1
|
Wang SP, Sun ZY, Wang ST, Tang YQ. Efficiency and mechanisms for enhancing nitrogen retention in distilled grain waste compost through a composting-biofiltration approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123606. [PMID: 39637510 DOI: 10.1016/j.jenvman.2024.123606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/07/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Composting is an effective method for recycling resources in waste management. However, significant nitrogen loss can hinder the overall effectiveness of the composting process. Biofiltration is a promising method for conserving nitrogen in composting owing to its ability to efficiently trap and convert gaseous emissions. This study investigated the efficiency and mechanisms of a composting-biofiltration system to enhance nitrogen retention in distilled grain waste (DGW) compost using pre-composted DGW as biofilter media. The DGW composting-biofiltration system exhibited a lower nitrogen loss (24.9%) than the mono-composting system (40.1%). Additionally, this DGW system achieved a high NH3 removal efficiency of 94.7%-97.7%, while NO3- concentration continuously increased in the biofilter, indicating that biofiltration mainly conserved nitrogen through the conversion of NH3 emitted from the composter. The analysis of the microbial community and key functional enzymes involved in nitrogen metabolism revealed a significant increase in both nitrification and ammonia assimilation within the biofilter. This resulted in the accumulation of NO3- and the formation of organic nitrogen, thereby facilitating nitrogen retention. Genera such as Chryseolinea, Anseongella, Parapusillimonas, Bacillus, and Urebacillus mainly contributed to the generation of NO3- and organic nitrogen. The structural equation model analysis revealed that nitrogen retention in DGW compost was mainly facilitated by enhanced nitrification and ammonia assimilation in the biofilter. These results provide insights into underlying mechanisms for enhancing nitrogen retention through a composting-biofiltration approach and present guidance for improving compost quality.
Collapse
Affiliation(s)
- Shi-Peng Wang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, Henan Normal University, Xinxiang 453007, Henan, PR China; College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, PR China.
| | - Song-Tao Wang
- Luzhou Laojiao Co., Ltd., Luzhou 646000, Sichuan, PR China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, PR China
| |
Collapse
|
2
|
Yang F, Wang X, Jiang H, Yao Q, Liang S, Chen W, Shi G, Tian B, Hegazy A, Ding S. Mechanism of a novel Bacillus subtilis JNF2 in suppressing Fusarium oxysporum f. sp. cucumerium and enhancing cucumber growth. Front Microbiol 2024; 15:1459906. [PMID: 39606119 PMCID: PMC11599245 DOI: 10.3389/fmicb.2024.1459906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Cucumber Fusarium wilt caused by Fusarium oxysporum f. sp. cucumerium (FOC), is a prevalent soil-borne disease. In this study, Bacillus subtilis JNF2, isolated from the high incidence area of cucumber Fusarium wilt in Luoyang, demonstrated significant inhibitory effects on FOC and promoted cucumber seedling growth. The biocontrol mechanism of strain JNF2 were elucidated through morphological observation, physiological and biochemical experiments, and whole genome sequence analysis. Pot experiments revealed an 81.33 ± 0.21% control efficacy against Fusarium wilt, surpassing the 64.10 ± 0.06% efficacy of hymexazol. Seedlings inoculated with JNF2 exhibited enhanced stem thickness and leaf area compared to control and hymexazol-treated plants. Physiological tests confirmed JNF2's production of indole-3-acetic acid (IAA), siderophores, and hydrolytic enzymes, such as β-1,3-glucanase, amylase, and protease, which inhibited FOC growth and promoted plant development. Genome analysis identified genes encoding antimicrobial peptides and hydrolases, as well as a novel glycocin synthetic gene cluster. These findings underscore B. subtilis JNF2's potential as a biocontrol agent for sustainable cucumber cultivation.
Collapse
Affiliation(s)
- Fan Yang
- Institute of Vegetable, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Wang
- Institute of Vegetable, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Huayan Jiang
- Institute of Vegetable, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Qiuju Yao
- Institute of Vegetable, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Shen Liang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Weiwei Chen
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Gongyao Shi
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Baoming Tian
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Abeer Hegazy
- National Water Research Center, Shubra El Kheima, Egypt
| | - Shengli Ding
- Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Dobrzyński J, Naziębło A. Paenibacillus as a Biocontrol Agent for Fungal Phytopathogens: Is P. polymyxa the Only One Worth Attention? MICROBIAL ECOLOGY 2024; 87:134. [PMID: 39480531 PMCID: PMC11527970 DOI: 10.1007/s00248-024-02450-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024]
Abstract
Control of fungal phytopathogens is a significant challenge in modern agriculture. The widespread use of chemical fungicides to control these pathogens often leads to environmental and food contamination. An eco-friendly alternative that can help reduce reliance on these chemicals is plant growth-promoting bacteria (PGPB), particularly those of the genus Paenibacillus, which appear to be highly effective. The review aims to summarize the existing knowledge on the potential of Paenibacillus spp. as fungal biocontrol agents, identify knowledge gaps, and answer whether other species of the genus Paenibacillus, in addition to Paenibacillus polymyxa, can also be effective biocontrol agents. Paenibacillus spp. can combat plant phytopathogens through various mechanisms, including the production of lipopeptides (such as fusaricidin, paenimyxin, and pelgipeptin), the induction of systemic resistance (ISR), hydrolytic enzymes (chitinase, cellulase, and glucanase), and volatile organic compounds. These properties enable Paenibacillus strains to suppress the growth of fungi such as Fusarium oxysporum, F. solani, Rhizoctonia solani, Botrytis cinerea, or Colletotrichum gloeosporioides. Notably, several strains of Paenibacillus, including P. polymyxa, P. illinoisensis KJA-424, P. lentimorbus B-30488, and P. elgii JCK1400, have demonstrated efficacy in controlling fungal diseases in plants. Importantly, many formulations with Paenibacillus strains have already been patented, and some are commercially available, but most of them contain only P. polymyxa. Nevertheless, considering the data presented in this review, we believe that other strains from the Paenibacillus genus (besides P. polymyxa) will also be commercialized and used in plant protection in the future. Importantly, there is still limited information regarding their impact on the native microbiota, particularly from the metataxonomic and metagenomic perspectives. Expanding knowledge in this area could enhance the effectiveness of biocontrol agents containing Paenibacillus spp., ensuring safe and sustainable use of biological fungicides.
Collapse
Affiliation(s)
- Jakub Dobrzyński
- Institute of Technology and Life Sciences - National Research Institute, Al. Hrabska 3, 05-090, Raszyn, Poland.
| | - Aleksandra Naziębło
- Institute of Technology and Life Sciences - National Research Institute, Al. Hrabska 3, 05-090, Raszyn, Poland.
| |
Collapse
|
4
|
Yadav U, Anand V, Kumar S, Verma I, Anshu A, Pandey IA, Kumar M, Behera SK, Srivastava S, Singh PC. Bacillus subtilis NBRI-W9 simultaneously activates SAR and ISR against Fusarium chlamydosporum NBRI-FOL7 to increase wilt resistance in tomato. J Appl Microbiol 2024; 135:lxae013. [PMID: 38268411 DOI: 10.1093/jambio/lxae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 01/26/2024]
Abstract
AIMS The study aimed to determine the pathogenicity of Fusarium species currently prevalent in tomato fields having history of chemical fungicide applications and determine the bio-efficacy of Bacillus subtilis NBRI-W9 as a potent biological control agent. METHODS AND RESULTS Fusarium was isolated from surface-sterilized infected tomato plants collected from fields. Pathogenicity of 30 Fusarium isolates was determined by in vitro and in vivo assays. Following Koch's postulates, F. chlamydosporum (FOL7) was identified as a virulent pathogen. The biological control of FOL 7 by B. subtilis NBRI-W9 (W9) and the colonization potential of W9 were established using spontaneous rifampicin-resistant mutants. W9 showed 82% inhibition of FOL7 on a dual-culture plate and colonization levels in tomato plants of ∼5.5, ∼3.3, and ∼2.2 log10 CFU/g in root, stem, and leaf tissue, respectively. Antagonistic activity was shown by scanning electron microscopy (SEM) and cell-wall-degradative enzymes. W9 reduced FOL7 infection in net-house and field experiments by 60% and 41%, respectively. Biochemical investigation, defence enzymes, defence gene expression analysis, SEM, and field studies provide evidence of hyperparasitism and induced resistance as the mode of biological control. The study also demonstrates that the potent biocontrol agent W9, isolated from Piper, can colonize tomato plants, control fungal disease by inducing induced systemic resistance (ISR) and systemic acquired resistance (SAR) simultaneously, and increase crop yield by 21.58% under field conditions. CONCLUSIONS This study concludes that F. chlamydosporum (NBRI-FOL7) is a potent, fungicide-resistant pathogen causing wilt in tomatoes. NBRI-W9 controlled FOL7 through mycoparasitism and simultaneously activated ISR and SAR in plants, providing an attractive tool for disease control that acts at multiple levels.
