1
|
Huang K, Bai H, Meng C, Kashif M, Wei Z, Tang Z, He S, Wu S, He S, Jiang C. Deciphering the ammonia transformation mechanism of a novel marine multi-stress-tolerant yeast, Pichia kudriavzevii HJ2, as revealed by integrated omics analysis. Appl Environ Microbiol 2025:e0221124. [PMID: 40338088 DOI: 10.1128/aem.02211-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/20/2025] [Indexed: 05/09/2025] Open
Abstract
Ammonia nitrogen posed a significant threat to aquatic animals in aquaculture environments, and the substantial potential of microorganisms in removing ammonia nitrogen had garnered considerable attention. This study identified a marine yeast, Pichia kudriavzevii HJ2, which effectively removed ammonia nitrogen. By combining transcriptomics and metabolomics, the ammonia nitrogen transformation mechanism of HJ2 was elucidated. HJ2 achieved 100% ammonia nitrogen removal efficiency within 1 day of fermentation at 35°C with 300 mg/L ammonia nitrogen and 73.56% removal efficiency within 36 h with 600 mg/L ammonia nitrogen. Transcriptomics revealed that exposure to 600 mg/L ammonia nitrogen resulted in 541 up-regulated genes and 567 down-regulated genes in the HJ2 strain. Differentially expressed genes (DEGs) were primarily involved in the tricarboxylic acid (TCA) cycle and amino acid metabolism. Metabolomics revealed that HJ2 facilitated the production of 383 up-regulated metabolites and suppressed 137 down-regulated metabolites when exposed to 600 mg/L ammonia nitrogen. Integrating transcriptomics and metabolomics analyses showed that HJ2 removed ammonia nitrogen by sensing its presence in the extracellular environment, activating the TCA cycle, enhancing amino acid metabolism and nucleotide metabolism, and promoting its robust growth and reproduction. Amino acid metabolism played an important role in the ammonia transformation mechanism of HJ2. The result was confirmed by the increased activity of glutamate dehydrogenase (GDH) and aspartate aminotransferase (GOT). Up-regulated nitrogen metabolites such as L-glutamate, L-aspartic acid, spermidine, and trigonelline were produced. The results of enzyme activity tests, construction of overexpressing strains, and adding exogenous amino acid experiments demonstrated that HJ2 could utilize GDH and GOT ammonia assimilation pathways.IMPORTANCEAmmonia nitrogen removal ability was a universal characteristic among the ammonia-oxidizing bacteria or archaea. Recently, yeast strains from the genus Pichia were found to have ammonia nitrogen removal ability. However, the mechanism of ammonia nitrogen removal in Pichia had not been reported. In the study, the ammonia nitrogen removal efficiency of Pichia kudriavzevii HJ2 was identified, and the mechanisms by which HJ2 transformed ammonia nitrogen into non-toxic organic nitrogen were elucidated, offering potential solutions to pollution challenges in aquaculture and helping minimize resource waste. The study offered new insights into the transformation mechanism of microbial ammonia nitrogen removal and its environmentally friendly application.
Collapse
Affiliation(s)
- Kunmei Huang
- Guangxi Key Laboratory for Green Processing of Sugar Resources, Liuzhou Key Laboratory of Guizhong Characteristic Medicinal Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Huashan Bai
- Guangxi Key Laboratory for Green Processing of Sugar Resources, Liuzhou Key Laboratory of Guizhong Characteristic Medicinal Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Can Meng
- Guangxi Key Laboratory for Green Processing of Sugar Resources, Liuzhou Key Laboratory of Guizhong Characteristic Medicinal Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Muhammad Kashif
- Guangxi Key Laboratory for Green Processing of Sugar Resources, Liuzhou Key Laboratory of Guizhong Characteristic Medicinal Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning, China
| | - Zhiling Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Zaihang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Shu He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Shanguang Wu
- Guangxi Key Laboratory for Green Processing of Sugar Resources, Liuzhou Key Laboratory of Guizhong Characteristic Medicinal Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
| | - Sheng He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Birth Defects Prevention and Control Institute, Maternal and Child Health Hospital of Guangxi Zhuangzu Autonomous Region, Nanning, China
| | - Chengjian Jiang
- Guangxi Key Laboratory for Green Processing of Sugar Resources, Liuzhou Key Laboratory of Guizhong Characteristic Medicinal Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning, China
| |
Collapse
|
2
|
Wang X, Wu H, Manzoor N, Dongcheng W, Su Y, Liu Z, Lin C, Mao Z. The Identification of AMT Family Genes and Their Expression, Function, and Regulation in Chenopodium quinoa. PLANTS (BASEL, SWITZERLAND) 2024; 13:3524. [PMID: 39771223 PMCID: PMC11676291 DOI: 10.3390/plants13243524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
