1
|
Morales-Pontet NG, Fernández C, Botté SE. Chromium removal by microbial mats: understanding the effect of salinity and pH. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:686. [PMID: 38958830 DOI: 10.1007/s10661-024-12847-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
Environmental contamination by chromium represents a serious public health problem. Therefore, it is crucial to develop and optimize remediation technologies to reduce its concentration in the environment. The aims of this study were to evaluate the uptake of chromium by live and complete microbial mats in experimental mesocosms under different pH and salinity conditions to understand how these factors affect the microphytobenthic community and, consequently, how chromium removal process is influenced. Microbial mats from the estuarine environment were exposed to 15 mg Cr/L under different pH (2, 4, and 8) and salinity (2, 15, and 33) conditions. Salinity, redox potential, and pH were measured throughout the trial in solutions and in microbial mats, while total Cr determinations were performed at the end of the assay. The results demonstrated that the removal efficiency of Cr by microbial mats was significantly improved in solutions at pH 2, remaining unaffected by variations in salinity. Notably, both cyanobacteria and diatoms showed remarkable resistance to Cr exposure under all conditions tested, highlighting their exceptional adaptability. Microbial mats have proved to be effective filters for reducing the concentration of chromium in aqueous solutions with varying pH and salinity levels.
Collapse
Affiliation(s)
- Natalia Gabriela Morales-Pontet
- Instituto Argentino de Oceanografía, CONICET - Universidad Nacional del Sur (UNS), Camino Carrindanga 7.5 Km, B8000FWB, Bahía Blanca, Argentina.
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, B8000ICN, Bahía Blanca, Argentina.
| | - Carolina Fernández
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, CONICET - Universidad Nacional del Sur (UNS), Camino Carrindanga 7.5 Km, B8000FWB, Bahía Blanca, Argentina
- Centro de Emprendedorismo y Desarrollo Territorial Sostenible (CEDETS), Universidad Provincial del Sudoeste (UPSO) - Comisión de Investigaciones Científicas de La Provincia de Buenos Aires (CIC), Ciudad de Cali 320, B8003FTH, Bahía Blanca, Argentina
| | - Sandra Elizabeth Botté
- Instituto Argentino de Oceanografía, CONICET - Universidad Nacional del Sur (UNS), Camino Carrindanga 7.5 Km, B8000FWB, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, B8000ICN, Bahía Blanca, Argentina
| |
Collapse
|
2
|
Xie L, Yu S, Lu X, Liu S, Tang Y, Lu H. Different Responses of Bacteria and Archaea to Environmental Variables in Brines of the Mahai Potash Mine, Qinghai-Tibet Plateau. Microorganisms 2023; 11:2002. [PMID: 37630563 PMCID: PMC10458105 DOI: 10.3390/microorganisms11082002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Salt mines feature both autochthonous and allochthonous microbial communities introduced by industrialization. It is important to generate the information on the diversity of the microbial communities present in the salt mines and how they are shaped by the environment representing ecological diversification. Brine from Mahai potash mine (Qianghai, China), an extreme hypersaline environment, is used to produce potash salts for hundreds of millions of people. However, halophiles preserved in this niche during deposition are still unknown. In this study, using high-throughput 16S rRNA gene amplicon sequencing and estimation of physicochemical variables, we examined brine samples collected from locations with the gradient of industrial activity intensity and discrete hydrochemical compositions in the Mahai potash mine. Our findings revealed a highly diverse bacterial community, mainly composed of Pseudomonadota in the hypersaline brines from the industrial area, whereas in the natural brine collected from the upstream Mahai salt lake, most of the 16S rRNA gene reads were assigned to Bacteroidota. Halobacteria and halophilic methanogens dominated archaeal populations. Furthermore, we discovered that in the Mahai potash mining area, bacterial communities tended to respond to anthropogenic influences. In contrast, archaeal diversity and compositions were primarily shaped by the chemical properties of the hypersaline brines. Conspicuously, distinct methanogenic communities were discovered in sets of samples with varying ionic compositions, indicating their strong sensitivity to the brine hydrochemical alterations. Our findings provide the first taxonomic snapshot of microbial communities from the Mahai potash mine and reveal the different responses of bacteria and archaea to environmental variations in this high-altitude aquatic ecosystem.