Collapse
Affiliation(s)
- Udit Yadav
- Division of Microbial Technologies, CSIR- National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Vandana Anand
- Division of Microbial Technologies, CSIR- National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Sanjeev Kumar
- Division of Microbial Technologies, CSIR- National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Isha Verma
- Division of Microbial Technologies, CSIR- National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Anshu Anshu
- Division of Microbial Technologies, CSIR- National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
- Department of Botany, University of Lucknow, Hasanganj, Lucknow 226007, India
| | - Ishan Alok Pandey
- Division of Microbial Technologies, CSIR- National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Manoj Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- Division of Molecular Biology and Biotechnology, CSIR-NBRI, Lucknow 226001, India
| | - Sandip Kumar Behera
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- Division of Plant Systematics and Herbarium, CSIR-NBRI, Lucknow 226001, India
| | - Suchi Srivastava
- Division of Microbial Technologies, CSIR- National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
- Division of Molecular Biology and Biotechnology, CSIR-NBRI, Lucknow 226001, India
| | - Poonam C Singh
- Division of Microbial Technologies, CSIR- National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
- Division of Molecular Biology and Biotechnology, CSIR-NBRI, Lucknow 226001, India
| |
Collapse
|
5
|
Du N, Guo H, Fu R, Dong X, Xue D, Piao F. Comparative Transcriptome Analysis and Genetic Methods Revealed the Biocontrol Mechanism of Paenibacilluspolymyxa NSY50 against Tomato Fusarium Wilt. Int J Mol Sci 2022; 23:ijms231810907. [PMID: 36142825 PMCID: PMC9501285 DOI: 10.3390/ijms231810907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici (Fol) is a common disease that affects tomatoes, which can cause the whole plant to wilt and seriously reduce the production of tomatoes in greenhouses. In this study, the morphological indexes, photosynthetic performance and incidence rate of NSY50 under Fol infection were evaluated. It was found that NSY50 could improve the growth of tomato seedlings and significantly reduce the incidence rate of Fusarium wilt. However, the molecular mechanism of NSY50 that induces resistance to Fusarium wilt is still unclear. We used transcriptomic methods to analyze NSY50-induced resistance to Fol in tomatoes. The results showed that plant defense related genes, such as PR and PAL, were highly expressed in tomato seedlings pretreated with NSY50. At the same time, photosynthetic efficiency, sucrose metabolism, alkaloid biosynthesis and terpene biosynthesis were significantly improved, which played a positive role in reducing the damage caused by Fol infection and enhancing the disease tolerance of seedlings. Through transgenic validation, we identified an important tomato NAC transcription factor, SlNAP1, which was preliminarily confirmed to be effective in relieving the detrimental symptoms induced by Fol. Our findings reveal that P. polymyxa NSY50 is an effective plant-growth-promoting rhizosphere bacterium and also a biocontrol agent of soil-borne diseases, which can significantly improve the resistance of tomato to Fusarium wilt.
Collapse
Affiliation(s)
- Nanshan Du
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Hui Guo
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Ruike Fu
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoxing Dong
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Dongqi Xue
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Henan Agricultural University, Zhengzhou 450002, China
- Correspondence: (D.X.); (F.P.); Tel.: +86-133-2382-6629 (D.X.)
| | - Fengzhi Piao
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
- Correspondence: (D.X.); (F.P.); Tel.: +86-133-2382-6629 (D.X.)
| |
Collapse
|
6
|
Kudjordjie EN, Hooshmand K, Sapkota R, Darbani B, Fomsgaard IS, Nicolaisen M. Fusarium oxysporum Disrupts Microbiome-Metabolome Networks in Arabidopsis thaliana Roots. Microbiol Spectr 2022; 10:e0122622. [PMID: 35766498 PMCID: PMC9430778 DOI: 10.1128/spectrum.01226-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/29/2022] [Indexed: 12/13/2022] Open
Abstract
While the plant host metabolome drives distinct enrichment of detrimental and beneficial members of the microbiome, the mechanistic interomics relationships remain poorly understood. Here, we studied microbiome and metabolome profiles of two Arabidopsis thaliana accessions after Fusarium oxysporum f.sp. mathioli (FOM) inoculation, Landsberg erecta (Ler-0) being susceptible and Col-0 being resistant against FOM. By using bacterial and fungal amplicon sequencing and targeted metabolite analysis, we observed highly dynamic microbiome and metabolome profiles across FOM host progression, while being markedly different between FOM-inoculated and noninoculated Col-0 and Ler-0. Co-occurrence network analysis revealed more robust microbial networks in the resistant Col-0 compared to Ler-0 during FOM infection. Correlation analysis revealed distinct metabolite-OTU correlations in Ler-0 compared with Col-0 which could possibly be explained by missense variants of the Rfo3 and Rlp2 genes in Ler-0. Remarkably, we observed positive correlations in Ler-0 between most of the analyzed metabolites and the bacterial phyla Proteobacteria, Bacteroidetes, Planctomycetes, Acidobacteria, and Verrucomicrobia, and negative correlations with Actinobacteria, Firmicutes, and Chloroflexi. The glucosinolates 4-methyoxyglucobrassicin, glucoerucin and indole-3 carbinol, but also phenolic compounds were strongly correlating with the relative abundances of indicator and hub OTUs and thus could be active in structuring the A. thaliana root-associated microbiome. Our results highlight interactive effects of host plant defense and root-associated microbiota on Fusarium infection and progression. Our findings provide significant insights into plant interomic dynamics during pathogen invasion and could possibly facilitate future exploitation of microbiomes for plant disease control. IMPORTANCE Plant health and fitness are determined by plant-microbe interactions which are guided by host-synthesized metabolites. To understand the orchestration of this interaction, we analyzed the distinct interomic dynamics in resistant and susceptible Arabidopsis ecotypes across different time points after infection with Fusarium oxysporum (FOM). Our results revealed distinct microbial profiles and network resilience during FOM infection in the resistant Col-0 compared with the susceptible Ler-0 and further pinpointed specific microbe-metabolite associations in the Arabidopsis microbiome. These findings provide significant insights into plant interomics dynamics that are likely affecting fungal pathogen invasion and could possibly facilitate future exploitation of microbiomes for plant disease control.
