1
|
Liu H, Zhan L, Zhao J, Zhang S, Yin H, Hou Z, Huang G. Paper Spray Ionization Mass Spectrometry Coupled with Paper-Based Three-Dimensional Tumor Model for Rapid Metabolic Gradient Profiling. Anal Chem 2024; 96:16706-16714. [PMID: 39387545 DOI: 10.1021/acs.analchem.4c03007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The tumor microenvironment (TME), especially with its complicated metabolic characteristics, will dynamically affect the proliferation, migration, and drug response of tumor cells. Rapid metabolic analysis brings out a deeper understanding of the TME, while the susceptibility and environmental dependence of metabolites extremely hinder real-time metabolic profiling since the TME is easily disrupted. Here, we directly integrated paper spray ionization mass spectrometry with a paper-based three-dimensional (3D) tumor model, realizing the rapid capture of metabolic gradients. The entire procedure, from sample preparation to mass spectrometry detection, took less than 4 min, which was able to provide metabolic results close to real time and contributed to understanding the real metabolic processes. At present, our method successfully detected 160 metabolites; notably, over 40 significantly gradient metabolites were revealed across the six layers of the paper-based 3D tumor model. At least 22 gradient metabolites were reported to be associated with cell viability. This strategy was powerful enough to rapidly profile metabolic gradients of a paper-based 3D tumor model for revealing cell viability changes from a metabolomics perspective.
Collapse
Affiliation(s)
- Huimin Liu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Liujuan Zhan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jia Zhao
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Shan Zhang
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Hao Yin
- Instruments Center for Physical Science, University of Science and Technology of China, Hefei 230026, China
| | - Zhuanghao Hou
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Guangming Huang
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230001, China
| |
Collapse
|
2
|
Sun X, Wang J, Cheng M, Qi Y, Han C. Strategies to Increase the Production of Triterpene Acids in Ligzhi or Reishi Medicinal Mushroom (Ganoderma lucidum, Agaricomycetes): A Review. Int J Med Mushrooms 2024; 26:25-41. [PMID: 38780421 DOI: 10.1615/intjmedmushrooms.2024052871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Ganoderic acids (GAs) are the main active ingredient of Ganoderma lucidum, which has been widely accepted as a medicinal mushroom. Due to the low yield of GAs produced by liquid cultured Ganoderma mycelium and solid cultured fruiting bodies, the commercial production and clinical application of GAs are limited. Therefore, it is important to increase the yield of GA in G. lucidum. A comprehensive literature search was performed with no set data range using the following keywords such as "triterpene," "ganoderic acids," "Ganoderma lucidum," and "Lingzhi" within the main databases including Web of Science, PubMed, and China National Knowledge Infrastructure (CNKI). The data were screened using titles and abstracts and those relevant to the topic were included in the paper and was not limited to studies published in English. Present review focuses on the four aspects: fermentation conditions and substrate, extrinsic elicitor, genetic engineering, and mutagenesis, which play significant roles in increasing triterpene acids production, thus providing an available reference for further research on G. lucidum fermentation.
Collapse
Affiliation(s)
- Xiaomei Sun
- Shandong University of Traditional Chinese Medicine
| | - Jing Wang
- Research and Development Center, Shandong Phoenix Biotechnology Co. Ltd., Taian, Shandong, 271000, P.R. China
| | - Mengtao Cheng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Yitong Qi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China; Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, Shandong, 250355, People's Republic of China
| |
Collapse
|
3
|
Ran Z, Chen X, Li R, Duan W, Zhang Y, Fang L, Guo L, Zhou J. Transcriptomics and metabolomics reveal the changes induced by arbuscular mycorrhizal fungi in Panax quinquefolius L. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4919-4933. [PMID: 36942522 DOI: 10.1002/jsfa.12563] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/11/2023] [Accepted: 03/21/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Panax quinquefolius L. is one of the most important foods and herbs because of its high nutritional value and medicinal potential. In our previous study we found that the ginsenoside content in P. quinquefolius was improved by arbuscular mycorrhizal fungi (AMFs). However, little research has been conducted on the molecular mechanisms in P. quinquefolius roots induced by AMFs colonization. To identify the metabolomic and transcriptomic mechanisms of P. quinquefolius induced by AMFs, non-mycorrhized (control) and mycorrhized (AMF) P. quinquefolius were used as experimental materials for comparative analysis of the transcriptome and metabolome. RESULTS Compared with