively. However, in the presence of BC, the phytotoxic impacts of PHCs on chickpea plants were reduced, resulting in up to 24 - 35% improvement in agronomic and physiological characteristics as compared to un-inoculated contaminated controls. Furthermore, the bacterial consortia boosted chickpea's nutritional absorption and antioxidant mechanism. Most importantly, chickpea plants phytoremediated 52% of the initial PHCs concentration; however, adding BC1 and BC2 with chickpea plants further increased this removal and remediated 74% and 80% of the initial PHCs concentration, respectively. CONCLUSION In general, BC2 outperformed BC1 (with few exceptions) in promoting plant growth and PHCs elimination. Therefore, using multi-trait BC for PHCs degradation and plant growth improvement under PHCs stress may be an efficient and environmentally friendly strategy to deal with PHCs pollution and toxicity.
Collapse
Affiliation(s)
- Muhammad Hayder Ali
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Imran Khan
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Fiza Amjad
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Naeem Khan
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Mahmoud F Seleiman
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
47
|
Moreno-Valencia FD, Plascencia-Espinosa MÁ, Morales-García YE, Muñoz-Rojas J. Selection and Effect of Plant Growth-Promoting Bacteria on Pine Seedlings ( Pinus montezumae and Pinus patula). Life (Basel) 2024; 14:1320. [PMID: 39459620 PMCID: PMC11509945 DOI: 10.3390/life14101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Forest cover is deteriorating rapidly due to anthropogenic causes, making its restoration urgent. Plant growth-promoting bacteria (PGPB) could offer a viable solution to ensure successful reforestation efforts. This study aimed to select bacterial strains with mechanisms that promote plant growth and enhance seedling development. The bacterial strains used in this study were isolated from the rhizosphere and endophyte regions of Pinus montezumae Lamb. and Pinus patula Schl. et Cham., two Mexican conifer species commonly used for reforestation purposes. Sixteen bacterial strains were selected for their ability to produce auxins, chitinase, and siderophores, perform nitrogen fixation, and solubilize inorganic phosphates; they also harbored genes encoding antimicrobial production and ACC deaminase. The adhesion to seeds, germination rate, and seedling response of P. montezumae and P. patula were performed following inoculation with 10 bacterial strains exhibiting high plant growth-promoting potential. Some strains demonstrated the capacity to enhance seedling growth. The selected strains were taxonomically characterized and belonged to the genus Serratia, Buttiauxella, and Bacillus. These strains exhibited at least two mechanisms of action, including the production of indole-3-acetic acid, biological nitrogen fixation, and phosphate solubilization, and could serve as potential alternatives for the reforestation of affected areas.
Collapse
Affiliation(s)
- Francisco David Moreno-Valencia
- Consejo Nacional de Ciencias, Humanidades y Tecnología (CONAHCYT)—Group “Ecology and Survival of Microorganisms”, Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla C.P. 72570, Mexico;
| | - Miguel Ángel Plascencia-Espinosa
- Centro de Investigación en Biotecnología Aplicada (CIBA), Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino, Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, Tlaxcala C.P. 90700, Mexico
| | - Yolanda Elizabeth Morales-García
- Grupo Inoculantes Microbianos, Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Puebla C.P. 72570, Mexico;
- Group “Ecology and Survival of Microorganisms”, Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla C.P. 72570, Mexico
| | - Jesús Muñoz-Rojas
- Group “Ecology and Survival of Microorganisms”, Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla C.P. 72570, Mexico
| |
Collapse
|
48
|
Passarini MRZ, Robayo MIG, Ottoni JR, Duarte AWF, Rosa LH. Biotechnological potential in agriculture of soil Antarctic microorganisms revealed by omics approach. World J Microbiol Biotechnol 2024; 40:345. [PMID: 39394504 DOI: 10.1007/s11274-024-04114-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/17/2024] [Indexed: 10/13/2024]
Abstract
The biotechnological potential for agricultural applications in the soil in the thawing process on Whalers Bay, Deception Island, Antarctica was evaluated using a metagenomic approach through high-throughput sequencing. Approximately 22.70% of the sequences were affiliated to the phyla of the Bacteria dominion, followed by 0.26% to the Eukarya. Proteobacteria (Bacteria) and Ascomycota (Fungi) were the most abundant phyla. Thirty-two and thirty-six bacterial and fungal genera associated with agricultural biotechnological applications were observed. Streptomyces and Pythium were the most abundant genera related to the Bacteria and Oomycota, respectively. The main agricultural application associated with bacteria was nitrogen affixation; in contrast for fungi, was associated with phytopathogenic capabilities. The present study showed the need to use metagenomic technology to understand the dynamics and possible metabolic pathways associated with the microbial communities present in the soil sample in the process of thawing recovered from the Antarctic continent, which presented potential application in processes of agro-industrial interest.