Collapse
Affiliation(s)
- Enoch Narh Kudjordjie
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, Denmark
| | - Kourosh Hooshmand
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, Denmark
| | - Rumakanta Sapkota
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, Denmark
| | - Behrooz Darbani
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, Denmark
| | - Inge S. Fomsgaard
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, Denmark
| | - Mogens Nicolaisen
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, Denmark
| |
Collapse
|
7
|
Yuan H, Yuan M, Shi B, Wang Z, Huang T, Qin G, Hou H, Wang L, Tu H. Biocontrol activity and action mechanism of Paenibacillus polymyxa strain Nl4 against pear Valsa canker caused by Valsa pyri. Front Microbiol 2022; 13:950742. [PMID: 35935238 PMCID: PMC9354778 DOI: 10.3389/fmicb.2022.950742] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Pear Valsa canker caused by Valsa pyri is among the most destructive diseases of pear, which causes significant economic loss. The present study was developed to explore the biocontrol efficiency and underlying antagonistic mechanism of Paenibacillus polymyxa strain Nl4 against V. pyri. P. polymyxa strain Nl4, one of the 120 different endophytic bacterial strains from pear branches, exhibited strong inhibitory effects against the mycelial growth of V. pyri and caused hyphal malformation. Culture filtrate derived from strain Nl4 was able to effectively suppress mycelial growth of V. pyri, and was found to exhibit strong protease, cellulase and β-1, 3-glucanase activity. Through re-isolation assay, strain Nl4 was confirmed to be capable of colonizing and surviving in pear branch. Treatment with strain NI4 effectively protected against pear Valsa canker symptoms on detached pear twigs inoculated with V. pyri. Moreover, strain Nl4 promoted enhanced plant growth probably through the solubilization of phosphorus. Comparative transcriptomic analyses revealed that strain NI4 was able to suppress V. pyri growth in large part through the regulation of the expression of membrane- and energy metabolism-related genes in this pathogen. Further transcriptomic analyses of pear trees indicated that strain NI4 inoculation was associated with changes in the expression of genes associated with secondary metabolite biosynthesis, signal transduction, and cutin, suberine, and wax biosynthesis. Together, these data highlighted P. polymyxa strain Nl4 as a promising biocontrol agent against pear Valsa canker and investigated the possible mechanisms of strain Nl4 on control of this devastating disease.
Collapse
|
8
|
Dissection of Paenibacillus polymyxa NSY50-Induced Defense in Cucumber Roots against Fusarium oxysporum f. sp. cucumerinum by Target Metabolite Profiling. BIOLOGY 2022; 11:biology11071028. [PMID: 36101409 PMCID: PMC9311960 DOI: 10.3390/biology11071028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022]
Abstract
Simple Summary Plant growth-promoting rhizobacteria (PGPR) have significant potential to enhance the tolerance of biotic and abiotic stresses and the productivity of crops. However, the mechanism of PGPR in improving plant resistance to pathogens is unclear. Recently, the newly isolated Paenibacillus polymyxa strain NSY50 was shown to considerably suppress the Fusarium wilt of cucumber plants. This study was carried out to explore the underlying mechanism of NSY50 in improving plant resistance to pathogen invasion via target metabolite profiling, and the results indicated that strain NSY50 was able to alleviate Fusarium wilt stress by activating GSH metabolism and improving redox balance. Our research findings enable a deeper understanding of P. polymyxa NSY50-induced enhanced defense against F. oxysporum in cucumber. Abstract To gain insights into the roles of beneficial PGPR in controlling soil-borne disease, we adopted a metabolomics approach to investigate the beneficial impacts of P. polymyxa NSY50 on cucumber seedling roots under the pathogen of Fusarium oxysporum f. sp. cucumerinum (FOC). We found that NSY50 pretreatment (NSY50 + FOC) obviously reduced the production of reactive oxygen species (ROS). Untargeted metabolomic analysis revealed that 106 metabolites responded to NSY50 and/or FOC inoculation. Under FOC stress, the contents of root osmotic adjustment substances, such as proline and betaine were significantly increased, and dehydroascorbic acid and oxidized glutathione (GSH) considerably accumulated. Furthermore, the contents of free amino acids such as tryptophan, phenylalanine, and glutamic acid were also significantly accumulated under FOC stress. Similarly, FOC stress adversely affected glycolysis and the tricarboxylic acid cycles and transferred to the pentose phosphate pathway. Conversely, NSY50 + FOC better promoted the accumulation of α-ketoglutaric acid, ribulose-5-phosphate, and 7-phosphosodiheptanone compared to FOC alone. Furthermore, NSY50 + FOC activated GSH metabolism and increased GSH synthesis and metabolism-related enzyme activity and their encoding gene expressions, which may have improved redox homoeostasis, energy flow, and defense ability. Our results provide a novel perspective to understanding the function of P. polymyxa NSY50, accelerating the application of this beneficial PGPR in sustainable agricultural practices.
Collapse
|
9
|
Chauhan P, Bhattacharya A, Giri VP, Singh SP, Gupta SC, Verma P, Dwivedi A, Rajput LS, Mishra A. Bacillus subtilis suppresses the charcoal rot disease by inducing defence responses and physiological attributes in soybean. Arch Microbiol 2022; 204:266. [PMID: 35437612 DOI: 10.1007/s00203-022-02876-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/18/2022] [Accepted: 03/24/2022] [Indexed: 11/02/2022]
Abstract
Endophytes can induce the defence responses and modulates physiological attributes in host plants during pathogen attacks. In the present study, 127 bacterial endophytes (BEs) were isolated from different parts of healthy soybean plant. Among them, two BEs (M-2 and M-4) resulted a significant antagonistic property against Macrophomina phaseolina, causes charcoal rot disease in soybean. The antagonistic potential was evaluated through dual culture plate assay, where M-4 expressed higher antifungal activity than M-2 against M. phaseolina. The M-4 produces cell wall degrading enzymes viz. cellulase (145.71 ± 1.34 μgmL-1), chitinase (0.168 ± 0.0009 unitmL-1) and β,1-3 endoglucanase (162.14 ± 2.5 μgmL-1), which helps in cell wall disintegration of pathogens. Additionally, M-4 also can produce siderophores, indole-3-acetic acid (IAA) (17.03 ± 1.10 μgmL-1) and had a phosphate solubilization potential (19.89 ± 0.26 μgmL-1). Further, GC-MS profiling of M-4 has been carried out to demonstrate the production of lipophilic secondary metabolites which efficiently suppress the M. phaseolina defensive compounds under co-culture conditions. Bio-efficacy study of M-4 strain shown a significant reduction in disease incidence around 60 and 80% in resistant and susceptible varieties of soybean, respectively. The inoculation of M-4 potentially enhances the physiological attributes and triggers various defence responsive enzymes viz. superoxide dismutase (SOD), phenol peroxidase (PPO), peroxidase (PO) and catalase (CAT). The histopathological study also confirmed that M-4 can reduce the persistence of microsclerotia in root and shoot tissue. Conclusively, M-4 revealed as an efficient biocontrol agent that can uses multifaceted measures for charcoal rot disease management, by suppress the M. phaseolina infection and enhance the physiological attributes of soybean.
