1
|
Wu Y, Wen F, Gou S, Ran Q, Chu Y, Ma W, Zhao K. Multifaceted quorum-sensing inhibiting activity of 3-(Benzo[d][1,3]dioxol-4-yl)oxazolidin-2-one mitigates Pseudomonas aeruginosa virulence. Virulence 2025; 16:2479103. [PMID: 40104940 DOI: 10.1080/21505594.2025.2479103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 11/10/2024] [Accepted: 03/03/2025] [Indexed: 03/20/2025] Open
Abstract
As antibiotic resistance escalates into a global health crisis, novel therapeutic approaches against infectious diseases are in urgent need. Pseudomonas aeruginosa, an adaptable opportunistic pathogen, poses substantial challenges in treating a range of infections. The quorum-sensing (QS) system plays a pivotal role in orchestrating the production of a large set of virulence factors in a cell density-dependent manner, and the anti-virulence strategy targeting QS may show huge potential. Here, we present a comprehensive investigation into the potential of the synthesized compound 3-(benzo[d][1,3]dioxol-4-yl)oxazolidin-2-one (OZDO, C10H9NO4) as a QS inhibitor to curb the virulence of P. aeruginosa. By employing an integrated approach encompassing in silico screening, in vitro and in vivo functional identification, we elucidated the multifaceted effects of OZDO. Molecular docking predicted that OZDO interfered with three core regulatory proteins of P. aeruginosa QS system. Notably, OZDO exhibited significant inhibition on the production of pyocyanin, rhamnolipid and extracellular proteases, biofilm formation, and cell motilities of P. aeruginosa. Transcriptomic analysis and quantitative real-time PCR displayed the down-regulation of QS-controlled genes in OZDO-treated PAO1, reaffirming the QS-inhibition activity of OZDO. In vivo assessments using a Caenorhabditis elegans-infection model demonstrated OZDO mitigated P. aeruginosa pathogenicity, particularly against the hypervirulent strain PA14. Moreover, OZDO in combination with polymyxin B and aztreonam presented a promising avenue for innovative anti-infective therapy. Our study sheds light on the multifaceted potential of OZDO as an anti-virulence agent and its significance in combating P. aeruginosa-associated infections.
Collapse
Affiliation(s)
- Yi Wu
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Fulong Wen
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Shiyi Gou
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Qiman Ran
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Yiwen Chu
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Wenbo Ma
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Kelei Zhao
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Shen Y, Liu D, Yue X, Wang D, Wang Z, Wang X, Liu G, Liu X, Cai X. RmmLII, a novel marine-derived N-acyl homoserine lactonase from Tritonibacter mobilis. Front Microbiol 2025; 16:1538873. [PMID: 40170927 PMCID: PMC11958948 DOI: 10.3389/fmicb.2025.1538873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
Introduction Quorum sensing (QS) is a bacterial intercellular communication system that can regulate the expression of various virulence genes coordinate the group behaviors of the bacteria by sensing the concentration of signaling molecules in the surrounding environment. An increase in bacterial drug-resistance has been caused by the widespread use of antibiotics, making it urgent to identify safe and effective alternatives to antibiotics. Quorum quenching (QQ) is a strategy to control bacterial infections by disrupting the QS system, which reduces pathogenicity or increases biofilm susceptibility to antibiotics. Several natural agents with QQ activity have been identified, including small molecular inhibitors and QQ enzymes that disrupt bacterial QS by degrading or modifying the QS signal molecules. Methods In the present study, We performed heterologous recombinant expression of the potential QQ enzyme-encoding gene RmmLII from Tritonibacter mobilis YJ3. The degradation activity of RmmLII against AHLs was assessed in vitro using the A136 liquid X-Gal assay and a plate detection method. Furthermore, the degradation mechanism of RmmLII was analyzed via high-performance liquid chromatography-mass spectrometry (HPLC-MS). The effects of RmmLII on extracellular proteases production, pyocyanin synthesis, rhamnolipids secretion, biofilm formation, and motility of Pseudomonas aeruginosa PAO1 were evaluated in vitro. Additionally, a mouse infection model was established using P. aeruginosa PAO1 to investigate the impact of RmmLII on the production of inflammatory cytokines IL-1β, IL-6, and TNF-α, as well as mouse survival rates. Results A novel N-acylhomoserine (AHL) lactonase RmmLII was identified and characterized from T. mobilis YJ3, which was isolated from healthy shrimp in our previous work. Through amino acid sequence alignment, a conserved "HXHXDH" domain was detected in RmmLII, indicating that RmmLII belongs to the phosphotriesterase (PTE) family. Recombinant RmmLII could effectively degrade AHLs in vitro, both long-chain and short-chain AHLs, ranging from C6 to C14. It exhibited the strongest quenching effect on C6-HSL, C8-HSL, C10-HSL, 3-oxo-C8-HSL, 3-oxo-C10-HSL, 3-oxo-C12-HSL, and 3-oxo-C14-HSL, while the quenching effect on C14-HSL and 3-oxo-C6-HSL was relatively weaker, especially with more notable degradation activity towards long-chain AHLs with a substitution of oxo-group at the C-3 position. HPLC-MS analysis revealed that RmmLII could hydrolyze the ester bond of AHLs. In addition, RmmLII significantly inhibited the production of extracellular proteases, pyocyanin, rhamnolipids, biofilm formation, as well as motility of P. aeruginosa PAO1 in vitro. It also reduced the production of inflammatory factors IL-1β, IL-6, and TNF-α, thereby improving the survival rates of mice infected with PAO1 in vivo. Discussion This study demonstrates the potential application of RmmLII in controlling PAO1 infections, offering new insights for the development of novel antibiotic alternatives. RmmLII has the potential as a therapeutic agent for application in the mitigating PAO1 infections.
Collapse
Affiliation(s)
- Yu Shen
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Dongwei Liu
- Qingdao West Coast New District People’s Hospital, Qingdao, China
| | - Xiaoxue Yue
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Dongliang Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Zhikui Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xu Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Gang Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xiaodong Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xiulei Cai
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
3
|
Li H, Zhang S, Li Q, Shu Y, Li S, Wu B, Xu Z. The Role of Yinqiao Powder in Modulating Pseudomonas aeruginosa Biofilm and Virulence Factors. Infect Drug Resist 2025; 18:1405-1414. [PMID: 40098712 PMCID: PMC11911820 DOI: 10.2147/idr.s507257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
Purpose It is now understood that the primary challenges in treating Pseudomonas aeruginosa (P. aeruginosa) infections are the secretion of multiple virulence factors, the formation of biofilm, and the emergence of multi-drug resistance. Small regulatory RNAs (sRNAs) and quorum sensing (QS) play an important role in regulating bacterial biofilms and multiple virulence factors, presenting potential targets for novel anti-P. aeruginosa therapies. Yinqiao Powder has demonstrated inhibitory activity against various bacteria and viruses. The objective of this study was to elucidate the precise mechanism of Yinqiao Powder's impact on P. aeruginosa virulence and to ascertain its clinical utility. Methods First, the effects of Yinqiao Powder on various virulence factors of P. aeruginosa were assessed through virulence phenotype experiments, including biofilm formation assay, pyocyanin production assay, rhamnolipid assay, and motility assay. Then, a cytotoxicity assay was used to evaluate the effect of P. aeruginosa treated by Yinqiao Powder on cells. Finally, an RT-qPCR assay was used to detect the effects of Yinqiao Powder on QS system and virulence-related gene expression. Results This study revealed that sub-minimum inhibitory concentration (sub-MIC) levels of Yinqiao Powder significantly inhibit biofilm formation, swarming motility, pyocyanin and rhamnolipid production in a dose-dependent manner. The cytotoxicity assay also confirmed that Yinqiao Powder weakened the cytotoxicity of P. aeruginosa. Furthermore, Yinqiao Powder was found to modulate the P. aeruginosa sRNA-QS-virulence network. Specifically, it repressed the lasI, the rhlI, and sRNA P27 while upregulating sRNA PhrD. Additionally, the phzA and pqsA genes, associated with pyocyanin and rhamnolipid/biofilm regulation, respectively, were repressed by Yinqiao Powder. Conclusion Yinqiao Powder effectively inhibits QS system-related regulatory genes, sRNAs, biofilm formation, swarming motility, pyocyanin and rhamnolipid production at specific concentrations. These results support the potential of Yinqiao Powder as a quorum-sensing inhibitor.
