1
|
Kang J, Wan S, Zhao W, Li S, Li W, Li H, Liu Y, Huang H, Xu C, Du XD, Yao H. Characterization of cross-resistance gene optrA-carrying Campylobacter coli. Vet Microbiol 2025; 304:110476. [PMID: 40090217 DOI: 10.1016/j.vetmic.2025.110476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/02/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
Campylobacter is a significant foodborne pathogen causing human campylobacteriosis. The optrA gene, which encodes an ABC-F protein, confers cross-resistance to oxazolidinones and phenicols, and recent studies have identified the emergence of optrA in Campylobacter. However, detailed information of optrA- carrying C. coli from food-producing animals and various other sources globally, as analyzed by Whole Genome Sequencing (WGS), remains unknown. In this study, our objective was to explore the distribution and genotypic characteristics of optrA-positive C. coli isolates while also analyzing the genetic environment and constructing a phylogenetic tree for optrA using WGS data collected. Altogether, 80 C. coli isolates in the GenBank database along with four C. coli isolates from this study harboring optrA were obtained and used for further analyses. The results revealed that optrA-harboring C. coli were geographically distributed in China and Vietnam, deriving from food-producing animals, food and human. MLST analysis showed that 25 known STs were involved in spread of optrA, with ST854 being the dominant ST. Whole-genome multilocus sequence typing (Wg-MLST) analysis further illustrated a close relationship between optrA-positive C. coli isolates. Furthermore, 19 different types of genetic environments surrounding optrA were identified with insertion sequences IS1216E and ISChh1-like as the mainly flanking genes, which may accelerate dissemination of optrA. In conclusion, this study supplies a comprehensive perspective on the distribution of the optrA resistance gene, elucidating its horizontal transferability and regional clonal spread patterns. The close relationship between optrA-positive C. coli isolates recovered from food-producing animals and humans emphasizes the potential for zoonotic transmission, which needs further surveillance.
Collapse
Affiliation(s)
- Jin Kang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, PR China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, PR China
| | - Shuigen Wan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, PR China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, PR China
| | - Wenbo Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, PR China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, PR China
| | - Shihong Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, PR China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, PR China
| | - Wenjun Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, PR China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, PR China
| | - Hao Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, PR China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, PR China
| | - Yong Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, PR China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, PR China
| | - Hexiang Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, PR China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, PR China
| | - Chunyan Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, PR China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, PR China
| | - Xiang-Dang Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, PR China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, PR China.
| | - Hong Yao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, PR China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, PR China.
| |
Collapse
|
2
|
Volk M, Gundogdu O, Klančnik A. Temporal dynamics of gene expression during the development of Campylobacter jejuni biofilms. Microb Genom 2025; 11:001387. [PMID: 40327030 PMCID: PMC12056249 DOI: 10.1099/mgen.0.001387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/26/2025] [Indexed: 05/07/2025] Open
Abstract
Campylobacter jejuni, an important pathogen of bacterial gastrointestinal infections, forms biofilms that enable its survival in different environments. C. jejuni biofilm development is still poorly understood, and thus, in this study, we characterized gene expression changes at different biofilm stages using RNA sequencing. Early biofilms (after 16 and 24 h) showed increased expressions of genes involved in cysteine and methionine metabolism, whereas mature biofilms (after 48 and 72 h) showed decreased expression of genes encoding capsular polysaccharides and lipooligosaccharides. Both early and mature biofilms showed increased expressions of genes involved in flagella formation, leucine metabolism and the oxidative stress response and decreased expressions of genes involved in energy metabolism, iron acquisition and transmembrane transport. This study provides insights into the molecular mechanisms underlying C. jejuni biofilm maturation, environmental resistance and the dynamic nature of gene expression during biofilm development.
Collapse
Affiliation(s)
- Manca Volk
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ozan Gundogdu
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Anja Klančnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
3
|
Lei Q, Chen J, Yuan Y, Hu C, Lin Z, Yang S, Mayo KH, Zhou Y, Sun L, Song W. The inhibitory effects of ginsenosides on periodontitis pathogenic bacteria. Front Microbiol 2025; 16:1573969. [PMID: 40207166 PMCID: PMC11978640 DOI: 10.3389/fmicb.2025.1573969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/13/2025] [Indexed: 04/11/2025] Open
Abstract
Periodontitis is mainly caused by bacterial destruction of periodontal tissue in dental plaque. Commonly used antibiotic treatment has some shortcomings, such as incomplete sterilization, drug resistance, and local flora imbalance. Because of this, there is a need to identify safe and non-drug resistant health products with high antibacterial activity. Ginsenosides, the primary active component in ginseng, have been shown to be antibacterial. In this study, we investigated the inhibitory effects of ginsenosides on Porphyromonas gingivalis and Fusobacterium nucleatum, along with their structure-activity relationships and mechanisms of action. Our results show that total ginsenosides elicit a significant inhibitory effect on the growth of periodontal pathogens, with antibacterial effects from PPD-type saponins being greater than those from PPT-type saponins. Among different monomer saponins, Rd had the best antibacterial effect and inhibited the growth of periodontal pathogens at 250 μM. Mechanistic analyses indicated that total ginsenosides mainly function at inhibiting biofilm formation by reducing cell surface hydrophobicity and extracellular polysaccharide content. Our study provides the basis for development of new, plant-based treatment drugs against periodontal disease.