Collapse
Affiliation(s)
- Priyanka Chauhan
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Arpita Bhattacharya
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ved Prakash Giri
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, Uttar Pradesh, India
- Department of Botany, Lucknow University, Hasanganj, Lucknow, 226007, Uttar Pradesh, India
| | - Satyendra Pratap Singh
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow, 226001, Uttar Pradesh, India
| | - Sateesh Chandra Gupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Phytochemistry Division, CSIR-National Botanical Research Institute, Lucknow, 226001, Uttar Pradesh, India
| | - Pratibha Verma
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ashish Dwivedi
- Photobiology Division, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, Uttar Pradesh, India
| | - Laxman Singh Rajput
- Division of Crop Protection, ICAR-Indian Institute of Soybean Research, Indore, 452001, Madhya Pradesh, India
| | - Aradhana Mishra
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
10
|
Functional and Taxonomic Effects of Organic Amendments on the Restoration of Semiarid Quarry Soils. mSystems 2021; 6:e0075221. [PMID: 34812648 PMCID: PMC8609970 DOI: 10.1128/msystems.00752-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The application of organic amendments to mining soils has been shown to be a successful method of restoration, improving key physicochemical soil properties. However, there is a lack of a clear understanding of the soil bacterial community taxonomic and functional changes that are brought about by these treatments. We present further metagenomic sequencing (MGS) profiling of the effects of different restoration treatments applied to degraded, arid quarry soils in southern Spain which had previously been profiled only with 16S rRNA gene (16S) and physicochemical analyses. Both taxonomic and functional MGS profiles showed clear separation of organic treatment amendments from control samples, and although taxonomic differences were quite clear, functional redundancy was higher than expected and the majority of the latter signal came from the aggregation of minor (<0.1%) community differences. Significant taxonomic differences were seen with the presumably less-biased MGS-for example, the phylum Actinobacteria and the two genera Chloracidobacterium (Acidobacteria) and Paenibacillus (Firmicutes) were determined to be major players by the MGS and this was consistent with their potential functional roles. The former phylum was much less present, and the latter two genera were either minor components or not detected in the 16S data. Mapping of reads to MetaCyc/BioCyc categories showed overall slightly higher biosynthesis and degradation capabilities in all treatments versus control soils, with sewage amendments showing highest values and vegetable-based amendments being at intermediate levels, matching higher nutrient levels, respiration rates, enzyme activities, and bacterial biomass previously observed in the treated soils. IMPORTANCE The restoration of soils impacted by human activities poses specific challenges regarding the reestablishment of functional microbial communities which will further support the reintroduction of plant species. Organic fertilizers, originating from either treated sewage or vegetable wastes, have shown promise in restoration experiments; however, we still do not have a clear understanding of the functional and taxonomic changes that occur during these treatments. We used metagenomics to profile restoration treatments applied to degraded, arid quarry soils in southern Spain. We found that the assortments of individual functions and taxa within each soil could clearly identify treatments, while at the same time they demonstrated high functional redundancy. Functions grouped into higher pathways tended to match physicochemical measurements made on the same soils. In contrast, significant taxonomic differences were seen when the treatments were previously studied with a single marker gene, highlighting the advantage of metagenomic analysis for complex soil communities.
Collapse
|
11
|
Grinbergs D, Chilian J, Padilla N, Reyes M, France A, Moya-Elizondo E, Gerding M. Endophytic Microorganisms Associated with Reversion of Silverleaf Disease Symptoms in Apple. PHYTOPATHOLOGY 2021; 111:1541-1550. [PMID: 33591814 DOI: 10.1094/phyto-12-20-0548-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Silverleaf is caused by the fungus Chondrostereum purpureum, which produces wood necrosis and foliar silvering in woody plants. Field observations and studies in apple have shown the reversion of foliar symptoms. Because plants were clones and received identical agronomical management, it was hypothesized that reversion is driven by endophytic microbiota. Thus, the objectives of this study were to compare healthy, diseased, and reverted plants with respect to their physiology, endophytic microbial communities, antagonistic ability of their endophytes against C. purpureum, and defense genes expression. Water potential, stomatal conductance, chlorophyll content, and fluorescence were measured. Endophytic bacterial and fungal DNA were analyzed by denaturing gradient gel electrophoresis, and community richness and similarity were calculated. Wood cores were collected and bacterial and fungal endophytes were isolated and confronted with C. purpureum-virulent strains in dual-culture assays. Defense genes expression was measured by quantitative PCR. Results indicated that there were no differences in physiological parameters between healthy and reverted plants, except for fluorescence, and both type of plants differed from diseased ones. Bacterial and fungal community richness was similar in healthy and reverted plants and higher than in diseased ones. Endophytes from reverted and healthy plants showed high antagonism to C. purpureum. Furthermore, nonexpressor of pathogenesis-related gene 1 expression was upregulated in reverted plants, whereas phenylalanine ammonia lyase and polygalacturonase-inhibiting protein genes showed higher values in diseased plants. Overall, physiological, molecular, and microbial characteristics were similar between healthy and reverted plants, and both differed from diseased ones. Therefore, reversion of symptoms is associated with changes in the endophytic microbiota, which seems to be a promising source of biological control agents against C. purpureum.
Collapse
Affiliation(s)
- D Grinbergs
- Instituto de Investigaciones Agropecuarias, INIA, Chillán, Chile
- Universidad de Concepción, Chillán, Chile
| | - J Chilian
- Instituto de Investigaciones Agropecuarias, INIA, Chillán, Chile
| | - N Padilla
- Universidad de Concepción, Chillán, Chile
| | - M Reyes
- Instituto de Investigaciones Agropecuarias, INIA, Chillán, Chile
| | - A France
- Instituto de Investigaciones Agropecuarias, INIA, Chillán, Chile
| | | | - M Gerding
- Universidad de Concepción, Chillán, Chile
| |
Collapse
|
12
|
Luo M, Chen Y, He J, Tang X, Wu X, Xu C. Identification of a new Talaromyces strain DYM25 isolated from the Yap Trench as a biocontrol agent against Fusarium wilt of cucumber. Microbiol Res 2021; 251:126841. [PMID: 34385083 DOI: 10.1016/j.micres.2021.126841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 07/13/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
Fusarium equiseti is a pathogenic fungus of plant root rot, and there are few studies on the biocontrol strains of plant wilt caused by F. equiseti. Hence, we conducted a screening and antimicrobial characterization study of marine-origin biocontrol fungi from water samples of the Yap Trench. A new Talaromyces strain DYM25 was screened from water samples of the Yap Trench in the western Pacific Ocean, and its potential as a biocontrol agent against Fusarium wilt of cucumber was studied. 18S rRNA and ITS gene sequencing verified that strain DYM25 belongs to the genus Talaromyces. The growth of F. equiseti was inhibited by strain DYM25 through the antibiosis effect. A preliminary test was first conducted to examine the bioactive stability of filtered DYM25 broth against F. equiseti under various conditions, including high temperature, UV light, alkaline environment, and the presence of metal ions, which indicated its potential as a bio-control agent. The results of the pot experiment showed that F. equiseti caused cucumber wilt, which could be mitigated using the fermentation broth of strain DYM25 (52.9 %). On the other hand, the alkaloid chromogenic reaction showed that the alkaloid salts present in the crude n-butanol extracts were most likely the major components that might have an antimicrobial effect. Therefore, Talaromyces sp. DYM25 represents a new species that can be used as a novel biocontrol agent against cucumber wilt.
Collapse
Affiliation(s)
- Man Luo
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, People's Republic of China
| | - Yimin Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, People's Republic of China
| | - Jianlin He
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, People's Republic of China
| | - Xu Tang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, People's Republic of China
| | - Xudong Wu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, People's Republic of China
| | - Changan Xu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, People's Republic of China.
| |
Collapse
|
13
|
Langendries S, Goormachtig S. Paenibacillus polymyxa, a Jack of all trades. Environ Microbiol 2021; 23:5659-5669. [PMID: 33684235 DOI: 10.1111/1462-2920.15450] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 02/05/2023]
Abstract
The bacterium Paenibacillus polymyxa is found naturally in diverse niches. Microbiome analyses have revealed enrichment in the genus Paenibacillus in soils under different adverse conditions, which is often accompanied by improved growth conditions for residing plants. Furthermore, Paenibacillus is a member of the core microbiome of several agriculturally important crops, making its close association with plants an interesting research topic. This review covers the versatile interaction possibilities of P. polymyxa with plants and its applicability in industry and agriculture. Thanks to its array of produced compounds and traits, P. polymyxa is likely an efficient plant growth-promoting bacterium, with the potential of biofertilization, biocontrol and protection against abiotic stresses. By contrast, cases of phytotoxicity of P. polymyxa have been described as well, in which growth conditions seem to play a key role. Because of its adjustable character, we propose this bacterial species as an outstanding model for future studies on host-microbe communications and on the manner how the environment can influence these interactions.