Collapse
Affiliation(s)
- Honglin Li
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, People's Republic of China
| | - Shebin Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, People's Republic of China
| | - Qiwei Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, People's Republic of China
| | - Yurong Shu
- Department of Clinical Laboratory, South China Agricultural University Hospital, Guangzhou, 510000, People's Republic of China
| | - Song Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, People's Republic of China
| | - Bo Wu
- Department of Transfusion, The Fourth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511300, People's Republic of China
| | - Zhenjie Xu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, People's Republic of China
| |
Collapse
|
4
|
Li M, Guo H, Wang L, Tao R, Song G, Cao L, Yan W, Wu Z, Liu Q, Chen Y, Gong L, Wang T, Zhang Y. A plasmid-encoded inactive toxin-antitoxin system MtvT/MtvA regulates plasmid conjugative transfer and bacterial virulence in Pseudomonas aeruginosa. Nucleic Acids Res 2025; 53:gkaf075. [PMID: 39950345 PMCID: PMC11826091 DOI: 10.1093/nar/gkaf075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/17/2025] Open
Abstract
Plasmid-encoded toxin-antitoxin (TA) systems are known for their role in plasmid maintenance via post-segregational killing. Here, we identified an inactive type II TA system, MtvT/MtvA (MtvTA), encoded on the conjugative plasmid pPAD8 from the clinical Pseudomonas aeruginosa strain PAD8. Despite its annotation as a toxin, MtvT exhibited no detectable toxicity in our assays. Interestingly, the deletion of the MtvTA significantly increased the transfer efficiency of pPAD8 from PAD8 to P. aeruginosa strain PAO1. Functional assays revealed that the MtvTA complex negatively regulates plasmid transfer by binding to the promoters of dot/icm system genes. In addition, pPAD8ΔmtvTA attenuated the pathogenicity of the host strain compared to pPAD8, highlighting a regulatory role for MtvTA in virulence. Mechanistically, the MtvTA complex positively regulates the type III and type VI secretion systems and pyocyanin biosynthesis by directly binding to the promoters of exsA and rsmY/rsmZ and indirectly influencing lasI expression, respectively. These findings provide new insights into the regulatory roles of an inactive plasmid-encoded TA system, expanding our understanding of the interplay between plasmids and their bacterial hosts.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, People’s Republic of China
- Science and Education Department, Xi’an Fifth Hospital, Xi’an, Shaanxi 710082, People’s Republic of China
| | - Hua Guo
- Science and Education Department, Xi’an Fifth Hospital, Xi’an, Shaanxi 710082, People’s Republic of China
| | - Lecheng Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, People’s Republic of China
| | - Ruixue Tao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, People’s Republic of China
| | - Gaoyu Song
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, People’s Republic of China
| | - Linke Cao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, People’s Republic of China
| | - Wenbo Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, People’s Republic of China
| | - Ziyuan Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, People’s Republic of China
| | - Qian Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, People’s Republic of China
| | - Yaodong Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, People’s Republic of China
| | - Lei Gong
- Science and Education Department, Xi’an Fifth Hospital, Xi’an, Shaanxi 710082, People’s Republic of China
| | - Tietao Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, People’s Republic of China
| | - Yani Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, People’s Republic of China
| |
Collapse
|
5
|
Zeng J, Ma X, Zheng Y, Liu D, Ning W, Xiao W, Mao Q, Bai Z, Mao R, Cheng J, Lin J. Traditional Chinese Medicine Monomer Bakuchiol Attenuates the Pathogenicity of Pseudomonas aeruginosa via Targeting PqsR. Int J Mol Sci 2024; 26:243. [PMID: 39796099 PMCID: PMC11719591 DOI: 10.3390/ijms26010243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
As the antibiotic resistance of pathogens becomes increasingly severe, it is becoming more feasible to use methods that suppress the virulence of pathogens rather than exerting selective pressure on their growth. Pseudomonas aeruginosa, a dangerous opportunistic pathogen, infects hosts by producing multiple virulence factors, which are regulated by quorum-sensing (QS) systems, including the las systems, rhl systems, and pqs systems. This study used the chromosome lacZ transcription fusion reporter model to screen the traditional Chinese medicine monomer library and found that bakuchiol can effectively inhibit the pqs system and related virulence phenotypes of P. aeruginosa, including the production of virulence factors (pyocyanin, hydrogen cyanide, elastase, and lectin) and motility (swarming, swimming, and twitching motility) without affecting its growth. Subsequently, through genetic complementation analysis, we found that bakuchiol inhibited the function of the transcriptional activation protein PqsR of the pqs system in P. aeruginosa in a concentration-dependent manner. Furthermore, molecular dynamics simulation study results indicated that bakuchiol can target PqsR of the pqs system, thereby inhibiting the pqs system. Among the amino acids in PqsR, ALA-168 may be a key amino acid residue in the hydrophobic interaction between PqsR protein and bakuchiol. Finally, in vivo experiments demonstrated that bakuchiol attenuated the pathogenicity of P. aeruginosa to Chinese cabbage (Brassica pekinensis) and Caenorhabditis elegans. In summary, this study suggests that bakuchiol is an effective inhibitor that targets the pqs system of P. aeruginosa, providing a new strategy for addressing P. aeruginosa infections.
Collapse
Affiliation(s)
- Jing Zeng
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China; (J.Z.); (X.M.); (Y.Z.); (D.L.); (W.N.); (W.X.); (Q.M.); (Z.B.); (R.M.)
| | - Xin Ma
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China; (J.Z.); (X.M.); (Y.Z.); (D.L.); (W.N.); (W.X.); (Q.M.); (Z.B.); (R.M.)
| | - Yu Zheng
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China; (J.Z.); (X.M.); (Y.Z.); (D.L.); (W.N.); (W.X.); (Q.M.); (Z.B.); (R.M.)
| | - Dandan Liu
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China; (J.Z.); (X.M.); (Y.Z.); (D.L.); (W.N.); (W.X.); (Q.M.); (Z.B.); (R.M.)
| | - Wanqing Ning
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China; (J.Z.); (X.M.); (Y.Z.); (D.L.); (W.N.); (W.X.); (Q.M.); (Z.B.); (R.M.)
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University (NWAFU), Yangling 712100, China
| | - Wei Xiao
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China; (J.Z.); (X.M.); (Y.Z.); (D.L.); (W.N.); (W.X.); (Q.M.); (Z.B.); (R.M.)
| | - Qian Mao
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China; (J.Z.); (X.M.); (Y.Z.); (D.L.); (W.N.); (W.X.); (Q.M.); (Z.B.); (R.M.)
| | - Zhenqing Bai
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China; (J.Z.); (X.M.); (Y.Z.); (D.L.); (W.N.); (W.X.); (Q.M.); (Z.B.); (R.M.)
| | - Renjun Mao
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China; (J.Z.); (X.M.); (Y.Z.); (D.L.); (W.N.); (W.X.); (Q.M.); (Z.B.); (R.M.)
| | - Juanli Cheng
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China; (J.Z.); (X.M.); (Y.Z.); (D.L.); (W.N.); (W.X.); (Q.M.); (Z.B.); (R.M.)