Quinoa (Chenopodium quinoa) is an Andean allotetraploid pseudocereal crop with higher protein content and balanced amino acid composition in the seeds. Ammonium (NH4+), a direct source of organic nitrogen assimilation, mainly transported by specific transmembrane ammonium transporters (AMTs), plays important roles in the development, yield, and quality of crops. Many AMTs and their functions have been identified in major crops; however, no systematic analyses of AMTs and their regulatory networks, which is important to increase the yield and protein accumulation in the seeds of quinoa, have been performed to date. In this study, the CqAMTs were identified, followed by the quantification of the gene expression, while the regulatory networks were predicted based on weighted gene co-expression network analysis (WGCNA), with the putative transcriptional factors (TFs) having binding sites on the promoters of CqAMTs, nitrate transporters (CqNRTs), and glutamine-synthases (CqGSs), as well as the putative TF expression being correlated with the phenotypes and activities of GSs, glutamate synthase (GOGAT), nitrite reductase (NiR), and nitrate reductase (NR) of quinoa roots. The results showed a total of 12 members of the CqAMT family with varying expressions in different organs and in the same organs at different developmental stages. Complementation expression analyses in the triple mep1/2/3 mutant of yeast showed that except for CqAMT2.2b, 11/12 CqAMTs restored the uptake of NH4+ in the host yeast. CqAMT1.2a was found to mainly locate on the cell membrane, while TFs (e.g., CqNLPs, CqG2Ls, B3 TFs, CqbHLHs, CqZFs, CqMYBs, CqNF-YA/YB/YC, CqNACs, and CqWRKY) were predicted to be predominantly involved in the regulation, transportation, and assimilation of nitrogen. These results provide the functions of CqAMTs and their possible regulatory networks, which will lead to improved nitrogen use efficiency (NUE) in quinoa as well as other major crops.
Collapse
Affiliation(s)
- Xiangxiang Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming 650201, China; (X.W.); (H.W.); (N.M.); (W.D.); (Z.L.)
| | - He Wu
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming 650201, China; (X.W.); (H.W.); (N.M.); (W.D.); (Z.L.)
| | - Nazer Manzoor
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming 650201, China; (X.W.); (H.W.); (N.M.); (W.D.); (Z.L.)
| | - Wenhua Dongcheng
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming 650201, China; (X.W.); (H.W.); (N.M.); (W.D.); (Z.L.)
| | - Youbo Su
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China;
| | - Zhengjie Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming 650201, China; (X.W.); (H.W.); (N.M.); (W.D.); (Z.L.)
- Institute of Improvement and Utilization of Characteristic Resource Plants, Yunnan Agricultural University, Kunming 650201, China
| | - Chun Lin
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming 650201, China; (X.W.); (H.W.); (N.M.); (W.D.); (Z.L.)
- The Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming 650201, China
| | - Zichao Mao
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming 650201, China; (X.W.); (H.W.); (N.M.); (W.D.); (Z.L.)
- Institute of Improvement and Utilization of Characteristic Resource Plants, Yunnan Agricultural University, Kunming 650201, China
- The Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming 650201, China
| |
Collapse
|
3
|
Chen X, Feng R, Du Q, Mauchline TH, Clark IM, Lu Y, Liu L. Identification and genomic analysis of a thermophilic bacterial strain that reduces ammonia loss from composting. Microbiol Spectr 2024; 12:e0076324. [PMID: 39162261 PMCID: PMC11448220 DOI: 10.1128/spectrum.00763-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/03/2024] [Indexed: 08/21/2024] Open
Abstract
Ammonia loss is the most severe during the high-temperature stage (>50°C) of aerobic composting. Regulating ammonia volatilization during this period via thermophilic microbes can significantly improve the nitrogen content of compost and reduce air pollution due to ammonia loss. In this study, an ammonia-assimilating bacterial strain named LL-8 was screened out as having the strongest ammonia nitrogen conversion rate (32.7%) at high temperatures (50°C); it is able to significantly reduce 42.9% ammonia volatile loss in chicken manure composting when applied at a high-temperature stage. Phylogenetic analysis revealed that LL-8 was highly similar (>98%) with Priestia aryabhattai B8W22T and identified as Priestia aryabhatta. Genomic analyses indicated that the complete genome of LL-8 comprised 5,060,316 base pairs with a GC content of 32.7% and encoded 5,346 genes. Genes, such as gudB, rocG, glnA, gltA, and gltB, that enable bacteria to assimilate ammonium nitrogen were annotated in the LL-8 genome based on the comparison to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The results implied that the application of thermophilic ammonia-assimilating strain P. aryabhatta LL-8 would be a promising solution to reduce ammonia loss and mitigate air pollution of aerobic composting.IMPORTANCEAerobic composting is one of the essential ways to recycle organic waste, but its ammonia volatilization is severe and results in significant nitrogen loss, especially during the high-temperature period, which is also harmful to the environment. The application of thermophilic bacteria that can use ammonia as a nitrogen source at high temperatures is helpful to reduce the ammonia volatilization loss of composting. In this study, we screened and identified a bacteria strain called LL-8 with high temperature (50°C) resistance and strong ammonia-assimilating ability. It also revealed significant effects on decreasing ammonia volatile loss in composting. The whole-genome analysis revealed that LL-8 could utilize ammonium nitrogen by assimilation to decrease ammonia volatilization. Our work provides a theoretical basis for the application of this functional bacteria in aerobic composting to control nitrogen loss from ammonia volatilization.