Collapse
Affiliation(s)
- Qiuyang Lei
- Department of Stomatology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Jianrong Chen
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, Northeast Normal University, Changchun, China
| | - Ye Yuan
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, Northeast Normal University, Changchun, China
| | - Chenxing Hu
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, Northeast Normal University, Changchun, China
| | - Zhiying Lin
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, Northeast Normal University, Changchun, China
| | - Shuang Yang
- Department of Stomatology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Kevin H. Mayo
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, Northeast Normal University, Changchun, China
| | - Lin Sun
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, Northeast Normal University, Changchun, China
| | - Wenzhi Song
- Department of Stomatology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Čukajne T, Štravs P, Sahin O, Zhang Q, Berlec A, Klančnik A. Campylobacter jejuni Biofilm Assessment by NanoLuc Luciferase Assay. Bio Protoc 2025; 15:e5192. [PMID: 40028012 PMCID: PMC11865840 DOI: 10.21769/bioprotoc.5192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 03/05/2025] Open
Abstract
Campylobacter jejuni, a widespread pathogen found in birds and mammals, poses a significant risk for zoonosis worldwide despite its susceptibility to environmental and food-processing stressors. One of its main survival mechanisms is the formation of biofilms that can withstand various food-processing stressors, which is why efficient methods for assessing biofilms are crucial. Existing methods, including the classical culture-based plate counting method, biomass-staining methods (e.g., crystal violet and safranin), DNA-staining methods, those that use metabolic substrates to detect live bacteria (e.g., tetrazolium salts and resazurin), immunofluorescence with flow cytometry or fluorescence microscopy, and PCR-based methods for quantification of bacterial DNA, are diverse but often lack specificity, sensitivity, and suitability. In response to these limitations, we propose an innovative approach using NanoLuc as a reporter protein. The established protocol involves growing biofilms in microtiter plates, washing unattached cells, adding Nano-Glo luciferase substrate, and measuring bioluminescence. The bacterial concentrations in the biofilms are calculated by linear regression based on the calibration curve generated with known cell concentrations. The NanoLuc protein offers a number of advantages, such as its small size, temperature stability, and highly efficient bioluminescence, enabling rapid, non-invasive, and comprehensive assessment of biofilms together with quantification of a wide range of cell states. Although this method is limited to laboratory use due to the involvement of genetically modified organisms, it provides valuable insights into C. jejuni biofilm dynamics that could indirectly help in the development of improved food safety measures. Key features • Quantification of C. jejuni using NanoLuc luciferase. • The assay is linear in the range of 1.9 × 107 to 1.5 × 108 CFU/mL. • Following biofilm growth, less than 1 h is required for detection. • The assay requires genetically modified bacterial strains.
Collapse
Affiliation(s)
- Tjaša Čukajne
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Štravs
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Orhan Sahin
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA
| | - Aleš Berlec
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
- Chair of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Anja Klančnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
5
|
Prendergast DM, O'Keeffe R, Johnston D, McLernon J, Power F, Byrne B, Gutierrez M. Prevalence and molecular characterization of Campylobacter spp. isolated from chicken, beef, pork and sheep livers at Irish abattoirs. Int J Food Microbiol 2025; 430:111029. [PMID: 39709889 DOI: 10.1016/j.ijfoodmicro.2024.111029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/30/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Thermotolerant Campylobacter spp. are the leading causes of food-borne diarrhoea in humans with most cases attributed to C. jejuni, and C. coli. Although chicken meat is considered the main source of infection in humans, the significance of other sources for campylobacteriosis in humans is less understood. The objective of this study was to determine the prevalence of thermotolerant Campylobacter spp. in chicken, beef, pork, and sheep liver in Ireland and to carry out whole genome sequencing (WGS) on the resulting isolates to characterize them molecularly. In addition, genome sequences of Irish clinical isolates were downloaded from the National Center for Biotechnology Information (NCBI) and compared with sequences from this study. The prevalence of Campylobacter spp. in chicken, beef, pork and sheep liver was 70 %, 4.4 %, 16 % and 80.0 %, respectively. Chi-Squared analysis indicated that the statistical differences in positivity rates between the four species were significant (P < 0.001). Amongst the 81 (43 %) positive liver samples, speciation revealed an overall predominance of C. jejuni (62 %), followed by C. coli (48 %) and C. lari (1 %) in all meat types except pork. Nine (11 %) samples were confirmed positive for more than one Campylobacter species with five of these nine samples recovered from sheep livers. Following analysis of WGS data, a wide range of diversity was observed and where clusters were identified, all were confined to the same animal species. No AMR genes were identified in the C. lari isolate, while C. jejuni and C. coli isolates were found to harbour resistance genes for tetracyclines, beta-lactams, aminoglycosides, and quinolones. Two clusters were identified between isolates from this study and human clinical data and the most prevalent clonal complex was CC-21, identified in this study and in clinical isolates. These results highlight the role of liver as a potential source of human Campylobacter infection. The significance of liver as a vehicle of human campylobacteriosis needs to be examined further particularly in respect to ovine sources.