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University (NWAFU), Yangling 712100, China
| | - Jinshui Lin
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China; (J.Z.); (X.M.); (Y.Z.); (D.L.); (W.N.); (W.X.); (Q.M.); (Z.B.); (R.M.)
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University (NWAFU), Yangling 712100, China
| |
Collapse
|
6
|
Majhi B, Semwal P, Mishra SK, Chauhan PS. "Strategies for microbes-mediated arsenic bioremediation: Impact of quorum sensing in the rhizosphere". THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177321. [PMID: 39489442 DOI: 10.1016/j.scitotenv.2024.177321] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/02/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Plant growth-promoting rhizobacteria (PGPR) are gaining recognition as pivotal agents in bioremediation, particularly in arsenic-contaminated environments. These bacteria leverage quorum sensing, an advanced communication system, to synchronize their activities within the rhizosphere and refine their arsenic detoxification strategies. Quorum Sensing enables PGPR to regulate critical processes such as biofilm formation, motility, and the activation of arsenic-resistance genes. This collective coordination enhances their capacity to immobilize, transform, and detoxify arsenic, decreasing its bioavailability and harmful effects on plants. Furthermore, quorum sensing strengthens the symbiotic relationship between growth-promoting rhizobacteria and plant roots, facilitating better nutrient exchange and boosting plant tolerance to stress. The current review highlights the significant role of quorum sensing in improving the efficacy of PGPR in arsenic remediation. Understanding and harnessing the PGPR-mediated quorum sensing mechanism to decipher the complex signaling pathways and communication systems could significantly advance remediation strategy, promoting sustainable soil health and boosting agricultural productivity.
Collapse
Affiliation(s)
- Basudev Majhi
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pradeep Semwal
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shashank Kumar Mishra
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India
| | - Puneet Singh Chauhan
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Guo L, Ruan Q, Ma D, Wen J. Revealing quorum-sensing networks in Pseudomonas aeruginosa infections through internal and external signals to prevent new resistance trends. Microbiol Res 2024; 289:127915. [PMID: 39342746 DOI: 10.1016/j.micres.2024.127915] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/18/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
In the context of growing antibiotic resistance in bacteria, the quorum-sensing (QS) system of Pseudomonas aeruginosa (P. aeruginosa) has become a target for new therapeutic strategies. QS is a crucial communication process and an essential pathogenic mechanism. This comprehensive review explores the critical role of QS in the pathogenesis of P. aeruginosa infections, including lung, burn, bloodstream, gastrointestinal, corneal, and urinary tract infections. In addition, this review delves into the complexity of the bacterial QS communication network and highlights the intricate mechanisms underlying these pathological processes. Notably, in addition to the four main QS systems, bacterial QS can interact with various external and internal signaling networks, such as host environments and nutrients in the external microbiome, as well as internal virulence regulation systems within bacteria. These elements can significantly influence the behavior and virulence of microbial communities. Therefore, this review reveals that inhibitors targeting singular QS pathways may inadvertently promote virulence in other pathways, leading to new trends in drug resistance. In response to evolving resistance challenges, this study proposes more cautious treatment strategies, including multitarget interventions and combination therapies, aimed at combating the escalating issue of resistance.
Collapse
Affiliation(s)
- Li Guo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiao Ruan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Jun Wen
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Rodríguez-Urretavizcaya B, Vilaplana L, Marco MP. Strategies for quorum sensing inhibition as a tool for controlling Pseudomonas aeruginosa infections. Int J Antimicrob Agents 2024; 64:107323. [PMID: 39242051 DOI: 10.1016/j.ijantimicag.2024.107323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Antibiotic resistance is one of the most important concerns in global health today. A growing number of infections are becoming harder to treat with conventional drugs and fewer new antibiotics are being developed. In this context, strategies based on blocking or attenuating virulence pathways that do not focus on eradication of bacteria are potential therapeutic approaches that should reduce the selective pressure exerted on the pathogen. This virulence depletion can be achieved by inhibiting the conserved quorum sensing (QS) system, a mechanism that enables bacteria to communicate with one another in a density-dependent manner. QS regulates gene expression, leading to the activation of important processes such as virulence and biofilm formation. This review highlights the approaches reported so far for disrupting different steps of the QS system of the multiresistant pathogen Pseudomonas aeruginosa. The authors describe different types of molecules (including enzymes, natural and synthetic small molecules, and antibodies) already identified as P. aeruginosa quorum quenchers (QQs) or QS inhibitors (QSIs), grouped according to the QS circuit that they block (Las, Rhl, Pqs and some examples from the controversial pathway Iqs). The discovery of new QQs and QSIs is expected to help reduce antibiotic doses, or at least to provide options that act as adjuvants to enhance the effect of antibiotic treatment. Moreover, this article outlines the advantages and possible drawbacks of each strategy and provides perspectives on the potential developments in this field in the future.
Collapse
Affiliation(s)
- Bárbara Rodríguez-Urretavizcaya
- Nanobiotechnology for diagnostics group (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia IQAC-CSIC. Jordi Girona 18-26, 08034 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Lluïsa Vilaplana
- Nanobiotechnology for diagnostics group (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia IQAC-CSIC. Jordi Girona 18-26, 08034 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - M-Pilar Marco
- Nanobiotechnology for diagnostics group (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia IQAC-CSIC. Jordi Girona 18-26, 08034 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
9
|
Vadakkan K, Sathishkumar K, Mapranathukaran VO, Ngangbam AK, Nongmaithem BD, Hemapriya J, Nair JB. Critical review on plant-derived quorum sensing signaling inhibitors in pseudomonas aeruginosa. Bioorg Chem 2024; 151:107649. [PMID: 39029321 DOI: 10.1016/j.bioorg.2024.107649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/21/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Pseudomonas aeruginosa, a biofilm-forming organism with complex quorum mechanisms (Las, Rhl, PQS, and IQS), poses an imminent danger to the healthcare sector and renders current treatment options for chemotherapy ineffectual. The pathogen's diverse pathogenicity, antibiotic resistance, and biofilms make it difficult to eradicate it effectively. Quorum sensing, a complex system reliant on cell density, controls P. aeruginosa's pathogenesis. Quorum-sensing genes are key components of P. aeruginosa's pathogenic arsenal, and their expression determines how severe the spread of infection becomes. Over the past ten years, there has been a noticeable increase in the quest for and development of new antimicrobial medications. Quorum sensing may be an effective treatment for infections triggered by bacteria. Introducing quorum-sensing inhibitors as an anti-virulent strategy might be an intriguing therapeutic method that can be effectively employed along with current medications. Amongst the several speculated processes, a unique anti-virulence strategy using anti-quorum sensing and antibiofilm medications for targeting pseudomonal infestations seems to be at the forefront. Due to their noteworthy quorum quenching capabilities, biologically active phytochemicals have become more well-known in the realm of science in this context. Recent research showed how different phytochemical quorum quenching actions affect P. aeruginosa's QS-dependent pathogenicity. This review focuses on the most current data supporting the implementation of plant bio-actives to treat P.aeruginosa-associated diseases, as well as the benefits and future recommendationsof employing them in anti-virulence therapies as a supplementary drug development approach towards conventional antibiotic approaches.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Department of Biotechnology, St. Mary's College (Autonomous), Thrissur, Kerala 680020, India; Manipur International University, Imphal, Manipur 795140, India.