Collapse
Affiliation(s)
- Sarah Langendries
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium.,Center for Plant Systems Biology, VIB, Ghent, 9052, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium.,Center for Plant Systems Biology, VIB, Ghent, 9052, Belgium
| |
Collapse
|
14
|
Zhai Y, Zhu JX, Tan TM, Xu JP, Shen AR, Yang XB, Li JL, Zeng LB, Wei L. Isolation and characterization of antagonistic Paenibacillus polymyxa HX-140 and its biocontrol potential against Fusarium wilt of cucumber seedlings. BMC Microbiol 2021; 21:75. [PMID: 33676418 PMCID: PMC7936408 DOI: 10.1186/s12866-021-02131-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/09/2021] [Indexed: 11/18/2022] Open
Abstract
Objective The aim of this study is to evaluate the efficacy of the strain Paenibacillus polymyxa HX-140, isolated from the rhizosphere soil of rape, to control Fusarium wilt of cucumber seedlings caused by Fusarium oxysporum f. sp. cucumerinum. Results Strain HX-140 was able to produce protease, cellulase, β-1,3-glucanase and antifungal volatile organic compounds. An in vitro dual culture test showed that strain HX-140 exhibited broad spectrum antifungal activity against soil-borne plant pathogenic fungi. Strain HX-140 also reduced the infection of Fusarium wilt of cucumber seedlings by 55.6% in a greenhouse pot experiment. A field plot experiment confirmed the biocontrol effects and further revealed that antifungal activity was positively correlated with inoculum size by the root-irrigation method. Here, inoculums at 106 107 and 108 cfu/mL of HX-140 bacterial suspension reduced the incidence of Fusarium wilt of cucumber seedling by 19.5, 41.1, and 50.9%, respectively. Conclusions Taken together, our results suggest that P. polymyxa HX-140 has significant potential in the control of Fusarium wilt and possibly other fungal diseases of cucumber. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02131-3.
Collapse
Affiliation(s)
- Yang Zhai
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, No.348 Xianjiahu West Road, Changsha, 410205, Hunan, China
| | - Jiu-Xiang Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, No.348 Xianjiahu West Road, Changsha, 410205, Hunan, China.,Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Tai-Meng Tan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, No.348 Xianjiahu West Road, Changsha, 410205, Hunan, China.,Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jian-Ping Xu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, No.348 Xianjiahu West Road, Changsha, 410205, Hunan, China
| | - Ai-Rong Shen
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China.,Hunan Academy of Forestry, Changsha, 410004, China
| | - Xie-Bin Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, No.348 Xianjiahu West Road, Changsha, 410205, Hunan, China.,Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Ji-Lie Li
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Liang-Bin Zeng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, No.348 Xianjiahu West Road, Changsha, 410205, Hunan, China.
| | - Lin Wei
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, No.726 Yuanda 2nd Road, Changsha, 410125, Hunan, China.
| |
Collapse
|
15
|
Chang R, Li Y, Li N, Wu X, Chen Q. Effect of microbial transformation induced by metallic compound additives and temperature variations during composting on suppression of soil-borne pathogens. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 279:111816. [PMID: 33321350 DOI: 10.1016/j.jenvman.2020.111816] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 11/23/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Agricultural wastes can be modified by composting and reused in soil to suppress soil-borne pathogens, which was proved to be closely related with microbial parameters. However, the microbial community in compost can be directly altered by temperature variations and metallic compound additives during composting process. The present study collected samples in various stages of the 35-day composting process, in which a study control (no additives) and different metallic compound additives, including magnesium oxide (MgO), alum (AlK(SO4)3), calcium oxide (CaO) and ferrous sulfate (FeSO4), were set in the bespoke compost with cow dung and corn stalk. The results showed that the additives prolonged the composting maturity process, whereas no consistent influence on the temperature variation and microbial community was observed. Temperature variations during composting significantly varied the bacteria and fungi diversity and community, especially the bacteria phyla of Firmicutes and Proteobacteria, while the bacteria were shown similar in Day 14 and Day 35 by PCA analysis. Meanwhile the samples from Day 14 and Day 35 showed stable suppressive effects on R. solani. and F. oxysporum, especially in D14 shown as 73.12%-88.16% and 30.95-58.55%, respectively, which were significantly related with the phyla of Firmicutes and Proteobacteria. In conclusion, temperature variations during composting process had a more significant impact than metallic compound additives on the microbial community and diversity, which resulted in significantly influence on the pathogen suppression. Suitable composting duration could produce effective suppressive products on soil-borne pathogens, for which further study was needed.
Collapse
Affiliation(s)
- Ruixue Chang
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Yuting Li
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Naihui Li
- College of Horticulture, Northeast Agricultural University, Harbin, 150038, China
| | - Xuehong Wu
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Qing Chen
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
16
|
Zouari I, Masmoudi F, Medhioub K, Tounsi S, Trigui M. Biocontrol and plant growth-promoting potentiality of bacteria isolated from compost extract. Antonie van Leeuwenhoek 2020; 113:2107-2122. [PMID: 33156472 DOI: 10.1007/s10482-020-01481-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/12/2020] [Indexed: 12/01/2022]
Abstract
The use of compost extracts is steadily increasing, offering an attractive way for plant growth enhancement and disease management replacing chemical pesticides. In this study, potential mechanisms involved in plant growth promotion and suppressive activity against fungal diseases, of a compost extract produced from poultry manure/olive husk compost, were investigated. Results of physico-chemical and microbiological investigations showed high ability to reduce Fusarium oxysporum, Alternaria alternata, Aspergillus niger and Botrytis cinerea growth. The suppressive ability detected using confrontation test and the phytostimulatory effect tested on tomato seeds were related mainly to its microbial population content. Among 150 bacterial strains, isolated from the compost extract, 13 isolates showed antifungal activity against the four tested plant pathogenic fungi. Their identification based on 16S rRNA gene sequence revealed they belonged to different species of the genus Bacillus, Alcaligenes, Providencia and Ochrobactrum. When tested for their ability to produce cell wall degradation enzymes using specific media, the majority of the 13 isolates were shown to synthesize proteases, lipases and glucanases. Similarly, the best part of them showed positive reaction for plant growth promoting substances liberation, biosurfactant production and biofilm formation. In vivo tests were carried out using tomato seeds and fruits and proved that 92% of strains improved tomato plants vigor indexes when compared to the control and 6 among them were able to reduce decay severity caused by B. cinerea over 50%. Principal component analysis showed an important correlation between in vitro and in vivo potentialities and that Bacillus siamensis CEBZ11 strain was statistically the most effective strain in protecting tomato plants from gray mould disease. This study revealed the selected strains would be useful for plant pathogenic fungi control and plant growth promotion.
Collapse
Affiliation(s)
- Imen Zouari
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, P.B. 1177, 3018, Sfax, Tunisia
| | - Fatma Masmoudi
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, P.B. 1177, 3018, Sfax, Tunisia.
| | - Khaled Medhioub
- Laboratory of Environmental Sciences and Sustainable Development (LASED), Sfax Preparatory Engineering Institute, University of Sfax, BP 1172-3018, Sfax, Tunisia
| | - Slim Tounsi
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, P.B. 1177, 3018, Sfax, Tunisia
| | - Mohamed Trigui
- Laboratory of Environmental Sciences and Sustainable Development (LASED), Sfax Preparatory Engineering Institute, University of Sfax, BP 1172-3018, Sfax, Tunisia
| |
Collapse
|
17
|
Lutz S, Thuerig B, Oberhaensli T, Mayerhofer J, Fuchs JG, Widmer F, Freimoser FM, Ahrens CH. Harnessing the Microbiomes of Suppressive Composts for Plant Protection: From Metagenomes to Beneficial Microorganisms and Reliable Diagnostics. Front Microbiol 2020; 11:1810. [PMID: 32849417 PMCID: PMC7406687 DOI: 10.3389/fmicb.2020.01810] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/09/2020] [Indexed: 01/20/2023] Open
Abstract
Soil-borne diseases cause significant yield losses worldwide, are difficult to treat and often only limited options for disease management are available. It has long been known that compost amendments, which are routinely applied in organic and integrated farming as a part of good agricultural practice to close nutrient cycles, can convey a protective effect. Yet, the targeted use of composts against soil-borne diseases is hampered by the unpredictability of the efficacy. Several studies have identified and/or isolated beneficial microorganisms (i.e., bacteria, oomycetes, and fungi) from disease suppressive composts capable of suppressing pathogens (e.g., Pythium and Fusarium) in various crops (e.g., tomato, lettuce, and cucumber), and some of them have been developed into commercial products. Yet, there is growing evidence that synthetic or complex microbial consortia can be more effective in controlling diseases than single strains, but the underlying molecular mechanisms are poorly understood. Currently, a major bottleneck concerns the lack of functional assays to identify the most potent beneficial microorganisms and/or key microbial consortia from complex soil and compost microbiomes, which can harbor tens of thousands of species. This focused review describes microorganisms, which have been isolated from, amended to or found to be abundant in disease-suppressive composts and for which a beneficial effect has been documented. We point out opportunities to increasingly harness compost microbiomes for plant protection through an integrated systems approach that combines the power of functional assays to isolate biocontrol and plant growth promoting strains and further prioritize them, with functional genomics approaches that have been successfully applied in other fields of microbiome research. These include detailed metagenomics studies (i.e., amplicon and shotgun sequencing) to achieve a better understanding of the complex system compost and to identify members of taxa enriched in suppressive composts. Whole-genome sequencing and complete assembly of key isolates and their subsequent functional profiling can elucidate the mechanisms of action of biocontrol strains. Integrating the benefits of these approaches will bring the long-term goals of employing microorganisms for a sustainable control of plant pathogens and developing reliable diagnostic assays to assess the suppressiveness of composts within reach.