Collapse
Affiliation(s)
- Deirdre M Prendergast
- Food Microbiology Division, Department of Agriculture, Food and the Marine, Backweston Laboratories, Celbridge, Co. Kildare, Ireland.
| | - Richard O'Keeffe
- Food Microbiology Division, Department of Agriculture, Food and the Marine, Backweston Laboratories, Celbridge, Co. Kildare, Ireland
| | - Dayle Johnston
- Food Microbiology Division, Department of Agriculture, Food and the Marine, Backweston Laboratories, Celbridge, Co. Kildare, Ireland
| | - Joanne McLernon
- Food Microbiology Division, Department of Agriculture, Food and the Marine, Backweston Laboratories, Celbridge, Co. Kildare, Ireland
| | - Fiona Power
- Food Microbiology Division, Department of Agriculture, Food and the Marine, Backweston Laboratories, Celbridge, Co. Kildare, Ireland
| | - Brian Byrne
- Food Microbiology Division, Department of Agriculture, Food and the Marine, Backweston Laboratories, Celbridge, Co. Kildare, Ireland
| | - Montserrat Gutierrez
- Food Microbiology Division, Department of Agriculture, Food and the Marine, Backweston Laboratories, Celbridge, Co. Kildare, Ireland
| |
Collapse
|
6
|
Čukajne T, Štravs P, Sahin O, Zhang Q, Berlec A, Klančnik A. Holistic monitoring of Campylobacter jejuni biofilms with NanoLuc bioluminescence. Appl Microbiol Biotechnol 2024; 108:546. [PMID: 39731621 PMCID: PMC11682011 DOI: 10.1007/s00253-024-13383-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/30/2024]
Abstract
Campylobacter jejuni, a major cause of foodborne zoonotic infections worldwide, shows a paradoxical ability to survive despite its susceptibility to environmental and food-processing stressors. This resilience is likely due to the bacterium entering a viable but non-culturable state, often within biofilms, or even initiating biofilm formation as a survival strategy. This study presents an innovative application of NanoLuc bioluminescence to accurately monitor the development of C. jejuni biofilms on various substrates, such as polystyrene plates, mucin-coated surfaces, and chicken juice matrices. Introduction of NanoLuc luciferase in a pathogenic C. jejuni strain enables rapid non-invasive holistic observation, capturing a spectrum of cell states that may comprise live, damaged, and viable but non-culturable populations. Our comparative analysis with established biofilm quantification methods highlights the specificity, sensitivity, and simplicity of the NanoLuc assay. The assay is efficient and offers precise cell quantification and thus represents an important complementary or alternative method to conventional biofilm monitoring methods. The findings of this study highlight the need for a versatile approach and suggest combining the NanoLuc assay with other methods to gain comprehensive insight into biofilm dynamics. KEY POINTS: • Innovative NanoLuc bioluminescence assay for sophisticated biofilm quantification. • Holistic monitoring of C. jejuni biofilm by capturing live, damaged and VBNC cells. • Potential for improving understanding of biofilm development and structure.
Collapse
Affiliation(s)
- Tjaša Čukajne
- Biotechnical Faculty, Department of Food Science and Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Štravs
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Orhan Sahin
- College of Veterinary Medicine, Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Qijing Zhang
- College of Veterinary Medicine, Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA
| | - Aleš Berlec
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Pharmacy, Chair of Pharmaceutical Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Anja Klančnik
- Biotechnical Faculty, Department of Food Science and Technology, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
7
|
Wang C, Zhang C, He S, Wang Q, Gao H. The microbiome alterations of supragingival plaque among adolescents using clear aligners: a metagenomic sequencing analysis. Prog Orthod 2024; 25:48. [PMID: 39676101 DOI: 10.1186/s40510-024-00547-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND White spot lesions (WSLs) may develop in adolescents undergoing clear aligner (CA) therapy with poor oral hygiene. The specific effects of CAs on the microbial composition and functional characteristics of supragingival plaques remain unclear. The present study investigated the shift in the supragingival microbial community induced by CAs in adolescents through metagenomic technology. METHODS Fifteen adolescents (12-15 years old) with Invisalign appliances were recruited. Supragingival plaque specimens were obtained twice, before treatment (T1) and three months after treatment (T2). All the bacterial plaque specimens were analyzed for microbial communities and functions using metagenomic analyses. RESULTS A total of 2,840,242,722 reads disclosed 180 phyla, 3,975 genera, and 16,497 microbiome species. During the first three months, the microbial community was relatively stable. The genus level revealed a higher relative abundance of Capnocytophaga, Neisseria, and Arachnia in the T2 period. Furthermore, the functional analysis suggested that the relative abundances of folate biosynthesis, biotin metabolism and biofilm formation-vibrio cholerae were increased in the T2 period compared to the T1 period. Finally, virulence factor analysis demonstrated that the relative abundance of genes associated with type IV pili (VF0082) and polar flagella (VF0473) was higher in the T2 period than in the T1 period. CONCLUSION In adolescents undergoing CA therapy with poor plaque control, caries progresses quickly within three months and noticeable WSLs develop on the tooth surface. Although the microbial community remained relatively steady and CA therapy did not cause significant changes in the overall functional gene composition in the first three months, virulence factors, including type IV pili and flagella, were more abundant and actively contributed to microorganism adhesion and biofilm formation.