Collapse
Affiliation(s)
- Xuejuan Chen
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Rong Feng
- Lijiang Culture and Tourism College, Lijiang, Yunnan, China
| | - Qianhui Du
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Tim H. Mauchline
- Sustainable Soils and Crops, Rothamsted Research, Hertfordshire, United Kingdom
| | - Ian M. Clark
- Sustainable Soils and Crops, Rothamsted Research, Hertfordshire, United Kingdom
| | - Yingang Lu
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Li Liu
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
4
|
Pan C, Yin J, Ma B, Wen J, Luo P. Whole-genome sequence and characterization of a marine red yeast, Rhodosporidium sphaerocarpum GDMCC 60679, featuring the assimilation of ammonia nitrogen. J Biosci Bioeng 2024; 137:85-93. [PMID: 38155026 DOI: 10.1016/j.jbiosc.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023]
Abstract
A marine red yeast, Rhodosporidium sphaerocarpum, is generally used for the production of lipids and carotenoids. In a previous study, we demonstrated that a marine-derived R. sphaerocarpum GDMCC 60679 can efficiently remove ammonia nitrogen and exhibit multiple probiotic functions for shrimp, Litopenaeus vannamei. Here, we performed a genome assembly of the strain GDMCC 60679 using a combination of the data from Illumina PE and PacBio CLR reads. The genome has a size of 18.03 Mb and consists of 32 contigs with an N50 length of 1,074,774 bp and GC content of 63 %. The genome was predicted to contain 6092 protein-coding genes, 5962 of which were functionally annotated. Metabolic pathways responsible for the ammonia assimilation and the synthesis of lipids and carotenoids were particularly examined to explore and characterize genes contributing to these functions. Whole-genome sequence and annotation of the strain lays a foundation to reveal the molecular mechanism of its prominent biological functions and will facilitate us to further expand new applications of yeasts in Rhodosporidium.
Collapse
Affiliation(s)
- Chuanhao Pan
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiayue Yin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Ma
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Wen
- Department of Biology, Lingnan Normal University, Zhanjiang 524048, China
| | - Peng Luo
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| |
Collapse
|
5
|
Cruz-Leite VRM, Moreira ALE, Silva LOS, Inácio MM, Parente-Rocha JA, Ruiz OH, Weber SS, Soares CMDA, Borges CL. Proteomics of Paracoccidioides lutzii: Overview of Changes Triggered by Nitrogen Catabolite Repression. J Fungi (Basel) 2023; 9:1102. [PMID: 37998907 PMCID: PMC10672198 DOI: 10.3390/jof9111102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
Members of the Paracoccidioides complex are the causative agents of Paracoccidioidomycosis (PCM), a human systemic mycosis endemic in Latin America. Upon initial contact with the host, the pathogen needs to uptake micronutrients. Nitrogen is an essential source for biosynthetic pathways. Adaptation to nutritional stress is a key feature of fungi in host tissues. Fungi utilize nitrogen sources through Nitrogen Catabolite Repression (NCR). NCR ensures the scavenging, uptake and catabolism of alternative nitrogen sources, when preferential ones, such as glutamine or ammonium, are unavailable. The NanoUPLC-MSE proteomic approach was used to investigate the NCR response of Paracoccidioides lutzii after growth on proline or glutamine as a nitrogen source. A total of 338 differentially expressed proteins were identified. P. lutzii demonstrated that gluconeogenesis, β-oxidation, glyoxylate cycle, adhesin-like proteins, stress response and cell wall remodeling were triggered in NCR-proline conditions. In addition, within macrophages, yeast cells trained under NCR-proline conditions showed an increased ability to survive. In general, this study allows a comprehensive understanding of the NCR response employed by the fungus to overcome nutritional starvation, which in the human host is represented by nutritional immunity. In turn, the pathogen requires rapid adaptation to the changing microenvironment induced by macrophages to achieve successful infection.