the control, 182 metabolites and 545 genes were significantly changed at the metabolic and transcriptional levels in AMFs treatment. The metabolic pattern of AMFs was changed, and the contents of ginsenosides (Rb1, Rg2), threonine, and glutaric acid were significantly increased. There were significant differences in the expression of genes involved in plant hormone signal transduction, glutathione metabolism, and the plant-pathogen interaction pathway. In addition, several transcription factors from the NAC, WRKY, and basic helix-loop-helix families were identified in AMFs versus the control. Furthermore, the combined analysis of 'transcriptomics-metabolomics' analysis showed that 'Plant hormone signal transduction', 'Amino sugar and nucleotide sugar metabolism' and 'Glutathione metabolism' pathways were the important enriched pathways in response to AMFs colonization. CONCLUSION Overall, these results provide new insights into P. quinquefolius response to AMFs, which improve our understanding of the molecular mechanisms of P. quinquefolius induced by AMFs. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhifang Ran
- School of Biological Science and Technology, University of Jinan, Jinan, People's Republic of China
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Xiaoli Chen
- School of Biological Science and Technology, University of Jinan, Jinan, People's Republic of China
| | - Rui Li
- School of Biological Science and Technology, University of Jinan, Jinan, People's Republic of China
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Wanying Duan
- School of Biological Science and Technology, University of Jinan, Jinan, People's Republic of China
| | - Yongqing Zhang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Lei Fang
- School of Biological Science and Technology, University of Jinan, Jinan, People's Republic of China
| | - Lanping Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Jie Zhou
- School of Biological Science and Technology, University of Jinan, Jinan, People's Republic of China
| |
Collapse
|
4
|
Liu Y, Qian Y, Wang C, He Y, Zhu C, Chen G, Lin L, Chen Y. Study of the Metabolite Changes in Ganoderma lucidum under Pineapple Leaf Residue Stress via LC-MS/MS Coupled with a Non-Targeted Metabolomics Approach. Metabolites 2023; 13:metabo13040487. [PMID: 37110146 PMCID: PMC10144527 DOI: 10.3390/metabo13040487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
The effects of fermentation metabolites of G. lucidum under different pineapple leaf residue additions were separated and identified using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The mass spectra showed that the metabolites had good response values only in the positive ion mode, and 3019 metabolites with significant differences, mainly distributed in 95 metabolic pathways, were identified. The multivariate analyses, including the principal component analysis (PCA), orthogonal least squares discriminant analysis (OPLS-DA), and volcano plots (VP), revealed that the G. lucidum metabolites exhibited significant differences (p < 0.05) and were well clustered under various pineapple leaf residue additions, featuring 494–545 upregulated and 998–1043 downregulated metabolites. The differential metabolic pathway analysis proved that two metabolic pathways related to the biosynthesis of amino acids and ABC transporters were particularly significant under the addition of pineapple leaf residue, where amino acids such as histidine and lysine were upregulated in contrast to downregulated tyrosine, valine, L-alanine, and L-asparagine. These study results are considered instrumental in substantiating the application of pineapple leaf residue in the cultivation of G. lucidum and improving its utilization rate and added value.
Collapse
|
5
|
Dong Y, Ma H, Rashid MT, Tuly JA, Guo Y, Ye X, Sun L, Wu B, Zhou C, He R, Gan B, Wang T, Chen M, Wu D. Ultrasound Intensify the Flavonoid Production of the Willow Bracket Mushroom, Phellinus igniarius (Agaricomycetes), Fermentation Mycelia. Int J Med Mushrooms 2023; 25:55-64. [PMID: 37947064 DOI: 10.1615/intjmedmushrooms.2023050198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
This research aimed to use a novel and effective ultrasound (US) approach for obtaining high bio-compound production, hence proposing strategies for boosting active ingredient biosynthesis. Furthermore, the US promotes several physiological effects on the relevant organelles in the cell, morphological effects on the structure of Phellinus igniarius mycelium, and increases the transfer of nutrients and metabolites. One suitable US condition for flavonoid fermentation was determined as once per day for 7-9 days at a frequency 22 + 40 kHz, power density 120 W/L, treated 10 min, treatment off time 7 s. The flavonoid content and production increased about 47.51% and 101.81%, respectively, compared with the untreated fermentation (P < 0.05). SEM showed that sonication changes the morphology and structure of Ph. igniarius mycelium; TEM reveals the ultrasonic treatment causes organelle aggregation. The ultrasound could affect the metabolism of the biosynthesis of the active ingredients.