Collapse
Affiliation(s)
- Chunlin Wang
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Chao Zhang
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Shan He
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Qiuyu Wang
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Hai Gao
- Department of Periodontology and Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, S366 Jiangnan Boulevard, Haizhu District, Guangzhou, Guangdong, 510280, China.
| |
Collapse
|
8
|
Geremia N, Giovagnorio F, Colpani A, De Vito A, Botan A, Stroffolini G, Toc DA, Zerbato V, Principe L, Madeddu G, Luzzati R, Parisi SG, Di Bella S. Fluoroquinolones and Biofilm: A Narrative Review. Pharmaceuticals (Basel) 2024; 17:1673. [PMID: 39770514 PMCID: PMC11679785 DOI: 10.3390/ph17121673] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Biofilm-associated infections frequently span multiple body sites and represent a significant clinical challenge, often requiring a multidisciplinary approach involving surgery and antimicrobial therapy. These infections are commonly healthcare-associated and frequently related to internal or external medical devices. The formation of biofilms complicates treatment, as they create environments that are difficult for most antimicrobial agents to penetrate. Fluoroquinolones play a critical role in the eradication of biofilm-related infections. Numerous studies have investigated the synergistic potential of combining fluoroquinolones with other chemical agents to augment their efficacy while minimizing potential toxicity. Comparative research suggests that the antibiofilm activity of fluoroquinolones is superior to that of beta-lactams and glycopeptides. However, their activity remains less effective than that of minocycline and fosfomycin. Noteworthy combinations include fluoroquinolones with fosfomycin and aminoglycosides for enhanced activity against Gram-negative organisms and fluoroquinolones with minocycline and rifampin for more effective treatment of Gram-positive infections. Despite the limitations of fluoroquinolones due to the intrinsic characteristics of this antibiotic, they remain fundamental in this setting thanks to their bioavailability and synergisms with other drugs. Methods: A comprehensive literature search was conducted using online databases (PubMed/MEDLINE/Google Scholar) and books written by experts in microbiology and infectious diseases to identify relevant studies on fluoroquinolones and biofilm. Results: This review critically assesses the role of fluoroquinolones in managing biofilm-associated infections in various clinical settings while also exploring the potential benefits of combination therapy with these antibiotics. Conclusions: The literature predominantly consists of in vitro studies, with limited in vivo investigations. Although real world data are scarce, they are in accordance with fluoroquinolones' effectiveness in managing early biofilm-associated infections. Also, future perspectives of newer treatment options to be placed alongside fluoroquinolones are discussed. This review underscores the role of fluoroquinolones in the setting of biofilm-associated infections, providing a comprehensive guide for physicians regarding the best use of this class of antibiotics while highlighting the existing critical issues.
Collapse
Affiliation(s)
- Nicholas Geremia
- Unit of Infectious Diseases, Department of Clinical Medicine, Ospedale “dell’Angelo”, 30174 Venice, Italy
- Unit of Infectious Diseases, Department of Clinical Medicine, Ospedale Civile “S.S. Giovanni e Paolo”, 30122 Venice, Italy
| | - Federico Giovagnorio
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (F.G.); (S.G.P.)
| | - Agnese Colpani
- Unit of Infectious Diseases, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (A.D.V.); (G.M.)
| | - Andrea De Vito
- Unit of Infectious Diseases, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (A.D.V.); (G.M.)
| | - Alexandru Botan
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Giacomo Stroffolini
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, 37024 Verona, Italy;
| | - Dan-Alexandru Toc
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Verena Zerbato
- Infectious Diseases Unit, Trieste University Hospital (ASUGI), 34125 Trieste, Italy;
| | - Luigi Principe
- Clinical Microbiology and Virology Unit, Great Metropolitan Hospital “Bianchi-Melacrino-Morelli”, 89128 Reggio di Calabria, Italy;
| | - Giordano Madeddu
- Unit of Infectious Diseases, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (A.D.V.); (G.M.)
| | - Roberto Luzzati
- Clinical Department of Medical, Surgical and Health Sciences, Trieste University, 34129 Trieste, Italy; (R.L.); (S.D.B.)
| | | | - Stefano Di Bella
- Clinical Department of Medical, Surgical and Health Sciences, Trieste University, 34129 Trieste, Italy; (R.L.); (S.D.B.)