Collapse
Affiliation(s)
- Vanessa Rafaela Milhomem Cruz-Leite
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
| | - André Luís Elias Moreira
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
| | - Lana O’Hara Souza Silva
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
| | - Moises Morais Inácio
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
- Estácio de Goiás University Center—FESGO, Goiânia 74063-010, GO, Brazil
| | - Juliana Alves Parente-Rocha
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
| | - Orville Hernandez Ruiz
- MICROBA Research Group, Cellular and Molecular Biology Unit, Department of Microbiology, School of Microbiology, University of Antioquia, Medellín 050010, Colombia;
| | - Simone Schneider Weber
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79304-902, MS, Brazil;
| | - Célia Maria de Almeida Soares
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
| | - Clayton Luiz Borges
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
| |
Collapse
|
6
|
Zhang J, Zhuo X, Wang Q, Ji H, Chen H, Hao H. Effects of Different Nitrogen Levels on Lignocellulolytic Enzyme Production and Gene Expression under Straw-State Cultivation in Stropharia rugosoannulata. Int J Mol Sci 2023; 24:10089. [PMID: 37373235 DOI: 10.3390/ijms241210089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Stropharia rugosoannulata has been used in environmental engineering to degrade straw in China. The nitrogen and carbon metabolisms are the most important factors affecting mushroom growth, and the aim of this study was to understand the effects of different nitrogen levels on carbon metabolism in S. rugosoannulata using transcriptome analysis. The mycelia were highly branched and elongated rapidly in A3 (1.37% nitrogen). GO and KEGG enrichment analyses revealed that the differentially expressed genes (DEGs) were mainly involved in starch and sucrose metabolism; nitrogen metabolism; glycine, serine and threonine metabolism; the MAPK signaling pathway; hydrolase activity on glycosyl bonds; and hemicellulose metabolic processes. The activities of nitrogen metabolic enzymes were highest in A1 (0.39% nitrogen) during the three nitrogen levels (A1, A2 and A3). However, the activities of cellulose enzymes were highest in A3, while the hemicellulase xylanase activity was highest in A1. The DEGs associated with CAZymes, starch and sucrose metabolism and the MAPK signaling pathway were also most highly expressed in A3. These results suggested that increased nitrogen levels can upregulate carbon metabolism in S. rugosoannulata. This study could increase knowledge of the lignocellulose bioconversion pathways and improve biodegradation efficiency in Basidiomycetes.
Collapse
Affiliation(s)
- Jinjing Zhang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xinyi Zhuo
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Wang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Hao Ji
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 200090, China
| | - Hui Chen
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 200090, China
| | - Haibo Hao
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
7
|
Xu L, Chen Y, Wang Z, Zhang Y, He Y, Zhang A, Chen H, Xue G. Discovering dominant ammonia assimilation: Implication for high-strength nitrogen removal in full scale biological treatment of landfill leachate. CHEMOSPHERE 2023; 312:137256. [PMID: 36395888 DOI: 10.1016/j.chemosphere.2022.137256] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/14/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Landfill leachate containing high-strength nitrogen is generated in domestic waste landfilling. The integration of anoxic and aerobic process (AO) based on nitrification and denitrification, has been a mainstream process of biological nitrogen removal (BNR). But the high-strength organics as well as aerobic effluent reflux might change the biochemical environment designed and operated as AO. In view of the nitrogen balance in a full scale landfill leachate treatment plant with two-stage AO, we found that approximately 90% removal of total nitrogen (TN) and ammonia (NH4+-N) focused on primary anoxic and aerobic stage. Meanwhile, the less nitrate and nitrite in the aerobic effluent were incapable of sustaining denitrification or anaerobic ammonia oxidation (anammox). The high reflux flow from aerobic to anoxic process enabled the similar microbial community and functional genes in anoxic and aerobic process units. However, the functional genes involving ammonia assimilation in all process units showcased the highest abundance compared to those correlated with other BNR pathways, including nitrification and denitrification, assimilatory and dissimilatory nitrate reduction, nitrogen fixation and anammox. The ammonia assimilation dominated the removals of TN and NH4+-N, rather than other BNR mechanism. The insight of dominant ammonia assimilation is favorable for illustrating the authentic BNR mechanism of landfill leachate in AO, thereby guiding the optimization of engineering design and operation.