Collapse
Affiliation(s)
- Linglu Xie
- School of Earth and Space Sciences, Peking University, Beijing 100871, China; (L.X.)
| | - Shan Yu
- Beijing International Center for Gas Hydrate, School of Earth and Space Sciences, Peking University, Beijing 100871, China
- National Engineering Research Center for Gas Hydrate Exploration and Development, Guangzhou 511466, China
| | - Xindi Lu
- School of Earth and Space Sciences, Peking University, Beijing 100871, China; (L.X.)
| | - Siwei Liu
- School of Earth and Space Sciences, Peking University, Beijing 100871, China; (L.X.)
| | - Yukai Tang
- School of Earth and Space Sciences, Peking University, Beijing 100871, China; (L.X.)
| | - Hailong Lu
- School of Earth and Space Sciences, Peking University, Beijing 100871, China; (L.X.)
- Beijing International Center for Gas Hydrate, School of Earth and Space Sciences, Peking University, Beijing 100871, China
- National Engineering Research Center for Gas Hydrate Exploration and Development, Guangzhou 511466, China
| |
Collapse
|
3
|
Mazière C, Duran R, Dupuy C, Cravo-Laureau C. Microbial mats as model to decipher climate change effect on microbial communities through a mesocosm study. Front Microbiol 2023; 14:1039658. [PMID: 37396368 PMCID: PMC10308941 DOI: 10.3389/fmicb.2023.1039658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Marine environments are expected to be one of the most affected ecosystems by climate change, notably with increasing ocean temperature and ocean acidification. In marine environments, microbial communities provide important ecosystem services ensuring biogeochemical cycles. They are threatened by the modification of environmental parameters induced by climate change that, in turn, affect their activities. Microbial mats, ensuring important ecosystem services in coastal areas, are well-organized communities of diverse microorganisms representing accurate microbial models. It is hypothesized that their microbial diversity and metabolic versatility will reveal various adaptation strategies in response to climate change. Thus, understanding how climate change affects microbial mats will provide valuable information on microbial behaviour and functioning in changed environment. Experimental ecology, based on mesocosm approaches, provides the opportunity to control physical-chemical parameters, as close as possible to those observed in the environment. The exposure of microbial mats to physical-chemical conditions mimicking the climate change predictions will help to decipher the modification of the microbial community structure and function in response to it. Here, we present how to expose microbial mats, following a mesocosm approach, to study the impact of climate change on microbial community.
Collapse
Affiliation(s)
- C. Mazière
- Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM UMR 525—Bât. IBEAS, BP1155, Pau, France
- La Rochelle Université, CNRS, UMR 7266 LIENSs (Littoral Environnement et Sociétés)—2, rue Olympe de Gouges, Bât. ILE, La Rochelle, France
| | - R. Duran
- Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM UMR 525—Bât. IBEAS, BP1155, Pau, France
| | - C. Dupuy
- La Rochelle Université, CNRS, UMR 7266 LIENSs (Littoral Environnement et Sociétés)—2, rue Olympe de Gouges, Bât. ILE, La Rochelle, France
| | - C. Cravo-Laureau
- Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM UMR 525—Bât. IBEAS, BP1155, Pau, France
| |
Collapse
|
4
|
Bourhane Z, Cagnon C, Castañeda C, Rodríguez-Ochoa R, Álvaro-Fuentes J, Cravo-Laureau C, Duran R. Vertical organization of microbial communities in Salineta hypersaline wetland, Spain. Front Microbiol 2023; 14:869907. [PMID: 36778872 PMCID: PMC9911865 DOI: 10.3389/fmicb.2023.869907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 01/03/2023] [Indexed: 01/28/2023] Open
Abstract
Microbial communities inhabiting hypersaline wetlands, well adapted to the environmental fluctuations due to flooding and desiccation events, play a key role in the biogeochemical cycles, ensuring ecosystem service. To better understand the ecosystem functioning, we studied soil microbial communities of Salineta wetland (NE Spain) in dry and wet seasons in three different landscape stations representing situations characteristic of ephemeral saline lakes: S1 soil usually submerged, S2 soil intermittently flooded, and S3 soil with halophytes. Microbial community composition was determined according to different redox layers by 16S rRNA gene barcoding. We observed reversed redox gradient, negative at the surface and positive in depth, which was identified by PERMANOVA as the main factor explaining microbial distribution. The Pseudomonadota, Gemmatimonadota, Bacteroidota, Desulfobacterota, and Halobacteriota phyla were dominant in all stations. Linear discriminant analysis effect size (LEfSe) revealed that the upper soil surface layer was characterized by the predominance of operational taxonomic units (OTUs) affiliated to strictly or facultative anaerobic halophilic bacteria and archaea while the subsurface soil layer was dominated by an OTU affiliated to Roseibaca, an aerobic alkali-tolerant bacterium. In addition, the potential functional capabilities, inferred by PICRUSt2 analysis, involved in carbon, nitrogen, and sulfur cycles were similar in all samples, irrespective of the redox stratification, suggesting functional redundancy. Our findings show microbial community changes according to water flooding conditions, which represent useful information for biomonitoring and management of these wetlands whose extreme aridity and salinity conditions are exposed to irreversible changes due to human activities.