| |
Collapse
|
9
|
Bundurus IA, Balta I, Pet I, Stef L, Popescu CA, McCleery D, Lemon J, Callaway T, Douglas A, Corcionivoschi N. Mechanistic concepts involved in biofilm associated processes of Campylobacter jejuni: persistence and inhibition in poultry environments. Poult Sci 2024; 103:104328. [PMID: 39366290 PMCID: PMC11483643 DOI: 10.1016/j.psj.2024.104328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 10/06/2024] Open
Abstract
Campylobacter species, predominantly Campylobacter jejuni, remains a significant zoonotic pathogen worldwide, with the poultry sector being the primary vector for human transmission. In recent years. there has been a notable rise in the incidence of human campylobacteriosis, necessitating a deeper understanding of the pathogen's survival mechanisms and transmission dynamics. Biofilm presence significantly contributes to C. jejuni persistence in poultry and subsequent food product contamination, and this review describes the intricate processes involved in biofilm formation. The ability of Campylobacter to form biofilms on various surfaces, including stainless steel, plastic, and glass, is a critical survival strategy. Campylobacter biofilms, with their remarkable resilience, protect the pathogen from environmental stresses such as desiccation, pH extremes, biocides and sanitizing agents. This review explores the molecular and genetic mechanisms of C. jejuni biofilm formation, highlighting regulatory genes involved in motility, chemotaxis, and stress responses. Flagellar proteins, particularly flaA, flaB, flaG, and adhesins like cadF and flpA, are identified as the main molecular components in biofilm development. The role of mixed-species biofilms, where C. jejuni integrates into existing biofilms of other bacteria to enhance pathogen resilience, is also discussed. This review also considers alternative interventions to control C. jejuni in poultry production, in the context of increasing antibiotic resistance. It explores the effectiveness of prebiotics, probiotics, synbiotics, bacteriocins, bacteriophages, vaccines, and organic acids, with a focus on their mechanisms of action in reducing bacterial colonization and biofilm formation. Studies show that mixtures of organic acids and compounds like Carvacrol and Eugenol significantly downregulate genes linked with motility and adhesion, thereby disrupting biofilm integrity. It discusses the impact of environmental factors, such as temperature and oxygen levels on biofilm formation, providing insights into how industrial conditions can be manipulated to reduce contamination. This paper stresses the need for a multifaceted approach to control Campylobacter in poultry, integrating molecular and genetic insights with practical interventions. By advancing our understanding of biofilm dynamics and gene regulation, we aim to inform the development of more effective strategies to enhance food safety and protect public health.
Collapse
Affiliation(s)
- Iulia A Bundurus
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I From Timisoara, Timisoara 300645, Romania
| | - Igori Balta
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I From Timisoara, Timisoara 300645, Romania
| | - Ioan Pet
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I From Timisoara, Timisoara 300645, Romania
| | - Lavinia Stef
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I From Timisoara, Timisoara 300645, Romania
| | - Cosmin Alin Popescu
- Faculty of Agriculture, University of Life Sciences King Mihai I From Timisoara, Timisoara 300645, Romania
| | - David McCleery
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, Northern Ireland BT4 3SD, UK
| | - Joanne Lemon
- Chief Scientific Adviser's Office, Department of Agriculture, Environment and Rural Affairs for Northern Ireland, Belfast, Northern Ireland BT3 9ED, UK
| | - Todd Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Alastair Douglas
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, Northern Ireland BT4 3SD, UK
| | - Nicolae Corcionivoschi
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I From Timisoara, Timisoara 300645, Romania; Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, Northern Ireland BT4 3SD, UK; Academy of Romanian Scientists, Bucharest 050044, Romania.
| |
Collapse
|
10
|
Pavlinjek N, Klančnik A, Sabotič J. Evaluation of physical and chemical isolation methods to extract and purify Campylobacter jejuni extracellular polymeric substances. Front Microbiol 2024; 15:1488114. [PMID: 39526143 PMCID: PMC11543439 DOI: 10.3389/fmicb.2024.1488114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
The pathogenic bacterium Campylobacter jejuni is a major food safety concern as it can form biofilms that increase its survival and infective potential. Biofilms consist of microbial cells and extracellular matrix (ECM), which is made of water and extracellular polymeric substances (EPS), which are critical for structural integrity and pathogenicity. The aim of this study was to optimize a protocol for the isolation of C. jejuni ECM. We employed eight physical and chemical isolation methods to extract and purify ECM, followed by different qualitative and quantitative analyses using gel electrophoresis and spectroscopy. This comprehensive approach enabled the evaluation of ECM composition in terms of polysaccharides, proteins, and extracellular DNA. The isolation methods resulted in different yields and purities of the extracted ECM components. Centrifugation in combination with chemical treatments proved to be most effective, isolating higher concentrations of polysaccharides and proteins. Additionally, extraction with ether solution facilitated the recovery of high-molecular-weight extracellular DNA. Overall, we provide a refined methodology for ECM extraction from C. jejuni. As polysaccharides and proteins participate in biofilm stability and microbial communication, and extracellular DNA participates in genetic exchange and virulence, our study contributes towards a better understanding of the persistence of this pathogen in the food industry.