Collapse
Affiliation(s)
- Stefanie Lutz
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics, Wädenswil, Switzerland.,SIB Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| | - Barbara Thuerig
- Research Institute of Organic Agriculture (FiBL), Department of Crop Sciences, Frick, Switzerland
| | - Thomas Oberhaensli
- Research Institute of Organic Agriculture (FiBL), Department of Crop Sciences, Frick, Switzerland
| | | | - Jacques G Fuchs
- Research Institute of Organic Agriculture (FiBL), Department of Crop Sciences, Frick, Switzerland
| | - Franco Widmer
- Agroscope, Research Group Molecular Ecology, Zurich, Switzerland
| | - Florian M Freimoser
- Agroscope, Research Group Phytopathology and Zoology in Fruit and Vegetable Production, Wädenswil, Switzerland
| | - Christian H Ahrens
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics, Wädenswil, Switzerland.,SIB Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| |
Collapse
|
18
|
Nasran HS, Mohd Yusof H, Halim M, Abdul Rahman N. Optimization of Protective Agents for The Freeze-Drying of Paenibacillus polymyxa Kp10 as a Potential Biofungicide. Molecules 2020; 25:molecules25112618. [PMID: 32512825 PMCID: PMC7321406 DOI: 10.3390/molecules25112618] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 11/16/2022] Open
Abstract
Anthracnose is a fungal disease causing major losses in crop production. Chemical fungicides widely used in crop plantations to combat fungal infections can be a threat to the environment and humans in the long term. Recently, biofungicides have gained much interest as an alternative to chemical fungicides due to their environmentally friendly nature. Biofungicide products in powder form can be formulated using the freeze-drying technique to provide convenient storage. Protective agent formulation is needed in maintaining the optimal viable cells of biofungicide products. In this study, 8.10 log colony-forming unit (CFU)/mL was the highest cell viability of Paenibacillus polymyxa Kp10 at 22 h during incubation. The effects of several selected protective agents on the viability of P. polymyxa Kp10 after freeze-drying were studied. Response surface methodology (RSM) was used for optimizing formulation for the protective agents. The combination of lactose (10% w/v), skim milk (20% w/v), and sucrose (27.5% w/v) was found to be suitable for preserving P. polymyxa Kp10 during freeze-drying. Further, P. polymyxa Kp10 demonstrated the ability to inhibit fungal pathogens, Colletotrichum truncatum and C. gloeosporioides, at 60.18% and 66.52% of inhibition of radial growth, respectively.
Collapse
Affiliation(s)
- Hayatun Syamila Nasran
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; (H.S.N.); (H.M.Y.); (M.H.)
| | - Hidayat Mohd Yusof
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; (H.S.N.); (H.M.Y.); (M.H.)
| | - Murni Halim
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; (H.S.N.); (H.M.Y.); (M.H.)
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Nor’Aini Abdul Rahman
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; (H.S.N.); (H.M.Y.); (M.H.)
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
- Correspondence:
| |
Collapse
|
19
|
Compost Amendments Based on Vinegar Residue Promote Tomato Growth and Suppress Bacterial Wilt Caused by Ralstonia Solanacearum. Pathogens 2020; 9:pathogens9030227. [PMID: 32204419 PMCID: PMC7157243 DOI: 10.3390/pathogens9030227] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/11/2020] [Accepted: 03/16/2020] [Indexed: 11/16/2022] Open
Abstract
Tomato bacterial wilt caused by Ralstonia solanacearum (RS) is one of the most devastating soil-borne diseases, and compost is to be considered as a resource-saving and environment-friendly measure to control the disease. Herein, a pot experiment was implemented to explore the effects of vinegar residue matrix amendments on the growth performances of tomato seedlings and to examine the suppression ability against bacterial wilt under vinegar residue substrate (VRS), and peat substrate (Peat) with RS inoculation. The results revealed that VRS effectively suppressed the disease incidence of bacterial wilt, increased the number of bacteria and actinomycetes, decreased fungi populations, promoted soil microbial populations and microbial activities, enhanced the growths of tomato seedlings, and modulated defense mechanism. In addition, VRS efficiently inhibited the oxidative damage in RS inoculated leaves via the regulation of excess reactive oxide species (O2•− and H2O2) production, lessening of malondialdehyde (MDA) content, and causing less membrane injury; resulting in enhancements of antioxidants enzymes activities accompanying with modulating their encoding gene expression. The transcription levels of NPR1, PIN2, PR1b, ACO1, EDS1, PR1B, MAPK3, PIN2, and RRS1 were also modulated with the pathogens inoculated in tomato leaves both in VRS and Peat treatments, which indicated that systemic-acquired resistance possesses cross-talk between salicylic acid, jasmonic acid, and the ethylene-dependent signaling pathway. Besides, the RS inoculation significantly inhibited the growth of tomato seedlings, and all growth indices of plants grown in VRS were considerably higher than those produced in Peat. Taken together, VRS represents a new strategy to control tomato bacterial wilt through boosting the soil microbial populations and microbial activities. Furthermore, VRS promotes the plant immune response to provide a better growth environment for plants surviving in disease conditions.
Collapse
|
20
|
Li Q, Liao S, Wei J, Xing D, Xiao Y, Yang Q. Isolation of Bacillus subtilis strain SEM-2 from silkworm excrement and characterisation of its antagonistic effect against Fusarium spp. Can J Microbiol 2020; 66:401-412. [PMID: 32160477 DOI: 10.1139/cjm-2019-0621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fusarium wilt is a devastating soil-borne disease mainly caused by highly host-specific formae speciales of Fusarium spp. Antagonistic microorganisms play a very important role in Fusarium wilt control. Isolation of potential biocontrol strains has become increasingly important. Bacterial strain SEM-2 was isolated from the high-temperature stage of silkworm excrement composting. SEM-2 exhibited a considerable antagonistic effect against Fusarium graminearum mycelial growth and spore germination. The results of pot experiments suggested that SEM-2 has a better inhibitory effect on the early stage of disease occurrence. The green fluorescent protein labelled SEM-2 coated on the surface of tomato seeds colonised the roots of tomato plants in 15 days. Genome sequencing identified SEM-2 as a new strain of Bacillus subtilis, and genome annotation and analysis determined gene clusters related to the biosynthesis of antimicrobials, such as bacillaene, fengycin, bacillibactin, subtilosin A, surfactin, and bacilysin. Interestingly, liquid chromatography - quadrupole time-of-flight mass spectrometry revealed that metabolites in pathways associated with the synthesis of secondary metabolites and antibiotics were highly differentially expressed. These findings may help to explain the mode of action of B. subtilis SEM-2 against Fusarium spp.