Collapse
Affiliation(s)
- Lei Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yuting Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zheng Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yu Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yueling He
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Ai Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Hong Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200000, China.
| |
Collapse
|
8
|
Transcriptomic and enzymatic analysis reveals the roles of glutamate dehydrogenase in Corynebacterium glutamicum. AMB Express 2022; 12:161. [PMID: 36576637 PMCID: PMC9797636 DOI: 10.1186/s13568-022-01506-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Glutamate dehydrogenase (Gdh), catalyzing the reversible conversion between 2-oxoglutarate and glutamate, plays an important role in the connection of nitrogen and carbon metabolism. Yet little is known about these enzymes in the amino acid-manufacturing Corynebacterium glutamicum. In the present study, we firstly identified the enzymatic characteristics of two Gdhs (GdhA and GdhB). The results showed that both GdhA and GdhB prefers NADPH as a coenzyme and have higher affinity for 2-OG than glutamate. The growth characteristics of gdhAΔ mutant and gdhBΔ mutant, gdhABΔ mutant showed GdhA serves as the main conduit for ammonium assimilation, and GdhB is the main glutamate- metabolizing enzyme in C. glutamicum. The full-genome transcriptomic analysis was used to investigate physiological response of C. glutamicum to the glutamate as nitrogen source, and gdh deletion. The results showed that the nitrogen starvation response was elicited when glutamine served as the sole nitrogen source. gdhAΔBΔ double deletion trigger a partially deregulated nitrogen starvation response, in which genes involved in nitrogen assimilation showed obviously upregulated in a certain extent. On the other hand, the genes of phosphotransferase system (PTS) and glycolysis pathway, most genes in pentose phosphate pathway were significantly upregulated, indicating that gdh deficiency initiated the enhancement of the absorption and metabolism of carbon sources. We believed that our results in this study will give new insights on the molecular mechanism of Gdh activity cross-talks with carbon and nitrogen metabolism, also setting a new background for further flux redistribution applied research of biotechnological interest.
Collapse
|
9
|
Dong X, Huang Z, Peng X, Jia X. Advanced simultaneous nitrogen and phosphorus removal for non-sterile wastewater through a novel coupled yeast-sludge system: Performance, microbial interaction, and mechanism. CHEMOSPHERE 2022; 309:136645. [PMID: 36183892 DOI: 10.1016/j.chemosphere.2022.136645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/17/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
A novel coupled yeast-sludge system (CYSS) was constructed by the yeast Candida sp. PNY integrated with activated sludge to treat non-sterile mainstream wastewater. After 240-day cultivation, compared with single activated sludge, simultaneous removal efficiency of total organic carbon (TOC), nitrogen and phosphorus increased by 19.5% (176.34 mg TOC g-1 d-1), 21.3% (11.25 mg TN g-1 d-1) and 15.0% (6.95 mg TP g-1 d-1), respectively, while the amount of sludge reduced by 50%. Amplicon sequencing analysis showed that the abundance of Nitrosomonas, Nitrospira, Zoogloea, Dechloromonas, and Candidatus Accumulibacter significantly decreased to 0% on Day 200. Abundance of nirS and nirK for denitrification significantly decreased in CYSS by quantitative PCR (qPCR), and the copies of nirS and nirK were 3.37-fold and 1.71-fold decrease from Day 0 to Day 240, respectively. The results of Fluorescence in situ hybridization and co-occurrence network showed that Candida sp. PNY predominated its distribution in CYSS, and strongly connected with environmental variables based on network analysis. Furthermore, this study reconstructed the carbon, nitrogen and phosphorus metabolic pathways of the CYSS based on metagenomics.
Collapse
Affiliation(s)
- Xiaoqi Dong
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zidan Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xingxing Peng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Xiaoshan Jia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
10
|
He Y, Zhang Y, Li T, Peng X, Jia X. High-concentration COD wastewater treatment with simultaneous removal of nitrogen and phosphorus by a novel Candida tropicalis strain: Removal capability and mechanism. ENVIRONMENTAL RESEARCH 2022; 212:113471. [PMID: 35613633 DOI: 10.1016/j.envres.2022.113471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/25/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Aerobic and anaerobic continuous stirred-tank reactor (CSTR), up-flow anaerobic sludge blanket (UASB) were set up and inoculated with newly isolated Candida tropicalis. Reactors were operated at high concentrations of chemical oxygen demand (COD) (8000 mg/L), the modified UASB expressed better COD removal rate simultaneously removal of nitrogen and phosphate than other two reactors. Notably, under both aerobic or anaerobic conditions, large amounts of organic acids and alcohol were generated. Transcriptomic analysis showed that carbon metabolism under anaerobic conditions shared the same pathway with aerobic conditions by regulating and inhibiting some functional genes. Experiments utilizing different carbon sources proved that our strain has excellent performances in utilizing organic materials, which were verified by transcriptomic analysis. Finally, the strain was applied to treat four types of sugar-containing wastewaters. Among them, our strain exerts the best removal capability of COD (90%), nitrogen (89%), and phosphate (82%) for brewery wastewater.