| | - Kuppusamy Sathishkumar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai, Tamil Nadu 602105, India
| | | | | | | | - Janarthanam Hemapriya
- Department of Microbiology, DKM College for Women, Vellore, Tamil Nadu 632001, India
| | - Jyotsna B Nair
- Department of Biotechnology, JDT Islam College of Arts and Science, Vellimadukunnu, Kozhikode, Kerala 673012, India
| |
Collapse
|
10
|
Saha D, Jha AN. Integrated subtractive genomics and structure-based approach to unravel the therapeutic drug target of Leishmania species. Arch Microbiol 2024; 206:408. [PMID: 39299989 DOI: 10.1007/s00203-024-04118-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/22/2024]
Abstract
Leishmaniasis is a complex vector-borne disease caused by intracellular protozoan parasites of the Leishmania genus. It presents a significant public health challenge in tropical and subtropical regions globally. As resistance to treatment increases, managing and controlling Leishmaniasis becomes more challenging, necessitating innovative approaches. To address this challenge, our study utilized subtractive genomics and structure-based approaches to identify common drug targets and combat antimicrobial resistance (AMR) across five Leishmania species strains. The subtractive genomics approach unraveled Glutamate Dehydrogenase (GDH) as a promising drug target for treating Leishmania infections. The investigation considered established methodologies observed in analogous studies, orthologous group, and druggability tests. Multiple sequence alignment revealed conserved sequences in GDH, while phylogenetic tree analysis provided insights into the evolutionary origin and close relationships of GDH across Leishmania species. Conserved sequences in GDH along with its function in pathogenicity provided insights into the close relationships of GDH across Leishmania species. Using a structure-based approach, our study showed the molecular interactions between GDH and three ligands-Bithionol, GW5074, and Hexachlorophene-through molecular docking and 100 ns molecular dynamics (MD) simulations. GW5074 exhibited a significant affinity for GDH, as indicated by stable RMSD values, a more compact conformation, and a higher number of hydrogen bonds than Bithionol. MMPBSA analysis confirmed the superior binding energy of the GW5074-GDH complex, emphasizing its potential as a potent ligand for drug development. This comprehensive analysis identified GW5074 as a promising candidate for inhibiting GDH activities in Leishmania species, contributing to the development of effective therapeutics against Leishmania infections.
Collapse
Affiliation(s)
- Debanjan Saha
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Anupam Nath Jha
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India.
| |
Collapse
|
11
|
Chen P, Qin J, Su HK, Du L, Zeng Q. Harmine acts as a quorum sensing inhibitor decreasing the virulence and antibiotic resistance of Pseudomonas aeruginosa. BMC Infect Dis 2024; 24:760. [PMID: 39085766 PMCID: PMC11293143 DOI: 10.1186/s12879-024-09639-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND As antimicrobial resistance (AMR) has become a global health crisis, new strategies against AMR infection are urgently needed. Quorum sensing (QS), responsible for bacterial communication and pathogenicity, is among the targets for anti-virulence drugs that thrive as one of the promising treatments against AMR infection. METHODS We identified a natural compound, Harmine, through virtual screening based on three QS receptors of Pseudomonas aeruginosa (P. aeruginosa) and explored the effect of Harmine on QS-controlled and pathogenicity-related phenotypes including pyocyanin production, exocellular protease excretion, biofilm formation, and twitching motility of P. aeruginosa PA14. The protective effect of Harmine on Caenorhabditis elegans (C. elegans) and mice infection models was determined and the synergistic effect of Harmine combined with common antibiotics was explored. The underlaying mechanism of Harmine's QS inhibitory effect was illustrated by molecular docking analysis, transcriptomic analysis, and target verification assay. RESULTS In vitro results suggested that Harmine possessed QS inhibitory effects on pyocyanin production, exocellular protease excretion, biofilm formation, and twitching motility of P. aeruginosa PA14, and in vivo results displayed Harmine's protective effect on C. elegans and mice infection models. Intriguingly, Harmine increased susceptibility of both PA14 and clinical isolates of P. aeruginosa to polymyxin B and kanamycin when used in combination. Moreover, Harmine down-regulated a series of QS controlled genes associated with pathogenicity and the underlying mechanism may have involved competitively antagonizing autoinducers' receptors LasR, RhlR, and PqsR. CONCLUSIONS This study shed light on the anti-virulence potential of Harmine against QS targets, suggesting the possible use of Harmine and its derivates as anti-virulence compounds.
Collapse
Affiliation(s)
- Pei Chen
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital/Clinical College of Chengdu University, No. 82, North Section 2, 2nd Ring Road, Chengdu, 610081, China
| | - Jiangyue Qin
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, 610081, China
| | - Helene K Su
- Seven Lakes High School, Katy, TX, 77494, USA
| | - Lianming Du
- Institute for Advanced Study, Chengdu University, No. 2025, Chengluo Avenue, Chengdu, 610106, China.
| | - Qianglin Zeng
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital/Clinical College of Chengdu University, No. 82, North Section 2, 2nd Ring Road, Chengdu, 610081, China.
| |
Collapse
|
12
|
Xu KZ, You C, Wang YJ, Dar OI, Yin LJ, Xiang SL, Jia AQ. Repurposing promethazine hydrochloride to inhibit biofilm formation against Burkholderia thailandensis. Med Microbiol Immunol 2024; 213:16. [PMID: 39033094 DOI: 10.1007/s00430-024-00799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
Melioidosis is a severe infectious disease caused by Burkholderia pseudomallei, an intracellular pathogen with a high mortality rate and significant antibiotic resistance. The high mortality rate and resistance to antibiotics have drawn considerable attention from researchers studying melioidosis. This study evaluated the effects of various concentrations (75, 50, and 25 µg/mL) of promethazine hydrochloride (PTZ), a potent antihistamine, on biofilm formation and lipase activity after 24 h of exposure to B. thailandensis E264. A concentration-dependent decrease in both biofilm biomass and lipase activity was observed. RT-PCR analysis revealed that PTZ treatment not only made the biofilm structure loose but also reduced the expression of btaR1, btaR2, btaR3, and scmR. Single gene knockouts of quorum sensing (QS) receptor proteins (∆btaR1, ∆btaR2, and ∆btaR3) were successfully constructed. Deletion of btaR1 affected biofilm formation in B. thailandensis, while deletion of btaR2 and btaR3 led to reduced lipase activity. Molecular docking and biological performance results demonstrated that PTZ inhibits biofilm formation and lipase activity by suppressing the expression of QS-regulated genes. This study found that repositioning PTZ reduced biofilm formation in B. thailandensis E264, suggesting a potential new approach for combating melioidosis.
Collapse
Affiliation(s)
- Kai-Zhong Xu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Health Sciences, Hainan University, Haikou, 570228, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Chang You
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Health Sciences, Hainan University, Haikou, 570228, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Ying-Jie Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Owias Iqbal Dar
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Lu-Jun Yin
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Health Sciences, Hainan University, Haikou, 570228, China
| | - Shi-Liang Xiang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Ai-Qun Jia
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China.
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China.
| |
Collapse
|
13
|
Neog PR, Saini S, Konwar BK. Purification, and characterization of detergent-compatible serine protease from Bacillussafensis strain PRN1: A sustainable alternative to hazardous chemicals in detergent industry. Protein Expr Purif 2024; 219:106479. [PMID: 38574878 DOI: 10.1016/j.pep.2024.106479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Owing to vast therapeutic, commercial, and industrial applications of microbial proteases microorganisms from different sources are being explored. In this regard, the gut microbiota of Monopteruscuchia were isolated and examined for the production of protease. All the isolates were primarily and secondarily screened on skim milk and gelatin agar plates. The protease-positive isolates were characterized morphologically, biochemically, and molecularly. Out of the 20 isolated strains,6 belonging to five different genera viz.Bacillus,Priestia,Aeromonas,Staphylococcus, and Serratia demonstrated proteolytic activity. Bacillussafensis strain PRN1 demonstrated the highest protease production and, thus, the largest hydrolytic clear zones in both skim milk agar (15 ± 1 mm) and gelatin (16 ± 1 mm) plates. The optimized parameters (time, pH, temperature, carbon, nitrogen) for highest protease activity and microbial growth of B.safensis strain PRN1 includes 72 h (OD600 = 0.56,1303 U/mL), pH 8 (OD600 = 0.83, 403.29 U/mL), 40 °C (OD600 = 1.75, 1849.11 U/mL), fructose (OD600 = 1.22, 1502 U/mL), and gelatin (OD600 = 1.88, 1015.33 U/mL). The enzyme was purified to homogeneity using salt-precipitation and gel filtration chromatography. The sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) demonstrated that the purified enzyme was a monomer of a molecular weight of ∼33 kDa. The protease demonstrated optimal activity at pH 8 and 60 °C. It was strongly inhibited by phenylmethylsulfonyl fluoride (PMSF), demonstrating that it belongs to the serine-proteases family. The compatibility of the enzyme with surfactants and commercial detergents demonstrates its potential use in the detergent industry. Furthermore, the purified enzyme showed antibacterial and blood-stain removal properties.