Collapse
Affiliation(s)
- Natalija Pavlinjek
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Anja Klančnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
11
|
Kostoglou D, Apostolopoulou M, Lagou A, Didos S, Argiriou A, Giaouris E. Investigating the Potential of L(+)-Lactic Acid as a Green Inhibitor and Eradicator of a Dual-Species Campylobacter spp. Biofilm Formed on Food Processing Model Surfaces. Microorganisms 2024; 12:2124. [PMID: 39597514 PMCID: PMC11596057 DOI: 10.3390/microorganisms12112124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Campylobacter spp. are prevalent foodborne bacterial enteric pathogens. Their inclusion in biofilms on abiotic surfaces is considered a strategy that facilitates their extraintestinal survival. Organic acid (OA) treatments could be used in a green approach to decontaminate various surfaces. This work aimed to evaluate the inhibitory and eradicative effects of L(+)-lactic acid (LA), a naturally occurring OA, on a dual-species biofilm formed on two food processing model surfaces (polystyrene and stainless steel) by three selected foodborne Campylobacter spp. isolates (two C. jejuni and one C. coli). The influence of aerobiosis conditions (microaerophilic, aerobic and CO2 enriched) on the resistance of the established biofilms to the acid was also tested. In parallel, the predominant metabolites contained in the planktonic media of biofilm monocultures and mixed-culture biofilm were comparatively analyzed by an untargeted metabolomics approach. Results revealed that LA inhibited mixed-culture biofilm formation by more than 2 logs (>99%) on both surfaces when this was applied at its highest tested concentration (4096 μg/mL; 0.34% v/v). However, all the preformed mixed-culture biofilms (ca. 106-7 CFU/cm2) could not be eradicated even when the acid was used at concentrations exceeding 5% v/v, denoting their extremely high recalcitrance which was still influenced by the abiotic substratum, and the biofilm-forming aerobiosis conditions. The metabolic analysis revealed a strain-specific metabolite production which might also be related to the strain-specific biofilm-forming and resistance behaviors and resulted in the distinct clustering of the different samples. Overall, the current findings provide important information on the effectiveness of LA against biofilm campylobacteria and may assist in mitigating their risk in the food chain.
Collapse
Affiliation(s)
| | | | | | | | | | - Efstathios Giaouris
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Lemnos, Greece
| |
Collapse
|
12
|
Jandl B, Dighe S, Gasche C, Makristathis A, Muttenthaler M. Intestinal biofilms: pathophysiological relevance, host defense, and therapeutic opportunities. Clin Microbiol Rev 2024; 37:e0013323. [PMID: 38995034 PMCID: PMC11391705 DOI: 10.1128/cmr.00133-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
SUMMARYThe human intestinal tract harbors a profound variety of microorganisms that live in symbiosis with the host and each other. It is a complex and highly dynamic environment whose homeostasis directly relates to human health. Dysbiosis of the gut microbiota and polymicrobial biofilms have been associated with gastrointestinal diseases, including irritable bowel syndrome, inflammatory bowel diseases, and colorectal cancers. This review covers the molecular composition and organization of intestinal biofilms, mechanistic aspects of biofilm signaling networks for bacterial communication and behavior, and synergistic effects in polymicrobial biofilms. It further describes the clinical relevance and diseases associated with gut biofilms, the role of biofilms in antimicrobial resistance, and the intestinal host defense system and therapeutic strategies counteracting biofilms. Taken together, this review summarizes the latest knowledge and research on intestinal biofilms and their role in gut disorders and provides directions toward the development of biofilm-specific treatments.
Collapse
Affiliation(s)
- Bernhard Jandl
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Satish Dighe
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Christoph Gasche
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
- Loha for Life, Center for Gastroenterology and Iron Deficiency, Vienna, Austria
| | - Athanasios Makristathis
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - Markus Muttenthaler
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
13
|
Admasie A, Wei X, Johnson B, Burns L, Pawar P, Aurand-Cravens A, Voloshchuk O, Dudley EG, Sisay Tessema T, Zewdu A, Kovac J. Genomic diversity of Campylobacter jejuni and Campylobacter coli isolated from the Ethiopian dairy supply chain. PLoS One 2024; 19:e0305581. [PMID: 39159178 PMCID: PMC11332940 DOI: 10.1371/journal.pone.0305581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/31/2024] [Indexed: 08/21/2024] Open
Abstract
Campylobacteriosis outbreaks have previously been linked to dairy foods. While the genetic diversity of Campylobacter is well understood in high-income countries, it is largely unknown in low-income countries, such as Ethiopia. This study therefore aimed to conduct the first genomic characterization of Campylobacter isolates from the Ethiopian dairy supply chain to aid in future epidemiological studies. Fourteen C. jejuni and four C. coli isolates were whole genome sequenced using an Illumina platform. Sequences were analyzed using the bioinformatics tools in the GalaxyTrakr platform to identify MLST types, and single nucleotide polymorphisms, and infer phylogenetic relationships among the studied isolates. Assembled genomes were further screened to detect antimicrobial resistance and virulence gene sequences. Among 14 C. jejuni, ST 2084 and ST 51, which belong to the clonal complexes ST-353 and ST-443, respectively, were identified. Among the 4 sequenced C. coli isolates, two isolates belonged to ST 1628 and two to ST 830 from the clonal complex ST-828. The isolates of C. jejuni ST 2084 and ST 51 carried β-lactam resistance gene blaOXA-605, a fluoroquinolone resistance-associated mutation T86I in the gryA gene, and a macrolide resistance-associated mutation A103V in 50S L22. Only ST 2084 isolates carried the tetracycline resistance gene tetO. Conversely, all four C. coli ST 830 and ST 1628 isolates carried tetO, but only ST 1628 isolates also carried blaOXA-605. Lastly, C. jejuni ST 2084 isolates carried a total of 89 virulence genes, and ST 51 isolates carried up to 88 virulence genes. Among C. coli, ST 830 isolates carried 71 genes involved in virulence, whereas two ST 1628 isolates carried up to 82 genes involved in virulence. Isolates from all identified STs have previously been isolated from human clinical cases, demonstrating a potential food safety concern. This finding warrants further monitoring of Campylobacter in dairy foods in Ethiopia to better understand and manage the risks associated with Campylobacter contamination and transmission.