Collapse
Affiliation(s)
- Yuzhe He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yaqi Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Tianyu Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xingxing Peng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Xiaoshan Jia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
11
|
Feng K, Wang W, Rong J, Liang J, Mi J, Wu Y, Wang Y. Construction of recombinant Pichia pastoris strains for ammonia reduction by the gdhA and glnA regulatory genes in laying hens. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113376. [PMID: 35255249 DOI: 10.1016/j.ecoenv.2022.113376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Ammonia emissions have become an important environmental challenge for the livestock industry. Probiotics are often used as additives to reduce ammonia, and the ammonia reduction efficiency of common probiotics is approximately 20-40%. In this study, we constructed a gdhA recombinant Pichia pastoris strain, glnA recombinant Pichia pastoris strain and gdhA-glnA Pichia pastoris recombinant strain using the gdhA and glnA genes, which have the potential function of reducing ammonia emissions. The results of in vitro fermentation showed that compared with the control, wild-type Pichia pastoris and pPICZA strains, the gdhA, glnA and gdhA-glnA recombinant strains significantly reduced ammonia emissions in laying hens (P < 0.05), with emission reduction efficiencies of 63.95%, 65.68% and 74.04%, respectively. The reason may be that the recombinant Pichia pastoris strains can convert ammonium nitrogen into amino acids for self-growth through ammonia assimilation, and reduce the pH, uric acid and urea content in the intestinal tract of livestock and poultry, and urease activity. Therefore, the construction of recombinant strains can provide technical support for reducing ammonia pollution in the livestock industry.
Collapse
Affiliation(s)
- Kunxian Feng
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Wei Wang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Jinsheng Rong
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Juanboo Liang
- Institute of Tropical Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia.
| | - Jiandui Mi
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Yinbao Wu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Yan Wang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
12
|
Huang X, Lao W, Zhou Y, Sun Y, Wang Q. Glutamate dehydrogenase enables Salmonella to survive under oxidative stress and escape from clearance in macrophages. FEBS Lett 2022; 596:81-94. [PMID: 34855205 DOI: 10.1002/1873-3468.14247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 11/06/2022]
Abstract
Oxidative stress and the production of reactive oxygen species (ROS) are a biological threat to bacteria, which induce the synthesis of proteins and production of antioxidants to combat it. Herein, we report that glutamate dehydrogenase (GDH) of Salmonella can assimilate ammonium into glutamate and promote the generation of glutathione (GSH) to combat oxidative damage. Oxidation induces the transcription of gdhA, which encodes GDH, and activates the enzymatic activity of GDH. The ΔgdhA mutant Salmonella strain showed decreased levels of GSH and reduced survival in macrophages, and this growth deficiency could be partially restored by overexpression of GDH and complementation with its downstream metabolites. Therefore, GDH plays a critical role in the growth of Salmonella in oxidative environments, especially under low energy supply.
Collapse
Affiliation(s)
- Xi Huang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, China
| | - Wenji Lao
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, China
| | - Youci Zhou
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, China
| | - Yunwei Sun
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, China
| | - Qijun Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
13
|
Huang G, Ren H, Wang A, Wan X, Wu Z, Zhong X. iTRAQ-based proteomic analysis reveals the molecule mechanism of reducing higher alcohols in Chinese rice wine by nitrogen compensation. ANN MICROBIOL 2021. [DOI: 10.1186/s13213-020-01611-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Higher alcohol is a by-product of the fermentation of wine, and its content is one of the most important parameters that affect and are used to appraise the final quality of Chinese rice wine. Ammonium compensation is an efficient and convenient method to reduce the content of higher alcohols, but the molecule mechanism is poorly understood. Therefore, an iTRAQ-based proteomic analysis was designed to reveal the proteomic changes of Saccharomyces cerevisiae to elucidate the molecular mechanism of ammonium compensation in reducing the content of higher alcohols.