Collapse
Affiliation(s)
- Panchi Rani Neog
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India
| | - Shubhangi Saini
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India
| | - Bolin Kumar Konwar
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India.
| |
Collapse
|
14
|
Liu Y, Yao Z, Mao Z, Tang M, Chen H, Qian C, Zeng W, Zhou T, Wu Q. Quorum sensing gene lasR promotes phage vB_Pae_PLY infection in Pseudomonas aeruginosa. BMC Microbiol 2024; 24:207. [PMID: 38858621 PMCID: PMC11163716 DOI: 10.1186/s12866-024-03349-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/24/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Quorum sensing (QS) is a cell density-based intercellular communication system that controls virulence gene expression and biofilm formation. In Pseudomonas aeruginosa (P. aeruginosa), the LasR system sits at the top of the QS hierarchy and coordinates the expression of a series of important traits. However, the role of lasR in phage infection remains unclear. This study aims to investigate the role of lasR QS in phage infection. METHODS The P. aeruginosa phage was isolated from sewage, and its biological characteristics and whole genome were analyzed. The adsorption receptor was identified via a phage adsorption assay. Following lasR gene knockout, the adsorption rate and bactericidal activity of phage were analyzed. Finally, real-time quantitative polymerase chain reaction (RT-qPCR) was conducted to explore how lasR promoting phage infection. RESULTS The lytic phage vB_Pae_PLY was isolated and lipopolysaccharide (LPS) was identified as its adsorption receptor. The adsorption rate and bactericidal activity of vB_Pae_PLY were reduced after lasR knockout. RT-qPCR results showed that the expression of galU, a key gene involved in LPS synthesis, was down-regulated, and several genes related to type IV pili (T4P) were also down-regulated in the lasR mutant PaΔlasR. CONCLUSIONS The study showed that QS lasR may promote phage vB_Pae_PLY infection by involving in the synthesis of LPS and T4P. This study provides an example of QS in promoting phage infection and deepens the understanding of phage-bacteria interactions.
Collapse
Affiliation(s)
- Yan Liu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhuocheng Yao
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhenzhi Mao
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Miran Tang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Huanchang Chen
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Changrui Qian
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Weiliang Zeng
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Tieli Zhou
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Qing Wu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
15
|
Tabassum N, Jeong GJ, Jo DM, Khan F, Kim YM. Attenuation of biofilm and virulence factors of Pseudomonas aeruginosa by tetramethylpyrazine-gold nanoparticles. Microb Pathog 2024; 191:106658. [PMID: 38643850 DOI: 10.1016/j.micpath.2024.106658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Pseudomonas aeruginosa is often identified as the causative agent in nosocomial infections. Their adapted resistance makes them strong towards antimicrobial treatments. They protect and empower their survival behind strong biofilm architecture that works as their armor toward antimicrobial therapy. Additionally, P. aeruginosa generates virulence factors, contributing to chronic infection and recalcitrant phenotypic characteristics. The current study utilizes the benevolence of nanotechnology to develop an alternate technique to control the spreading of P. aeruginosa by limiting its biofilm and virulence development. This study used a natural compound, tetramethylpyrazine, to generate gold nanoparticles. Tetramethylpyrazine-gold nanoparticles (Tet-AuNPs) were presented in spherical shapes, with an average size of 168 ± 52.49 nm and a zeta potential of -12.22 ± 2.06 mV. The minimum inhibition concentration (MIC) of Tet-AuNPs that proved more than 90 % effective in inhibiting P. aeruginosa was 256 μg/mL. Additionally, it also shows antibacterial activities against Staphylococcus aureus (MIC, 256 μg/mL), Streptococcus mutans (MIC, 128 μg/mL), Klebsiella pneumoniae (MIC, 128 μg/mL), Listeria monocytogenes (MIC, 256 μg/mL), and Escherichia coli (MIC, 256 μg/mL). The sub-MIC values of Tet-AuNPs significantly inhibited the early-stage biofilm formation of P. aeruginosa. Moreover, this concentration strongly affected hemolysis, protease activity, and different forms of motilities in P. aeruginosa. Additionally, Tet-AuNPs destroyed the well-established mature biofilm of P. aeruginosa. The expression of genes linked with the biofilm formation and virulence in P. aeruginosa treated with sub-MIC doses of Tet-AuNPs was shown to be significantly suppressed. Gene expression studies support biofilm- and virulence-suppressing effects of Tet-AuNPs at the phenotypic level.
Collapse
Affiliation(s)
- Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Geum-Jae Jeong
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea; Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Du-Min Jo
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea; National Marine Biodiversity Institute of Korea, Seochun, Chungcheongnam-do, 33662, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea; Institute of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea.
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea; Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
16
|
Lampitella EA, Marone M, Achanta NSK, Porzio E, Trepiccione F, Manco G. The Human Paraoxonase 2: An Optimized Procedure for Refolding and Stabilization Facilitates Enzyme Analyses and a Proteomics Approach. Molecules 2024; 29:2434. [PMID: 38893310 PMCID: PMC11173892 DOI: 10.3390/molecules29112434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
The human paraoxonase 2 (PON2) is the oldest member of a small family of arylesterase and lactonase enzymes, representing the first line of defense against bacterial infections and having a major role in ROS-associated diseases such as cancer, cardiovascular diseases, neurodegeneration, and diabetes. Specific Post-Translational Modifications (PTMs) clustering nearby two residues corresponding to pon2 polymorphic sites and their impact on the catalytic activity are not yet fully understood. Thus, the goal of the present study was to develop an improved PON2 purification protocol to obtain a higher amount of protein suitable for in-depth biochemical studies and biotechnological applications. To this end, we also tested several compounds to stabilize the active monomeric form of the enzyme. Storing the enzyme at 4 °C with 30 mM Threalose had the best impact on the activity, which was preserved for at least 30 days. The catalytic parameters against the substrate 3-Oxo-dodecanoyl-Homoserine Lactone (3oxoC12-HSL) and the enzyme ability to interfere with the biofilm formation of Pseudomonas aeruginosa (PAO1) were determined, showing that the obtained enzyme is well suited for downstream applications. Finally, we used the purified rPON2 to detect, by the direct molecular fishing (DMF) method, new putative PON2 interactors from soluble extracts of HeLa cells.