Collapse
Affiliation(s)
- Michel Rodrigo Zambrano Passarini
- Laboratório de Biotecnologia Ambiental, Universidade Federal da Integração Latino- Americana, Av. Tarquίnio Joslin dos Santos, 1000 - Jd Universitário, Foz do Iguaçu, PR 85870-650, Brazil.
| | - Marahia Isabel Guevara Robayo
- Laboratório de Biotecnologia Ambiental, Universidade Federal da Integração Latino- Americana, Av. Tarquίnio Joslin dos Santos, 1000 - Jd Universitário, Foz do Iguaçu, PR 85870-650, Brazil
| | - Júlia Ronzella Ottoni
- Laboratório de Biotecnologia Ambiental, Universidade Federal da Integração Latino- Americana, Av. Tarquίnio Joslin dos Santos, 1000 - Jd Universitário, Foz do Iguaçu, PR 85870-650, Brazil
| | | | - Luiz Henrique Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
49
|
Giannelli G, Del Vecchio L, Cirlini M, Gozzi M, Gazza L, Galaverna G, Potestio S, Visioli G. Exploring the rhizosphere of perennial wheat: potential for plant growth promotion and biocontrol applications. Sci Rep 2024; 14:22792. [PMID: 39354104 PMCID: PMC11445523 DOI: 10.1038/s41598-024-73818-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
Perennial grains, which remain productive for multiple years, rather than growing for only one season before harvest, have deep, dense root systems that can support a richness of beneficial microorganisms, which are mostly underexplored. In this work we isolated forty-three bacterial strains associated with the rhizosphere of the OK72 perennial wheat line, developed from a cross between winter common wheat and Thinopyrum ponticum. Identified using 16S rDNA sequencing, these bacteria were assessed for plant growth-promoting traits such as indole-3-acetic acid, siderophores and ACC-deaminase acid production, biofilm formation, and the ability to solubilize phosphate and proteins. Twenty-five strains exhibiting in vitro significant plant growth promoting traits, belong to wheat keystone genera Pseudomonas, Microbacterium, Variovorax, Pedobacter, Dyadobacter, Plantibacter, and Flavobacterium. Seven strains, including Aeromicrobium and Okibacterium genera, were able to promote root growth in a commercial annual wheat cultivar while strains from Pseudomonas genus inhibited the growth of Aspergillus flavus and Fusarium species, using direct antagonism assays. The same strains produced a high amount of 1-undecanol a volatile organic compound, which may aid in suppressing fungal growth. The study highlights the potential of these bacteria to form new commercial consortia, enhancing the health and productivity of annual wheat crops within sustainable agricultural practices.
Collapse
Affiliation(s)
| | | | - Martina Cirlini
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Marco Gozzi
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Laura Gazza
- Research Centre for Engineering and Agro-Food Processing, CREA, Rome, Italy
| | | | - Silvia Potestio
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giovanna Visioli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.
| |
Collapse
|
50
|
Liu J, Huang S, Haider STA, Ehsan A, Danish S, Hussain N, Salmen SH, Alharbi SA, Datta R. Influence of indole acetic acid and trehalose, with and without zinc oxide nanoparticles coated urea on tomato growth in nitrogen deficient soils. Sci Rep 2024; 14:22824. [PMID: 39354093 PMCID: PMC11445501 DOI: 10.1038/s41598-024-73558-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024] Open
Abstract
Nitrogen deficiency in low organic matter soils significantly reduces crop yield and plant health. The effects of foliar applications of indole acetic acid (IAA), trehalose (TA), and nanoparticles-coated urea (NPCU) on the growth and physiological attributes of tomatoes in nitrogen-deficient soil are not well documented in the literature. This study aims to explore the influence of IAA, TA, and NPCU on tomato plants in nitrogen-deficient soil. Treatments included control, 2mM IAA, 0.1% TA, and 2mM IAA + 0.1% TA, applied with and without NPCU. Results showed that 2mM IAA + 0.1% TA with NPCU significantly improved shoot length (~ 30%), root length (~ 63%), plant fresh (~ 48%) and dry weight (~ 48%), number of leaves (~ 38%), and leaf area (~ 58%) compared to control (NPCU only). Additionally, significant improvements in chlorophyll content, total protein, and total soluble sugar, along with a decrease in antioxidant activity (POD, SOD, CAT, and APX), validated the effectiveness of 2mM IAA + 0.1% TA with NPCU. The combined application of 2mM IAA + 0.1% TA with NPCU can be recommended as an effective strategy to enhance tomato growth and yield in nitrogen-deficient soils. This approach can be integrated into current agricultural practices to improve crop resilience and productivity, especially in regions with poor soil fertility. To confirm the efficacy of 2mM IAA + 0.1% TA with NPCU in various crops and climatic conditions, additional field studies are required.
Collapse
Affiliation(s)
- Jie Liu
- College of Mechanical and Automotive Engineering, ChuZhou Polytechnic, Chuzhou, 239000, China
| | - Shoucheng Huang
- College of Life and Health Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Sakeena Tul Ain Haider
- Department of Horticulture, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Abdullah Ehsan
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Subhan Danish
- Pesticide Quality Control Laboratory, Agriculture Complex, Old Shujabad Road, Multan, Punjab, Pakistan.
- Pesticide Quality Control Laboratory, Agriculture Complex, Old Shujabad Road, Multan, Pakistan.
| | - Nazim Hussain
- Institute of Agronomy, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Saleh H Salmen
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box 2925, Riyadh, 11461, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box 2925, Riyadh, 11461, Saudi Arabia
| | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic.
| |
Collapse
|