Collapse
Affiliation(s)
- Abera Admasie
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Biology, College of Natural and Computational Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - Xiaoyuan Wei
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States of America
| | - Beth Johnson
- Division of Laboratory Services, Kentucky Department of Public Health, Frankfort, KY, United States of America
| | - Logan Burns
- Division of Laboratory Services, Kentucky Department of Public Health, Frankfort, KY, United States of America
| | - Preeti Pawar
- Division of Laboratory Services, Kentucky Department of Public Health, Frankfort, KY, United States of America
| | - Ashley Aurand-Cravens
- Division of Laboratory Services, Kentucky Department of Public Health, Frankfort, KY, United States of America
| | - Olena Voloshchuk
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States of America
| | - Edward G. Dudley
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States of America
| | | | - Ashagrie Zewdu
- Center for Food Science and Nutrition, Addis Ababa University, Addis Ababa, Ethiopia
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States of America
| |
Collapse
|
14
|
Deng W, Zhou C, Qin J, Jiang Y, Li D, Tang X, Luo J, Kong J, Wang K. Molecular mechanisms of DNase inhibition of early biofilm formation Pseudomonas aeruginosa or Staphylococcus aureus: A transcriptome analysis. Biofilm 2024; 7:100174. [PMID: 38292330 PMCID: PMC10826141 DOI: 10.1016/j.bioflm.2023.100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 11/14/2023] [Accepted: 12/18/2023] [Indexed: 02/01/2024] Open
Abstract
In vitro studies show that DNase can inhibit Pseudomonas aeruginosa and Staphylococcus aureus biofilm formation. However, the underlying molecular mechanisms remain poorly understood. This study used an RNA-sequencing transcriptomic approach to investigate the mechanism by which DNase I inhibits early P. aeruginosa and S. aureus biofilm formation on a transcriptional level, respectively. A total of 1171 differentially expressed genes (DEGs) in P. aeruginosa and 1016 DEGs in S. aureus enriched in a variety of biological processes and pathways were identified, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that the DEGs were primarily involved in P. aeruginosa two-component system, biofilm formation, and flagellar assembly and in S. aureus biosynthesis of secondary metabolites, microbial metabolism in diverse environments, and biosynthesis of amino acids, respectively. The transcriptional data were validated using quantitative real-time polymerase chain reaction (RT-qPCR), and the expression profiles of 22 major genes remained consistent. These findings suggested that DNase I may inhibit early biofilm formation by downregulating the expression of P. aeruginosa genes associated with flagellar assembly and the type VI secretion system, and by downregulating S. aureus capsular polysaccharide and amino acids metabolism gene expression, respectively. This study offers insights into the mechanisms of DNase treatment-based inhibition of early P. aeruginosa and S. aureus biofilm formation.
Collapse
Affiliation(s)
- Wusheng Deng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Chuanlin Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiaoxia Qin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yun Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Shaoyang University, Shaoyang, Hunan, China
| | - Dingbin Li
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiujia Tang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jing Luo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jinliang Kong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
15
|
Ruiz MJ, Sirini NE, Stegmayer MÁ, Soto LP, Zbrun MV, Olivero CR, Werning ML, Acosta FF, Signorini ML, Frizzo LS. Inhibitor activity of Lactiplantibacillus plantarum LP5 on thermotolerant campylobacter with different biofilm-forming capacities. J Appl Microbiol 2023; 134:lxad267. [PMID: 37974052 DOI: 10.1093/jambio/lxad267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 08/20/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
AIMS To evaluate the biofilm-forming capacity of thermotolerant Campylobacter (TC) strains from poultry production and to analyse the inhibitory capacity of Lactiplantibacillus plantarum LP5 against TC on different materials. METHODS AND RESULTS Biofilm-forming capacity by Campylobacter jejuni and Campylobacter coli was analysed by cell adhesion in polystyrene plates. TC were classified as non-biofilm-forming (NBF, 1.3%), weak biofilm-forming (WBF, 68.4%), moderate biofilm-forming (MBF, 27.6%), and strong biofilm-forming (SBF, 2.7%). The inhibitory capacity of L. plantarum LP5 against TC was tested on stainless-steel, nylon, aluminium, and glass disks (treated group) and compared with biofilm-forming TC (control group). Lactiplantibacillus plantarum LP5 was inoculated, and then TC. Biofilm was removed in both experimental groups and TC and LP5 bacterial counts were performed. The L. plantarum LP5 presence reduced the formation of TC biofilm (P < 0.001). The material type and strain category influenced biofilm formation, with stainless-steel and the SBF strain being the material and TC having the highest adhesion (P < 0.001). Lactiplantibacillus plantarum LP5 formed a similar biofilm on all materials (P = 0.823). CONCLUSIONS This trial showed very promising results; L. plantarum LP5 could be incorporated as a bio-protector of TC on different surfaces.