Collapse
Affiliation(s)
- Eros A. Lampitella
- Institute of Biochemistry and Cell Biology-CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (E.A.L.); (M.M.); (N.S.K.A.); (E.P.)
| | - Maria Marone
- Institute of Biochemistry and Cell Biology-CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (E.A.L.); (M.M.); (N.S.K.A.); (E.P.)
| | - Nagendra S. K. Achanta
- Institute of Biochemistry and Cell Biology-CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (E.A.L.); (M.M.); (N.S.K.A.); (E.P.)
| | - Elena Porzio
- Institute of Biochemistry and Cell Biology-CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (E.A.L.); (M.M.); (N.S.K.A.); (E.P.)
| | - Francesco Trepiccione
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, Via Leonardo Bianchi c/o Ospedale Monaldi, 80131 Naples, Italy;
| | - Giuseppe Manco
- Institute of Biochemistry and Cell Biology-CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (E.A.L.); (M.M.); (N.S.K.A.); (E.P.)
| |
Collapse
|
17
|
Li D, Li Y, Wang J, Yang W, Cui K, Su R, Li L, Ren X, Li X, Wang Y. In-depth analysis of the treatment effect and synergistic mechanism of TanReQing injection on clinical multi-drug resistant Pseudomonas aeruginosa. Microbiol Spectr 2024; 12:e0272623. [PMID: 38415603 PMCID: PMC10986576 DOI: 10.1128/spectrum.02726-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 12/17/2023] [Indexed: 02/29/2024] Open
Abstract
Antibiotic resistance is a recognized and concerning public health issue. Gram-negative bacilli, such as Pseudomonas aeruginosa (P. aeruginosa), are notorious for their rapid development of drug resistance, leading to treatment failures. TanReQing injection (TRQ) was chosen to explore its pharmacological mechanisms against clinical multidrug-resistant P. aeruginosa (MDR-PA), given its antibacterial and anti-inflammatory properties. We revealed the expression of proteins and genes in P. aeruginosa after co-culture with TRQ. This study developed an assessment method to evaluate clinical resistance of P. aeruginosa using MALDI-TOF MS identification and Biotyper database searching techniques. Additionally, it combined MIC determination to investigate changes in MDR-PA treated by TRQ. TRQ effectively reduced the MICs of ceftazidime and cefoperazone and enhanced the confidence scores of MDR-PA as identified by mass spectrometry. Using this evaluation method, the fingerprints of standard P. aeruginosa and MDR-PA were compared, and the characteristic peptide sequence (Seq-PA No. 1) associated with flagellum was found. The phenotypic experiments were conducted to confirm the effect of TRQ on the motility and adhesion of P. aeruginosa. A combination of co-immunoprecipitation and proteome analysis was employed, and 16 proteins were significantly differentially expressed and identified as potential candidates for investigating the mechanism of inhibiting resistance in P. aeruginosa treated by TRQ. The candidates were verified by quantitative real-time PCR analysis, and TRQ may affect these core proteins (MexA, MexB, OprM, OprF, OTCase, IDH, and ASL) that influence resistance of P. aeruginosa. The combination of multiple methods helps elucidate the synergistic mechanism of TRQ in overcoming resistance of P. aeruginosa.IMPORTANCEPseudomonas aeruginosa is an opportunistic pathogen closely associated with various life-threatening acute and chronic infections. The presence of antimicrobial resistance and multidrug resistance in P. aeruginosa infections significantly complicates antibiotic treatment. The expression of β-lactamase, efflux systems such as MexAB-OprM, and outer membrane permeability are considered to have the greatest impact on the sensitivity of P. aeruginosa. The study used a method to assess the clinical resistance of P. aeruginosa using matrix-assisted laser desorption ionization time of flight mass spectrometry identification and Biotyper database search techniques. TanReQing injection (TRQ) effectively reduced the MICs of ceftazidime and cefoperazone in multidrug-resistant P. aeruginosa (MDR-PA) and improved the confidence scores for co-cultured MDR-PA. The study found a characteristic peptide sequence for distinguishing whether P. aeruginosa is resistant. Through co-immunoprecipitation and proteome analysis, we explored the mechanism of TRQ overcoming resistance of P. aeruginosa.
Collapse
Affiliation(s)
- Dongying Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yueyi Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingyi Wang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weifeng Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kaiyu Cui
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Renjing Su
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lu Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xing Ren
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xianyu Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Wang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
18
|
Iaconis A, De Plano LM, Caccamo A, Franco D, Conoci S. Anti-Biofilm Strategies: A Focused Review on Innovative Approaches. Microorganisms 2024; 12:639. [PMID: 38674584 PMCID: PMC11052202 DOI: 10.3390/microorganisms12040639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Biofilm (BF) can give rise to systemic infections, prolonged hospitalization times, and, in the worst case, death. This review aims to provide an overview of recent strategies for the prevention and destruction of pathogenic BFs. First, the main phases of the life cycle of BF and maturation will be described to identify potential targets for anti-BF approaches. Then, an approach acting on bacterial adhesion, quorum sensing (QS), and the extracellular polymeric substance (EPS) matrix will be introduced and discussed. Finally, bacteriophage-mediated strategies will be presented as innovative approaches against BF inhibition/destruction.
Collapse
Affiliation(s)
- Antonella Iaconis
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Laura Maria De Plano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Antonella Caccamo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Domenico Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy
- URT Lab Sens Beyond Nano—CNR-DSFTM, Department of Physical Sciences and Technologies of Matter, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
19
|
Luo M, Li S, Luo W. Comparative analysis of antibiotic susceptibility patterns and clinical features of mucoid and non-mucoid Pseudomonas aeruginosa infections: a retrospective study. Front Public Health 2024; 12:1333477. [PMID: 38389944 PMCID: PMC10881668 DOI: 10.3389/fpubh.2024.1333477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Background Pseudomonas aeruginosa (PA) is a prevalent opportunistic pathogen that has close associations with both acute and chronic infections. However, there exists an insufficiency of accurate and comprehensive data pertaining to the antimicrobial susceptibility patterns and clinical characteristics of both mucoid and non-mucoid strains of PA (mPA and non-mPA, respectively). Methods From January 1, 2021 to December 31, 2022, a thorough retrospective study was carried out to examine and compare the antibiotic susceptibility test outcomes and clinical characteristics of hospitalized patients with mPA and non-mPA infections. Results This study investigated a cohort of 111 patients who were diagnosed with mPA infections, as well as 792 patients diagnosed with non-mPA infections. Significant demographic disparities, including gender (p < 0.001), age (p < 0.001), length of hospital stay (p < 0.001), diabetes (p = 0.043), and hypertension (p < 0.001), are evident between the mPA and non-mPA groups. The mPA group commonly necessitates hospitalization for respiratory system diseases, whereas the non-mPA group is associated with concomitant cardiovascular and cerebrovascular diseases. The mPA group demonstrates lower utilization rates of medical devices, such as Foley catheter (p < 0.001), nasogastric tube (p < 0.001), mechanical ventilation (p < 0.001), tracheostomy (p < 0.001), arterial and venous catheterization (p < 0.001), and exhibits superior organ function status, including lower incidences of hypoalbuminemia (p < 0.001), septic shock (p < 0.001), liver dysfunction (p < 0.001), renal failure (p < 0.001), and respiratory failure (p < 0.001). The non-mPA group is more vulnerable to infection with two or more bacterial pathogens compared to the mPA group, with the non-mPA group frequently resulting in Enterobacteriaceae infections and the mPA group being associated with fungal infections. Variations in antibiotic sensitivity are noted for Amikacin (p < 0.001), Ciprofloxacin (p < 0.001), Cefepime (p = 0.003), and Levofloxacin (p < 0.001) in antibiotic susceptibility testing, with resistance patterns closely tied to specific antibiotic usage. Conclusion There are significant demographic characteristics, clinical manifestations and antibiotic susceptibility between mPA and non-mPA infections. It is crucial to emphasize these characteristics due to their significant role in preventing and treating PA infections.