Collapse
Affiliation(s)
- Yating Dong
- School of Food and Biological Engineering, Institute of Food Physical Processing, International Joint Research Center for Food Physical Processing, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, P.R. China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, P.R. China
| | - Haile Ma
- School of Food and Biological Engineering, Institute of food physical processing, Jiangsu University
| | - Muhammad Tayyab Rashid
- School of Food Science and Technology, Henan University of Technology, 100 Lianhua Street, High-tech Zone, Zhengzhou Henan 450001, P.R. China
| | - Jamila Akter Tuly
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang Jiangsu 212013, China
| | - Yiting Guo
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang Jiangsu 212013, China
| | - Xiaofei Ye
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, P.R. China; Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville 37996, Tennessee, USA
| | - Ling Sun
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, P.R. China
| | - Bengang Wu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang Jiangsu 212013, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Institute of Food Physical Processing, International Joint Research Center for Food Physical Processing, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, P.R. China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang Jiangsu 212013, China
| | - Bingcheng Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000 P.R. China
| | - Tao Wang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000 P.R. China
| | - Mengxing Chen
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000 China
| | - Dan Wu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000 China
| |
Collapse
|
6
|
Mechanism of enhanced production of triterpenoids in algal-fungal consortium. Bioprocess Biosyst Eng 2022; 45:1625-1633. [PMID: 35963944 DOI: 10.1007/s00449-022-02768-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/31/2022] [Indexed: 11/02/2022]
Abstract
Chlorella pyrenoidosa-Ganoderma lucidum symbiotic systems were constructed. The mechanism of enhanced production of triterpenoids in algal-fungal consortium by comparing the contents of triterpenoids in individual fungal systems and algal-fungal consortium systems was investigated. The production of triterpenoids in C. pyrenoidosa-G. lucidum consortium increased significantly (P < 0.05). The categories and relative abundances of metabolites in the individual systems and algal-fungal systems were measured and analyzed by metabonomic tests. There were 57 significant different metabolites (VIP > 1 and P < 0.05) including 12 downregulated metabolites and 45 upregulated metabolites were obtained. The significant enriched metabolic pathways (VIP > 1 and P < 0.05) of citrate cycle (TCA cycle), tyrosine metabolism, glycolysis, and terpenoid backbone biosynthesis in algal-fungal consortium were obtained. The relative abundances of important precursors of triterpenoids including mevalonic acid, lanosterol, and hydroquinone were 1.4 times, 1.7 times, and 2 times, respectively, in algal-fungal consortium than that in the individual fungal systems. The presence of C. pyrenoidosa in algal-fungal consortium promoted the biosynthesis of triterpenoids in G. lucidum.
Collapse
|
7
|
Verma S, Thapa S, Siddiqui N, Chakdar H. Cyanobacterial secondary metabolites towards improved commercial significance through multiomics approaches. World J Microbiol Biotechnol 2022; 38:100. [PMID: 35486205 DOI: 10.1007/s11274-022-03285-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/13/2022] [Indexed: 11/28/2022]
Abstract
Cyanobacteria are ubiquitous photosynthetic prokaryotes responsible for the oxygenation of the earth's reducing atmosphere. Apart from oxygen they are producers of a myriad of bioactive metabolites with diverse complex chemical structures and robust biological activities. These secondary metabolites are known to have a variety of medicinal and therapeutic applications ranging from anti-microbial, anti-viral, anti-inflammatory, anti-cancer, and immunomodulating properties. The present review discusses various aspects of secondary metabolites viz. biosynthesis, types and applications, which highlights the repertoire of bioactive constituents they harbor. Majority of these products have been produced from only a handful of genera. Moreover, with the onset of various OMICS approaches, cyanobacteria have become an attractive chassis for improved secondary metabolites production. Also the intervention of synthetic biology tools such as gene editing technologies and a variety of metabolomics and fluxomics approaches, used for engineering cyanobacteria, have significantly enhanced the production of secondary metabolites.
Collapse
Affiliation(s)
- Shaloo Verma
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Mau, Uttar Pradesh, 275103, India.,Amity Institute of Biotechnology (AIB), Amity University, Noida, Uttar Pradesh, 201313, India
| | - Shobit Thapa
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Mau, Uttar Pradesh, 275103, India
| | - Nahid Siddiqui
- Amity Institute of Biotechnology (AIB), Amity University, Noida, Uttar Pradesh, 201313, India
| | - Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Mau, Uttar Pradesh, 275103, India.
| |
Collapse
|