Collapse
Affiliation(s)
- Zeina Bourhane
- Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Christine Cagnon
- Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | | | - Rafael Rodríguez-Ochoa
- Departamento de Medio Ambiente y Ciencias del Suelo, Universidad de Lleida, Lleida, Spain
| | | | | | - Robert Duran
- Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM, Pau, France
| |
Collapse
|
5
|
Harpke M, Pietschmann S, Ueberschaar N, Krüger T, Kniemeyer O, Brakhage AA, Nietzsche S, Kothe E. Salt and Metal Tolerance Involves Formation of Guttation Droplets in Species of the Aspergillus versicolor Complex. Genes (Basel) 2022; 13:genes13091631. [PMID: 36140799 PMCID: PMC9498632 DOI: 10.3390/genes13091631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Three strains of the Aspergillus versicolor complex were isolated from a salty marsh at a former uranium mining site in Thuringia, Germany. The strains from a metal-rich environment were not only highly salt tolerant (up to 20% NaCl), but at the same time could sustain elevated Cs and Sr (both up to 100 mM) concentrations as well as other (heavy) metals present in the environment. During growth experiments when screening for differential cell morphology, the occurrence of guttation droplets was observed, specifically when elevated Sr concentrations of 25 mM were present in the media. To analyze the potential of metal tolerance being promoted by these excretions, proteomics and metabolomics of guttation droplets were performed. Indeed, proteins involved in up-regulated metabolic activities as well as in stress responses were identified. The metabolome verified the presence of amino sugars, glucose homeostasis-regulating substances, abscisic acid and bioactive alkaloids, flavones and quinones.
Collapse
Affiliation(s)
- Marie Harpke
- Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 25, 07743 Jena, Germany
| | - Sebastian Pietschmann
- Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 25, 07743 Jena, Germany
| | - Nico Ueberschaar
- Mass Spectrometry Platform, Friedrich Schiller University Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Thomas Krüger
- Leibniz Institute for Natural Product Research and Infection Biology, Department of Molecular and Applied Microbiology, Adolf-Reichwein-St. 23, 07745 Jena, Germany
| | - Olaf Kniemeyer
- Leibniz Institute for Natural Product Research and Infection Biology, Department of Molecular and Applied Microbiology, Adolf-Reichwein-St. 23, 07745 Jena, Germany
| | - Axel A. Brakhage
- Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 25, 07743 Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology, Department of Molecular and Applied Microbiology, Adolf-Reichwein-St. 23, 07745 Jena, Germany
| | - Sandor Nietzsche
- Elektronenmikroskopisches Zentrum, Universitätsklinikum Jena, Ziegelmühlenweg 1, 07743 Jena, Germany
| | - Erika Kothe
- Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 25, 07743 Jena, Germany
- Correspondence:
| |
Collapse
|
6
|
Tu D, Ke J, Luo Y, Hong T, Sun S, Han J, Chen S. Microbial community structure and shift pattern of industry brine after a long-term static storage in closed tank. Front Microbiol 2022; 13:975271. [PMID: 36118215 PMCID: PMC9478951 DOI: 10.3389/fmicb.2022.975271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Brine from Dingyuan Salt Mine (Anhui, China), an athalassohaline hypersaline environment formed in the early tertiary Oligocene, is used to produce table salt for hundreds of millions of people. However, halophiles preserved in this niche during deposition are still unknown. Here, we employed cultivation and high-throughput sequencing strategies to uncover the microbial community and its shift after a long-term storage in the brine collected from Dingyuan Salt Mine. High-throughput sequencing showed (1) in the fresh brine (2021), Cyanobium_stocktickerPCC-6307 spp. (8.46%), Aeromonas spp. (6.91%) and Pseudomonas spp. (4.71%) are the dominant species in bacteria while Natronomonas spp. (18.89%), Halapricum spp. (13.73%), and Halomicrobium spp. (12.35%) in archaea; (2) after a 3-year-storage, Salinibacter spp. (30.01%) and Alcanivorax spp. (14.96%) surpassed Cyanobium_stocktickerPCC-6307 spp. (8.46%) becoming the dominant species in bacteria; Natronomonas spp. are still the dominant species, while Halorientalis spp. (14.80%) outnumbered Halapricum spp. becoming the dominant species in archaea; (3) Alcanivorax spp. and Halorientalis spp. two hydrocarbons degrading microorganisms were enriched in the brine containing hydrocarbons. Cultivation using hypersaline nutrient medium (20% NaCl) combined with high-throughput 16S rRNA gene sequencing showed that (1) the biomass significantly increased while the species diversity sharply declined after a 3-year-storage; (2) Halorubrum spp. scarcely detected from the environment total stocktickerDNA were flourishing after cultivation using AS-168 or NOM medium; (3) twelve possible new species were revealed based on almost full-length 16S rRNA gene sequence similarity search. This study generally uncovered the microbial community and the dominant halophiles in this inland athalassohaline salt mine, and provided a new insight on the shift pattern of dominant halophiles during a long-term storage, which illustrated the shaping of microorganisms in the unique environment, and the adaptation of microbe to the specific environment.