Collapse
Affiliation(s)
- María J Ruiz
- Laboratory of Food Analysis "Rodolfo Oscar Dalla Santina", Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe S3080, Argentina
- Department of Animal Health and Preventive Medicine, Faculty of Veterinary Sciences, National University of the Centre of the Province of Buenos Aires, Tandil, Buenos Aires 7000, Argentina
| | - Noelí E Sirini
- Laboratory of Food Analysis "Rodolfo Oscar Dalla Santina", Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe S3080, Argentina
| | - María Á Stegmayer
- Laboratory of Food Analysis "Rodolfo Oscar Dalla Santina", Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe S3080, Argentina
| | - Lorena P Soto
- Laboratory of Food Analysis "Rodolfo Oscar Dalla Santina", Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe S3080, Argentina
- Department of Public Health, Faculty of Veterinary Science, Litoral National University, Esperanza, Province of Santa Fe S3080, Argentina
| | - María V Zbrun
- Laboratory of Food Analysis "Rodolfo Oscar Dalla Santina", Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe S3080, Argentina
- National Council of Scientific and Technical Research, National Institute of Agricultural Technology EEA Rafaela, Rafaela, Province of Santa Fe S2300, Argentina
| | - Carolina R Olivero
- Laboratory of Food Analysis "Rodolfo Oscar Dalla Santina", Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe S3080, Argentina
| | - María L Werning
- Laboratory of Food Analysis "Rodolfo Oscar Dalla Santina", Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe S3080, Argentina
| | - Federico F Acosta
- Laboratory of Food Analysis "Rodolfo Oscar Dalla Santina", Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe S3080, Argentina
| | - Marcelo L Signorini
- Department of Public Health, Faculty of Veterinary Science, Litoral National University, Esperanza, Province of Santa Fe S3080, Argentina
- National Council of Scientific and Technical Research, National Institute of Agricultural Technology EEA Rafaela, Rafaela, Province of Santa Fe S2300, Argentina
| | - Laureano S Frizzo
- Laboratory of Food Analysis "Rodolfo Oscar Dalla Santina", Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe S3080, Argentina
- Department of Public Health, Faculty of Veterinary Science, Litoral National University, Esperanza, Province of Santa Fe S3080, Argentina
| |
Collapse
|
16
|
Laconi A, Tolosi R, Drigo I, Bano L, Piccirillo A. Association between ability to form biofilm and virulence factors of poultry extra-intestinal Campylobacter jejuni and Campylobacter coli. Vet Microbiol 2023; 282:109770. [PMID: 37150060 DOI: 10.1016/j.vetmic.2023.109770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/06/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
Campylobacter species are known to be able to produce biofilm, which represents an ideal protective environment for the maintenance of such fragile bacteria. Since the genetic mechanisms promoting biofilm formation are still poorly understood, in this study we assessed the ability of C. jejuni (n = 7) and C. coli (n = 3) strains isolated from diseased poultry, and previously characterized by whole genome sequencing, to form biofilm. The in vitro analyses were carried out by using a microtiter based protocol including biofilm culturing and fixation, staining with crystal violet, and measurement of the optical density (OD570). The ability to form biofilm was categorized into four classes (no, weak, moderate, and strong producers). Potential correlations between OD570 and the presence/absence of virulence determinants were examined. The C. jejuni were classified as no (n = 3), weak (n = 2), and moderate (n = 2) biofilm producers; however, all possessed genes involved in chemotaxis, adhesion, and invasion to the host cells. No genes present exclusively in biofilm producers or in non-biofilm producers were identified. All C. coli were classified as weak producers and showed a similar set of virulence genes between each other. A trend of increased mean OD570 was observed in the presence of flaA and maf7 genes. No association between biofilm production classes and the explanatory variables considered was observed. The results of this study suggest that further investigations are needed to better identify and characterize the genetic determinants involved in extra-intestinal Campylobacter biofilm formation.
Collapse
Affiliation(s)
- Andrea Laconi
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, PD, 35020, Italy.
| | - Roberta Tolosi
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, PD, 35020, Italy
| | - Ilenia Drigo
- Veterinary Diagnostic Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, 31020 Villorba, TV, Italy
| | - Luca Bano
- Veterinary Diagnostic Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, 31020 Villorba, TV, Italy
| | - Alessandra Piccirillo
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, PD, 35020, Italy
| |
Collapse
|
17
|
Zhang J, Konkel ME, Gölz G, Lu X. Editorial: Campylobacter-associated food safety. Front Microbiol 2022; 13:1038128. [PMID: 36386703 PMCID: PMC9644199 DOI: 10.3389/fmicb.2022.1038128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/23/2022] [Indexed: 02/02/2025] Open
Affiliation(s)
- Jingbin Zhang
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| | - Michael E. Konkel
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Greta Gölz
- Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| | - Xiaonan Lu
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|