Methods
The iTRAQ proteomic analysis method was used to analyze a blank group and an experimental group with an exogenous addition of 200 mg/L (NH4)2HPO4 during inoculation. The extracted intracellular proteins were processed by liquid chromatography-mass spectrometry and identified using bioinformatics tools. Real-time quantitative polymerase chain reaction was used to verify the gene expression of differentially expressed proteins.
Results
About 4062 proteins, including 123 upregulated and 88 downregulated proteins, were identified by iTRAQ-based proteomic analysis. GO and KEGG analysis uncovered that significant proteins were concentrated during carbohydrate metabolism, such as carbon metabolism, glyoxylate, and dicarboxylate metabolism, pyruvate metabolism, and the nitrogen metabolism, such as amino acid synthesis and catabolism pathway. In accordance with the trend of differential protein regulation in the central carbon metabolism pathway and the analysis of carbon metabolic flux, a possible regulatory model was proposed and verified, in which ammonium compensation facilitated glucose consumption, regulated metabolic flow direction into tricarboxylic acid, and further led to a decrease in higher alcohols. The results of RT-qPCR confirmed the authenticity of the proteomic analysis results at the level of gene.
Conclusion
Ammonium assimilation promoted by ammonium compensation regulated the intracellular carbon metabolism of S. cerevisiae and affected the distribution of metabolic flux. The carbon flow that should have gone to the synthesis pathway of higher alcohols was reversed to the TCA cycle, thereby decreasing the content of higher alcohols. These findings may contribute to an improved understanding of the molecular mechanism for the decrease in higher alcohol content through ammonium compensation.
Collapse
|
14
|
Trotter PJ, Juco K, Le HT, Nelson K, Tamayo LI, Nicaud JM, Park YK. Glutamate dehydrogenases in the oleaginous yeast Yarrowia lipolytica. Yeast 2019; 37:103-115. [PMID: 31119792 DOI: 10.1002/yea.3425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/25/2019] [Accepted: 05/17/2019] [Indexed: 11/12/2022] Open
Abstract
Glutamate dehydrogenases (GDHs) are fundamental to cellular nitrogen and energy balance. Yet little is known about these enzymes in the oleaginous yeast Yarrowia lipolytica. The YALI0F17820g and YALI0E09603g genes, encoding potential GDH enzymes in this organism, were examined. Heterologous expression in gdh-null Saccharomyces cerevisiae and examination of Y. lipolytica strains carrying gene deletions demonstrate that YALI0F17820g (ylGDH1) encodes a NADP-dependent GDH whereas YALI0E09603g (ylGDH2) encodes a NAD-dependent GDH enzyme. The activity encoded by these two genes accounts for all measurable GDH activity in Y. lipolytica. Levels of the two enzyme activities are comparable during logarithmic growth on rich medium, but the NADP-ylGDH1p enzyme activity is most highly expressed in stationary and nitrogen starved cells by threefold to 12-fold. Replacement of ammonia with glutamate causes a decrease in NADP-ylGdh1p activity, whereas NAD-ylGdh2p activity is increased. When glutamate is both carbon and nitrogen sources, the activity of NAD-ylGDH2p becomes dominant up to 18-fold compared with that of NADP-ylGDH1p. Gene deletion followed by growth on different carbon and nitrogen sources shows that NADP-ylGdh1p is required for efficient nitrogen assimilation whereas NAD-ylGdh2p plays a role in nitrogen and carbon utilization from glutamate. Overexpression experiments demonstrate that ylGDH1 and ylGDH2 are not interchangeable. These studies provide a vital basis for future consideration of how these enzymes function to facilitate energy and nitrogen homeostasis in Y. lipolytica.