Collapse
Affiliation(s)
- Demei Tu
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Juntao Ke
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yuqing Luo
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Tao Hong
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Siqi Sun
- Anhui Jiaotianxiang Biological Technology Co., Ltd., Xuancheng, China
| | - Jing Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shaoxing Chen
- College of Life Sciences, Anhui Normal University, Wuhu, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Adedayo AA, Babalola OO, Prigent-Combaret C, Cruz C, Stefan M, Kutu F, Glick BR. The application of plant growth-promoting rhizobacteria in Solanum lycopersicum production in the agricultural system: a review. PeerJ 2022; 10:e13405. [PMID: 35669957 PMCID: PMC9165593 DOI: 10.7717/peerj.13405] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/18/2022] [Indexed: 01/14/2023] Open
Abstract
Food safety is a significant challenge worldwide, from plantation to cultivation, especially for perishable products such as tomatoes. New eco-friendly strategies are needed, and beneficial microorganisms might be a sustainable solution. This study demonstrates bacteria activity in the tomato plant rhizosphere. Further, it investigates the rhizobacteria's structure, function, and diversity in soil. Rhizobacteria that promote the growth and development of tomato plants are referred to as plant growth-promoting bacteria (PGPR). They form a series of associations with plants and other organisms in the soil through a mutualistic relationship where both parties benefit from living together. It implies the antagonistic activities of the rhizobacteria to deter pathogens from invading tomato plants through their roots. Some PGPR are regarded as biological control agents that hinder the development of spoilage organisms and can act as an alternative for agricultural chemicals that may be detrimental to the health of humans, animals, and some of the beneficial microbes in the rhizosphere soil. These bacteria also help tomato plants acquire essential nutrients like potassium (K), magnesium (Mg), phosphorus (P), and nitrogen (N). Some rhizobacteria may offer a solution to low tomato production and help tackle food insecurity and farming problems. In this review, an overview of soil-inhabiting rhizobacteria focused on improving the sustainable production of Solanum lycopersicum.
Collapse
Affiliation(s)
- Afeez Adesina Adedayo
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | | | - Cristina Cruz
- Department of Plant Biology, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Marius Stefan
- Faculty of Biology, Universitatea Alexandru Ioan Cuza, Iasi, Romania
| | - Funso Kutu
- Faculty of Agiculture and Natural Sciences, University of Mpumalanga, Mpumalanga, South Africa
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
8
|
Biomineralization by Extremely Halophilic and Metal-Tolerant Community Members from a Sulfate-Dominated Metal-Rich Environment. Microorganisms 2021; 10:microorganisms10010079. [PMID: 35056528 PMCID: PMC8780871 DOI: 10.3390/microorganisms10010079] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
The adaptation to adverse environmental conditions can lead to adapted microbial communities that may be screened for mechanisms involved in halophily and, in this case, metal tolerance. At a former uranium mining and milling site in Seelingstädt, Germany, microbial communities from surface waters and sediment soils were screened for isolates surviving high salt and metal concentrations. The high salt contents consisted mainly of chloride and sulfate, both in soil and riverbed sediment samples, accompanied by high metal loads with presence of cesium and strontium. The community structure was dominated by Chloroflexi, Proteobacteria and Acidobacteriota, while only at the highest contaminations did Firmicutes and Desulfobacterota reach appreciable percentages in the DNA-based community analysis. The extreme conditions providing high stress were mirrored by low numbers of cultivable strains. Thirty-four extremely halotolerant bacteria (23 Bacillus sp. and another 4 Bacillales, 5 Actinobacteria, and 1 Gamma-Proteobacterium) surviving 25 to 100 mM SrCl2, CsCl, and Cs2SO4 were further analyzed. Mineral formation of strontium- or cesium-struvite could be observed, reducing bioavailability and thereby constituting the dominant metal and salt resistance strategy in this environment.
Collapse
|