Collapse
Affiliation(s)
- Qingrong Li
- The Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, P.R. China.,Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou 510610, P.R. China
| | - Sentai Liao
- The Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, P.R. China
| | - Junhong Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, P.R. China
| | - Dongxu Xing
- The Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, P.R. China.,Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou 510610, P.R. China
| | - Yang Xiao
- The Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, P.R. China.,Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou 510610, P.R. China
| | - Qiong Yang
- The Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, P.R. China.,Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou 510610, P.R. China
| |
Collapse
|
21
|
Chávez-Ramírez B, Kerber-Díaz JC, Acoltzi-Conde MC, Ibarra JA, Vásquez-Murrieta MS, Estrada-de Los Santos P. Inhibition of Rhizoctonia solani RhCh-14 and Pythium ultimum PyFr-14 by Paenibacillus polymyxa NMA1017 and Burkholderia cenocepacia CACua-24: A proposal for biocontrol of phytopathogenic fungi. Microbiol Res 2020; 230:126347. [PMID: 31586859 DOI: 10.1016/j.micres.2019.126347] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/20/2019] [Accepted: 09/25/2019] [Indexed: 02/06/2023]
Abstract
Biocontrol has emerged in recent years as an alternative to pesticides. Given the importance of environmental preservation using biocontrol, in this study two antagonistic bacteria against phytopathogenic fungi were isolated and evaluated. These bacterial strains, identified as Paenibacillus polymyxa NMA1017 and Burkholderia cenocepacia CACua-24, inhibited (70 to 80%) the development of two phytopathogens of economic importance: the fungus Rhizoctonia solani RhCh-14, isolated from chili pepper, and the oomycete Pythium ultimum PyFr-14, isolated from tomato. The spectrum was not limited to the previous pathogens, but also to other phytopathogenic fungus, some bacteria and other oomycetes. Fungi-bacteria microcultures observed with optical and scanning electron microscopy revealed hyphae disintegration and pores formation. The antifungal activity was found also in the supernatant, suggesting a diffusible compound is present. Innocuous tests on tobacco leaves, blood agar, bean seed germination and in Galleria mellonella larvae showed that strain NMA1017 has the potential to be a biocontrol agent. Greenhouse experiments with bean plants inoculated with P. polymyxa exhibited the efficacy to inhibit the growth of R. solani and P. ultimum. Furthermore, P. polymyxa NMA1017 showed plant growth promotion activities, such as siderophore synthesis and nitrogen fixation which can contribute to the crop development.
Collapse
Affiliation(s)
- Belén Chávez-Ramírez
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala s/n, Col. Santo Tomas, C.P. 11340, Mexico City, Mexico.
| | - Jeniffer Chris Kerber-Díaz
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala s/n, Col. Santo Tomas, C.P. 11340, Mexico City, Mexico.
| | - Marí Carmen Acoltzi-Conde
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala s/n, Col. Santo Tomas, C.P. 11340, Mexico City, Mexico.
| | - J Antonio Ibarra
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala s/n, Col. Santo Tomas, C.P. 11340, Mexico City, Mexico.
| | - María-Soledad Vásquez-Murrieta
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala s/n, Col. Santo Tomas, C.P. 11340, Mexico City, Mexico.
| | - Paulina Estrada-de Los Santos
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala s/n, Col. Santo Tomas, C.P. 11340, Mexico City, Mexico.
| |
Collapse
|
22
|
Xu W, Wang F, Zhang M, Ou T, Wang R, Strobel G, Xiang Z, Zhou Z, Xie J. Diversity of cultivable endophytic bacteria in mulberry and their potential for antimicrobial and plant growth-promoting activities. Microbiol Res 2019; 229:126328. [PMID: 31521946 DOI: 10.1016/j.micres.2019.126328] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/03/2019] [Accepted: 08/30/2019] [Indexed: 02/02/2023]
Abstract
Endophytic bacteria-based biocontrol is regarded as a potential plant disease management strategy. Present study analyzed the diversity of mulberry endophytic bacteria basing on a culture-dependent approach and further evaluated their antimicrobial and plant growth-promoting (PGP) activities. A total of 608 cultivable endophytic bacteria, belonging to 4 phyla and 36 genera, were isolated from four mulberry cultivars having different resistance to sclerotiniosis in three seasons. Taxonomic compositional analysis results showed that Proteobacteria, Firmicutes, and Actinobacteria were the three dominant bacterial phyla in all communities, with the representative genera Pantoea, Bacillus, Pseudomonas, Curtobacterium, and Sphingomonas. Diversity analysis results indicated that the diversity of winter community was higher than that of spring or autumn, and higher diversities were detected in the resistant cultivar communities compared with the susceptible cultivar. Antagonism assays results showed that 33 isolates exhibited strong and stable activity against three phytopathogens which are Sclerotinia sclerotiorum, Botrytis cinerea, and Colletotrichum gloeosporioide. Eight endophytic bacteria were selected out from 33 antagonists based on the evaluation of antagonistic and PGP activities. Furthermore, pot experiment results revealed that all the 8 tested endophytes stimulated the growth of mulberry seedlings at different levels, and Bacillus sp. CW16-5 exhibited the highest promotion capacity, which the shoot length and the root fresh weight were increased by 83.37% and 217.70%, respectively. Altogether, present study revealed that mulberry harbors a large amount of diverse cultivable endophytic bacteria and they also serve as novel sources of beneficial bacteria and bioactive metabolites.
Collapse
Affiliation(s)
- Weifang Xu
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Fei Wang
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Meng Zhang
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Ting Ou
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Ruolin Wang
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Gary Strobel
- Department of Plant Sciences, Montana State University, Bozeman, MT, 59717, USA
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, 400715, China; College of Life Science, Chongqing Normal University, Chongqing, 400047, China.
| | - Jie Xie
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
23
|
Song J, Zhang J, Kang S, Zhang H, Yuan J, Zeng C, Zhang F, Huang Y. Analysis of microbial diversity in apple vinegar fermentation process through 16s rDNA sequencing. Food Sci Nutr 2019; 7:1230-1238. [PMID: 31024696 PMCID: PMC6475731 DOI: 10.1002/fsn3.944] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 11/08/2022] Open
Abstract
Based on SPME-GC-MS analysis, it could be found that the production of acetic acid, phenethyl acetate, and isoamyl acetate gradually increased in the apple vinegar fermentation broth with the fermentation time. Consequently, in order to systematically explore the dynamic changes of microbial diversity and metabolites in the process of apple vinegar fermentation, 16S rDNA were sequenced and analyzed in this work. The present results showed that bacterial diversity was rich and exhibited a certain variation during the dynamic fermentation process of apple vinegar. Furthermore, Lactococcus and Oenococcus were the predominant bacteria in the pre-fermentation (alcoholic fermentation) of apple vinegar, while the dominant bacteria in the middle and late fermentation stages (acetic acid fermentation) were Lactococcus and Acetobacter. In addition, during the whole fermentation process of apple vinegar, Lactococcus was the most dominant bacteria, Oenococcus was the unique species in the stage of alcohol fermentation, and Acetobacter increased rapidly in the stage of acetic acid fermentation. In conclusion, our finding provided a theoretical basis for the processing technology of apple vinegar fermentation, and a theory evidence for the safety and health assessment of apple vinegar.