Collapse
Affiliation(s)
- Pamela J Trotter
- Guehler Biochemistry Research Laboratory, Department of Chemistry, Augustana College, Rock Island, Illinois
| | - Karen Juco
- Guehler Biochemistry Research Laboratory, Department of Chemistry, Augustana College, Rock Island, Illinois
| | - Ha T Le
- Guehler Biochemistry Research Laboratory, Department of Chemistry, Augustana College, Rock Island, Illinois
| | - Kjersten Nelson
- Guehler Biochemistry Research Laboratory, Department of Chemistry, Augustana College, Rock Island, Illinois
| | - Lizeth I Tamayo
- Guehler Biochemistry Research Laboratory, Department of Chemistry, Augustana College, Rock Island, Illinois
| | - Jean-Marc Nicaud
- Biologie intégrative du Métabolisme Lipidique, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Young-Kyoung Park
- Biologie intégrative du Métabolisme Lipidique, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
15
|
A metabolomic study of the effect of Candida albicans glutamate dehydrogenase deletion on growth and morphogenesis. NPJ Biofilms Microbiomes 2019; 5:13. [PMID: 30992998 PMCID: PMC6453907 DOI: 10.1038/s41522-019-0086-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/12/2019] [Indexed: 11/21/2022] Open
Abstract
There are two glutamate dehydrogenases in the pathogenic fungus Candida albicans. One is an NAD+-dependent glutamate dehydrogenase (GDH2) and the other is an NADPH-dependent glutamate dehydrogenase (GDH3). These two enzymes are part of the nitrogen and nicotinate/nicotinamide metabolic pathways, which have been identified in our previous studies as potentially playing an important role in C. albicans morphogenesis. In this study, we created single gene knockout mutants of both dehydrogenases in order to investigate whether or not they affect the morphogenesis of C. albicans. The GDH genes were deleted and the phenotypes of the knockout mutants were studied by growth characterisation, metabolomics, isotope labelling experiments, and by quantifying cofactors under various hyphae-inducing conditions. We found that the gdh2/gdh2 mutant was unable to grow on either arginine or proline as a sole carbon and nitrogen source. While the gdh3/gdh3 mutant could grow on these carbon and nitrogen sources, the strain was locked in the yeast morphology in proline-containing medium. We detected different concentrations of ATP, NAD+, NADH, NAPD+, NADPH, as well as 62 other metabolites, and 19 isotopically labelled metabolites between the mutant and the wild-type strains. These differences were associated with 44 known metabolic pathways. It appears that the disequilibrium of cofactors in the gdh3/gdh3 mutant leads to characteristic proline degradation in the central carbon metabolism. The analysis of the gdh2/gdh2 and the gdh3/gdh3 mutants confirmed our hypothesis that redox potential and nitrogen metabolism are related to filament formation and identified these metabolic pathways as potential drug targets to inhibit morphogenesis.
Collapse
|
16
|
Mara P, Fragiadakis GS, Gkountromichos F, Alexandraki D. The pleiotropic effects of the glutamate dehydrogenase (GDH) pathway in Saccharomyces cerevisiae. Microb Cell Fact 2018; 17:170. [PMID: 30384856 PMCID: PMC6211499 DOI: 10.1186/s12934-018-1018-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/29/2018] [Indexed: 12/19/2022] Open
Abstract
Ammonium assimilation is linked to fundamental cellular processes that include the synthesis of non-essential amino acids like glutamate and glutamine. In Saccharomyces cerevisiae glutamate can be synthesized from α-ketoglutarate and ammonium through the action of NADP-dependent glutamate dehydrogenases Gdh1 and Gdh3. Gdh1 and Gdh3 are evolutionarily adapted isoforms and cover the anabolic role of the GDH-pathway. Here, we review the role and function of the GDH pathway in glutamate metabolism and we discuss the additional contributions of the pathway in chromatin regulation, nitrogen catabolite repression, ROS-mediated apoptosis, iron deficiency and sphingolipid-dependent actin cytoskeleton modulation in S.cerevisiae. The pleiotropic effects of GDH pathway in yeast biology highlight the importance of glutamate homeostasis in vital cellular processes and reveal new features for conserved enzymes that were primarily characterized for their metabolic capacity. These newly described features constitute insights that can be utilized for challenges regarding genetic engineering of glutamate homeostasis and maintenance of redox balances, biosynthesis of important metabolites and production of organic substrates. We also conclude that the discussed pleiotropic features intersect with basic metabolism and set a new background for further glutamate-dependent applied research of biotechnological interest.
Collapse
Affiliation(s)
- P. Mara
- Department of Chemistry, University of Crete, Voutes University Campus, 71003 Heraklion, Crete Greece
- Present Address: Woods Hole Oceanographic Institution, Woods Hole, MA 02543 USA
| | - G. S. Fragiadakis
- Institute of Molecular Biology & Biotechnology, FORTH, Nikolaou Plastira 100 GR-70013, Heraklion, Crete Greece
| | - F. Gkountromichos
- Department of Biology, University of Crete, Voutes University Campus, 71003 Heraklion, Crete Greece
- Faculty of Biology, Biocenter, Ludwig-Maximilians-University of Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - D. Alexandraki
- Department of Biology, University of Crete, Voutes University Campus, 71003 Heraklion, Crete Greece
- Institute of Molecular Biology & Biotechnology, FORTH, Nikolaou Plastira 100 GR-70013, Heraklion, Crete Greece
| |
Collapse
|