Collapse
Affiliation(s)
- Maoling Luo
- Medical Laboratory Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Si Li
- General Medicine, Clinical Medicine, Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Wenying Luo
- Medical Laboratory Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
20
|
Jeong GJ, Rather MA, Khan F, Tabassum N, Mandal M, Kim YM. pH-responsive polymeric nanomaterials for the treatment of oral biofilm infections. Colloids Surf B Biointerfaces 2024; 234:113727. [PMID: 38157766 DOI: 10.1016/j.colsurfb.2023.113727] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/14/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Bacterial and fungal pathogens forming oral biofilms present significant public health challenges due to the failure of antimicrobial drugs. The ability of biofilms to lower pH levels results in dental plaque, leading to gingivitis and cavities. Nanoparticles (NPs) have attracted considerable interest for drug delivery and, thus, as a solution to biofilm-related microbial infections. A novel strategy in this regard involves using pH-responsive polymeric NPs within the acidic microenvironment of oral biofilms. The acidity of the oral biofilm microenvironment is governed by carbohydrate metabolism, accumulation of lactic acid, and extracellular DNA of extracellular polymeric substances by oral biofilm-forming microbial pathogens. This acidity also provides an opportunity to enhance antibacterial activity against biofilm cells using pH-responsive drug delivery approaches. Thus, various polymeric NPs loaded with poorly soluble drugs and responsive to the acidic pH of oral biofilms have been developed. This review focuses on various forms of such polymeric NPs loaded with drugs. The fundamental mechanisms of action of pH-responsive polymeric NPs, their cytological toxicity, and in vivo efficacy testing are thoroughly discussed.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Muzamil Ahmad Rather
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028 Assam, India
| | - Fazlurrahman Khan
- Institute of Fisheries Sciences, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028 Assam, India
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
21
|
Bhuyan S, Dutta L, Begum S, Giri SJ, Jain M, Mandal M, Ray SK. A study on twitching motility dynamics in Ralstonia solanacearum microcolonies by live imaging. J Basic Microbiol 2024; 64:42-49. [PMID: 37612794 DOI: 10.1002/jobm.202300272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/15/2023] [Accepted: 08/13/2023] [Indexed: 08/25/2023]
Abstract
Ralstonia solanacearum is a rod-shaped phytopathogenic bacterium that causes lethal wilt disease in many plants. On solid agar growth medium, in the early hour of the growth of the bacterial colony, the type IV pili-mediated twitching motility, which is important for its virulence and biofilm formation, is prominently observed under the microscope. In this study, we have done a detailed observation of twitching motility in R. solanacearum colony. In the beginning, twitching motility in the microcolonies was observed as a density-dependent phenomenon that influences the shape of the microcolonies. No such phenomenon was observed in Escherichia coli, where twitching motility is absent. In the early phase of colony growth, twitching motility exhibited by the cells at the peripheral region of the colony was more prominent than the cells toward the center of the colony. Using time-lapse photography and merging the obtained photomicrographs into a video, twitching motility was observed as an intermittent phenomenon that progresses in layers in all directions as finger-like projections at the peripheral region of a bacterial colony. Each layer of bacteria twitches on top of the other and produces a multilayered film-like appearance. We found that the duration between the emergence of each layer diminishes progressively as the colony becomes older. This study on twitching motility demonstrates distinctly heterogeneity among the cells within a colony regarding their dynamics and the influence of microcolonies on each other regarding their morphology.
Collapse
Affiliation(s)
- Shuvam Bhuyan
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Lukapriya Dutta
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Shuhada Begum
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Shubhra J Giri
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Monika Jain
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Suvendra K Ray
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| |
Collapse
|
22
|
Vadakkan K, Ngangbam AK, Sathishkumar K, Rumjit NP, Cheruvathur MK. A review of chemical signaling pathways in the quorum sensing circuit of Pseudomonas aeruginosa. Int J Biol Macromol 2024; 254:127861. [PMID: 37939761 DOI: 10.1016/j.ijbiomac.2023.127861] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Pseudomonas aeruginosa, an increasingly common competitive and biofilm organism in healthcare infection with sophisticated, interlinked and hierarchic quorum systems (Las, Rhl, PQS, and IQS), creates the greatest threats to the medical industry and has rendered prevailing chemotherapy medications ineffective. The rise of multidrug resistance has evolved into a concerning and potentially fatal occurrence for human life. P. aeruginosa biofilm development is assisted by exopolysaccharides, extracellular DNA, proteins, macromolecules, cellular signaling and interaction. Quorum sensing is a communication process between cells that involves autonomous inducers and regulators. Quorum-induced infectious agent biofilms and the synthesis of virulence factors have increased disease transmission, medication resistance, infection episodes, hospitalizations and mortality. Hence, quorum sensing may be a potential therapeutical target for bacterial illness, and developing quorum inhibitors as an anti-virulent tool could be a promising treatment strategy for existing antibiotics. Quorum quenching is a prevalent technique for treating infections caused by microbes because it diminishes microbial pathogenesis and increases microbe biofilm sensitivity to antibiotics, making it a potential candidate for drug development. This paper examines P. aeruginosa quorum sensing, the hierarchy of quorum sensing mechanism, quorum sensing inhibition and quorum sensing inhibitory agents as a drug development strategy to supplement traditional antibiotic strategies.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Department of Biology, St. Mary's College, Thrissur, Kerala 680020, India; Manipur International University, Imphal, Manipur 795140, India.
| | | | - Kuppusamy Sathishkumar
- Rhizosphere Biology Laboratory, Department of Microbiology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024, India; Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India
| | | | | |
Collapse
|
23
|
Rather MA, Mandal M. Attenuation of biofilm and quorum sensing regulated virulence factors of an opportunistic pathogen Pseudomonas aeruginosa by phytofabricated silver nanoparticles. Microb Pathog 2023; 185:106433. [PMID: 37913826 DOI: 10.1016/j.micpath.2023.106433] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023]
Abstract
Green-synthesized nanoparticles provide an effective strategy for inhibiting microbial pathogenesis by affecting biofilm formation, quorum sensing (QS), and other surface properties of microorganisms. QS is a density-dependent communication signaling cascade that regulates biofilm formation and other pathogenic factors of Pseudomonas aeruginosa. In this context, the effect of phytofabricated silver nanoparticles (CC-AgNPs) synthesized using Cuphea carthagenensis extract on biofilm, QS, and QS-dependent virulence factors of P. aeruginosa were evaluated in this study. CC-AgNPs demonstrated significant attenuation of biofilm, QS, and QS-dependent virulence factors at sub-MICs. A significant inhibition of 88.39 ± 4.32 %, 79.64 ± 3.31 %, 73.07 ± 3.0 %, and 61.67 ± 1.5 % of biofilm formation, quorum sensing, pyocyanin, and LasB elastase, respectively was reported in the study at 20 μg/mL. The study also demonstrated a significant reduction of LasA Staphylolytic activity and 91.37 ± 1.05 % exoprotease production in comparison to untreated control. The lower concentrations of CC-AgNPs also demonstrated significant attenuation of biofilm and other virulence factors suggesting the strong potency of NPs against P. aeruginosa. XTT analysis reported the effect of CC-AgNPs on sessile cells of P. aeruginosa without impacting growth of planktonic cells at sub-MICs. Cell-proliferation study in human cell lines (HEK 293 and Caco-2 cells) demonstrated the safe nature of CC-AgNPs at tested concentrations. This study is novel in a way that environmentally friendly CC-AgNPs were used to inhibit QS at sub-MICs without killing the tested strains, therefore, could be developed as an anti-virulent drug to overcome biofilm and antimicrobial resistance problems.