Collapse
Affiliation(s)
- Juan Song
- Agricultural Product Storage and Processing Research InstituteGansu Academy of Agricultural SciencesLanzhouChina
| | - Ji‐Hong Zhang
- Agricultural Product Storage and Processing Research InstituteGansu Academy of Agricultural SciencesLanzhouChina
| | - San‐Jiang Kang
- Agricultural Product Storage and Processing Research InstituteGansu Academy of Agricultural SciencesLanzhouChina
| | - Hai‐Yan Zhang
- Agricultural Product Storage and Processing Research InstituteGansu Academy of Agricultural SciencesLanzhouChina
| | - Jing Yuan
- Agricultural Product Storage and Processing Research InstituteGansu Academy of Agricultural SciencesLanzhouChina
| | - Chao‐Zhen Zeng
- Agricultural Product Storage and Processing Research InstituteGansu Academy of Agricultural SciencesLanzhouChina
| | - Fang Zhang
- Agricultural Product Storage and Processing Research InstituteGansu Academy of Agricultural SciencesLanzhouChina
| | - Yu‐Long Huang
- Agricultural Product Storage and Processing Research InstituteGansu Academy of Agricultural SciencesLanzhouChina
| |
Collapse
|
24
|
Chen SW, Liu CH, Hu SY. Dietary administration of probiotic Paenibacillus ehimensis NPUST1 with bacteriocin-like activity improves growth performance and immunity against Aeromonas hydrophila and Streptococcus iniae in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2019; 84:695-703. [PMID: 30368025 DOI: 10.1016/j.fsi.2018.10.059] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/08/2018] [Accepted: 10/23/2018] [Indexed: 05/19/2023]
Abstract
Bacteria-induced diseases are a major cause of mortality in aquaculture. Probiotics have commonly been used to replace antibiotics for prophylactic biocontrol in aquaculture. In the present study, Paenibacillus ehimensis NPUST1 was isolated from a tilapia culture pond. This probiotic has bacteriocin-like activities against Aeromonas hydrophila and was characterized by biochemical analysis and 16S rDNA sequencing. The physiochemical properties of a crude extract of the bacteriocin-like substance revealed low pH and high thermal tolerance. The substance exhibited broad-spectrum antimicrobial activity against diverse aquatic pathogens, food spoilage, clinical pathogens, and plant pathogens. The effect of dietary supplementation with P. ehimensis NPUST1 was evaluated in regard to the growth of Nile tilapia (Oreochromis niloticus) and immunity against pathogenic infection. The results showed significantly increased weight gain (WG), feed conversion ratio (FCR), and feed efficiency (FE) in Nile tilapia fed P. ehimensis NPUST1 for 2 months compared with fish fed a control diet. When challenged with A. hydrophila and S. iniae, the fish fed P. ehimensis NPUST1 also exhibited a higher survival rate than fish fed the control diet. The immune parameters revealed that the P. ehimensis NPUST1-fed fish had significantly higher phagocytic activity, respiratory burst, and superoxide dismutase (SOD) of the head kidney leukocytes, as well as higher serum lysozyme activity and expression of cytokines TNF-α and IL-1β than the fish fed the control diet. These results indicate that dietary supplementation with P. ehimensis NPUST1 improved the growth performance, immunity, and disease resistance in Nile tilapia.
Collapse
Affiliation(s)
- Sai-Wei Chen
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Shao-Yang Hu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 912, Taiwan.
| |
Collapse
|
25
|
Li Q, Liao S, Zhi H, Xing D, Xiao Y, Yang Q. Characterization and sequence analysis of potential biofertilizer and biocontrol agent Bacillus subtilis strain SEM-9 from silkworm excrement. Can J Microbiol 2019; 65:45-58. [DOI: 10.1139/cjm-2018-0350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fusarium wilt is a devastating soil-borne disease caused mainly by highly host-specific formae speciales of Fusarium oxysporum. Antagonistic microorganisms play a very important role in Fusarium wilt control, and the isolation of potential biocontrol strains is becoming more and more important. We isolated a bacterial strain (SEM-9) from the high-temperature stage of silkworm excrement composting, which had a marked ability to solubilize phosphorus, promote the growth and increase the yield of the small Chinese cabbage, and which also exhibited considerable antagonistic effect towards Fusarium sambucinum and other fungi. The result of physiological and biochemical analyses, as well as genome sequencing, showed that SEM-9 was a strain of Bacillus subtilis. Through genome annotation and analysis, it was found that SEM-9 contained genes related to the regulation of biofilm formation, which may play an important role in colonization, and gene clusters encoding the biosynthesis of antimicrobials, such as surfactin, bacilysin, fengycin, and subtilosin-A. The production of such antifungal compounds may constitute the basis of the mode-of-action of SEM-9 against Fusarium spp. These data suggested that the SEM-9 strain has potential as both a biofertilizer and a biocontrol agent, with the potential to manage Fusarium wilt disease in crops.
Collapse
Affiliation(s)
- Qingrong Li
- The Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, P.R. China
- Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou 510610, P.R. China
| | - Sentai Liao
- The Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, P.R. China
| | - Huyu Zhi
- Guangdong Geolong Biotechnology Co. Ltd., ZhuHai 519000, P.R. China
| | - Dongxu Xing
- The Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, P.R. China
- Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou 510610, P.R. China
| | - Yang Xiao
- The Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, P.R. China
- Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou 510610, P.R. China
| | - Qiong Yang
- The Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, P.R. China
- Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou 510610, P.R. China
| |
Collapse
|
26
|
Meshram S, Patel JS, Yadav SK, Kumar G, Singh DP, Singh HB, Sarma BK. Trichoderma mediate early and enhanced lignifications in chickpea during Fusarium oxysporum f. sp. ciceris infection. J Basic Microbiol 2018; 59:74-86. [PMID: 30284310 DOI: 10.1002/jobm.201800212] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 12/31/2022]
Abstract
Lignifications in secondary cell walls play a significant role in defense mechanisms of plants against the invading pathogens. In the present study, we investigated Trichoderma strain specific lignifications in chickpea plants pre-treated with 10 potential Trichoderma strains and subsequently challenged with the wilt pathogen Fusarium oxysporum f. sp. ciceris (Foc). Trichoderma-induced lignifications in chickpea were observed through histochemical staining and expression of some genes of the lignin biosynthetic pathway. Lignifications were observed in transverse sections of shoots near the soil line through histochemical staining and expression pattern of the target genes was observed in root tissues through semi quantitative RT-PCR at different time intervals after inoculation of F. oxysporum f. sp. ciceris. Lignin deposition and expression pattern of the target genes were variable in each treatment. Lignifications were enhanced in all 10 Trichoderma strain treated and F. oxysporum f. sp. ciceris challenged chickpea plants. However, four Trichoderma strains viz., T-42, MV-41, DFL, and RO, triggered significantly high lignifications compared to the other six strains. Time course studies showed that effective Trichoderma isolates induced lignifications very early compared to the other strains and the process of lignifications nearly completes within 6 days of pathogen challenge. Thus, from the results it can be concluded that effective Trichoderma strains trigger lignifications very early in chickpea under Foc challenge and provide better protection to chickpea plants.
Collapse
Affiliation(s)
- Shweta Meshram
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Jai Singh Patel
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sudheer K Yadav
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Gagan Kumar
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Dhananjaya P Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau Nath Bhanjan, Uttar Pradesh, India
| | - Harikesh B Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Birinchi K Sarma
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
27
|
Characterization and assessment of two biocontrol bacteria against Pseudomonas syringae wilt in Solanum lycopersicum and its genetic responses. Microbiol Res 2017; 206:43-49. [PMID: 29146259 DOI: 10.1016/j.micres.2017.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/08/2017] [Accepted: 09/09/2017] [Indexed: 11/22/2022]
Abstract
Pseudomonas and Bacillus species are attractive due to their potential bio-control application against plant bacterial pathogens. Pseudomonas aeruginosa strain D4 and Bacillus stratosphericus strain FW3 were isolated from mine tailings in South Korea. In these potent bacterial strains, we observed improved antagonistic activity against Pseudomonas syringae DC3000. These strains produced biocatalysts for plant growth promotion, and in vivo examination of Solanum lycopersicum included analysis of disease severity, ion leakage, chlorophyll content, and H2O2 detection. In addition, regulation of the defense genes pathogen-related protein 1a (PR1a) and phenylalanine ammonia lyase (PAL) was compared with treated plants and untreated control plants. The results suggest that these two bacterial strains provide protection against plant pathogens via direct and indirect modes of action and could be used as a bio-control agent.
Collapse
|