Collapse
Affiliation(s)
- Muzamil Ahmad Rather
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, India
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, India.
| |
Collapse
|
24
|
Guo Y, Mao Z, Ran F, Sun J, Zhang J, Chai G, Wang J. Nanotechnology-Based Drug Delivery Systems to Control Bacterial-Biofilm-Associated Lung Infections. Pharmaceutics 2023; 15:2582. [PMID: 38004561 PMCID: PMC10674810 DOI: 10.3390/pharmaceutics15112582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 11/26/2023] Open
Abstract
Airway mucus dysfunction and impaired immunological defenses are hallmarks of several lung diseases, including asthma, cystic fibrosis, and chronic obstructive pulmonary diseases, and are mostly causative factors in bacterial-biofilm-associated respiratory tract infections. Bacteria residing within the biofilm architecture pose a complex challenge in clinical settings due to their increased tolerance to currently available antibiotics and host immune responses, resulting in chronic infections with high recalcitrance and high rates of morbidity and mortality. To address these unmet clinical needs, potential anti-biofilm therapeutic strategies are being developed to effectively control bacterial biofilm. This review focuses on recent advances in the development and application of nanoparticulate drug delivery systems for the treatment of biofilm-associated respiratory tract infections, especially addressing the respiratory barriers of concern for biofilm accessibility and the various types of nanoparticles used to combat biofilms. Understanding the obstacles facing pulmonary drug delivery to bacterial biofilms and nanoparticle-based approaches to combatting biofilm may encourage researchers to explore promising treatment modalities for bacterial-biofilm-associated chronic lung infections.
Collapse
Affiliation(s)
- Yutong Guo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zeyuan Mao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Fang Ran
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Jingfeng Zhang
- The Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo 315000, China
| | - Guihong Chai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China
| |
Collapse
|
25
|
Saha D, Nath Jha A. Computational multi-target approach to target essential enzymes of Leishmania donovani using comparative molecular dynamic simulations and MMPBSA analysis. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:842-854. [PMID: 36760044 DOI: 10.1002/pca.3213] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/13/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Visceral leishmaniasis (VL) is caused by Leishmania donovani. The purine and pyrimidine pathways are essential for L. donovani. Simultaneously inhibiting multiple targets could be an effective strategy to eliminate the pathogen and treat VL. OBJECTIVE We aimed to target the essential enzymes of L. donovani and inhibit them using a multi-target approach. MATERIALS AND METHODS A systematic analytical method was followed, in which first reported inhibitors of two essential enzymes (adenine phosphoribosyl-transferase [APRT] and dihydroorotate dehydrogenase [DHODH]) were collected and then ADMET and PASS analyses were conducted using the Lipinski rule and Veber's rule. Additionally, molecular docking between screened ligands and proteins were performed. The stability of complexes was analyzed using molecular dynamics (MD) simulations and MMPBSA analysis. RESULTS Initially, 6,220 unique molecules were collected from the PubChem database, and then the Lipinski rule and Veber's rule were used for screening. In total, 203 compounds passed the ADMET test; their antileishmanial properties were tested by PASS analysis. As a result, 15 ligands were identified. Molecular docking simulations between APRT or DHODH and these 15 ligands were performed. Four molecules were found to be plant-derived compounds. Lig_2 and Lig_3 had good docking scores with both proteins. MD simulations were performed to determine the dynamic behavior and binding patterns of complexes. Both MD simulations and MMPBSA analysis showed Lig_3 is a promising antileishmanial inhibitor of both targets. CONCLUSION Promising plant-derived compounds that might be used to combat VL were obtained through a multi-target approach.
Collapse
Affiliation(s)
- Debanjan Saha
- Computational Biophysics Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Anupam Nath Jha
- Computational Biophysics Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| |
Collapse
|
26
|
Kouakou YI, Lee RJ. Interkingdom Detection of Bacterial Quorum-Sensing Molecules by Mammalian Taste Receptors. Microorganisms 2023; 11:1295. [PMID: 37317269 PMCID: PMC10221136 DOI: 10.3390/microorganisms11051295] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 06/16/2023] Open
Abstract
Bitter and sweet taste G protein-coupled receptors (known as T2Rs and T1Rs, respectively) were originally identified in type II taste cells on the tongue, where they signal perception of bitter and sweet tastes, respectively. Over the past ~15 years, taste receptors have been identified in cells all over the body, demonstrating a more general chemosensory role beyond taste. Bitter and sweet taste receptors regulate gut epithelial function, pancreatic β cell secretion, thyroid hormone secretion, adipocyte function, and many other processes. Emerging data from a variety of tissues suggest that taste receptors are also used by mammalian cells to "eavesdrop" on bacterial communications. These receptors are activated by several quorum-sensing molecules, including acyl-homoserine lactones and quinolones from Gram-negative bacteria such as Pseudomonas aeruginosa, competence stimulating peptides from Streptococcus mutans, and D-amino acids from Staphylococcus aureus. Taste receptors are an arm of immune surveillance similar to Toll-like receptors and other pattern recognition receptors. Because they are activated by quorum-sensing molecules, taste receptors report information about microbial population density based on the chemical composition of the extracellular environment. This review summarizes current knowledge of bacterial activation of taste receptors and identifies important questions remaining in this field.
Collapse
Affiliation(s)
- Yobouet Ines Kouakou
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Robert J. Lee
- Department of Otorhinolaryngology and Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
27
|
Zhang Y, Xue X, Sun F, Li X, Zhang M, Wu Q, Zhang T, Luo X, Lu R. Quorum sensing and QsvR tightly control the transcription of vpa0607 encoding an active RNase II-type protein in Vibrio parahaemolyticus. Front Microbiol 2023; 14:1123524. [PMID: 36744098 PMCID: PMC9894610 DOI: 10.3389/fmicb.2023.1123524] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Vibrio parahaemolyticus, a Gram-negative, halophilic bacterium, is a leading cause of acute gastroenteritis in humans. AphA and OpaR are the master quorum sensing (QS) regulators operating at low cell density (LCD) and high cell density (HCD), respectively. QsvR is an AraC-type protein that integrates into the QS system to control gene expression by directly controlling the transcription of aphA and opaR. However, the regulation of QsvR itself remains unclear to date. In this study, we show that vpa0607 and qsvR are transcribed as an operon, vpa0607-qsvR. AphA indirectly activates the transcription of vpa0607 at LCD, whereas OpaR and QsvR directly repress vpa0607 transcription at HCD, leading to the highest expression levels of vpa0607 occurs at LCD. Moreover, VPA0607 acts as an active RNase II-type protein in V. parahaemolyticus and feedback inhibits the expression of QsvR at the post-transcriptional level. Taken together, this work deepens our understanding of the regulation of QsvR and enriches the integration mechanisms of QsvR with the QS system in V. parahaemolyticus.
Collapse
Affiliation(s)
- Yiquan Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Xingfan Xue
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China,School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fengjun Sun
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xue Li
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Miaomiao Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China,School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qimin Wu
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Tingting Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Xi Luo
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Renfei Lu
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China,*Correspondence: Renfei Lu,
| |
Collapse
|
28
|
Quintieri L, Mani S, Lentini G, Maisetta G. Editorial: Advances in the discovery of natural molecules and their analogues against microbial infection-related biofilms. Front Microbiol 2022; 13:1092209. [PMID: 36504771 PMCID: PMC9733423 DOI: 10.3389/fmicb.2022.1092209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
Affiliation(s)
- Laura Quintieri
- Institute of Sciences of Food Production, National Research Council (CNR), Bari, Italy,*Correspondence: Laura Quintieri
| | - Sridhar Mani
- Department of Medicine, Molecular Pharmacology and Genetics, Albert Einstein College of Medicine, The Bronx, NY, United States
| | - Giovanni Lentini
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppantonio Maisetta
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy,Giuseppantonio Maisetta
| |
Collapse
|
29
|
Molecular Mechanisms and Applications of N-Acyl Homoserine Lactone-Mediated Quorum Sensing in Bacteria. Molecules 2022; 27:molecules27217584. [PMID: 36364411 PMCID: PMC9654057 DOI: 10.3390/molecules27217584] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Microbial biodiversity includes biotic and abiotic components that support all life forms by adapting to environmental conditions. Climate change, pollution, human activity, and natural calamities affect microbial biodiversity. Microbes have diverse growth conditions, physiology, and metabolism. Bacteria use signaling systems such as quorum sensing (QS) to regulate cellular interactions via small chemical signaling molecules which also help with adaptation under undesirable survival conditions. Proteobacteria use acyl-homoserine lactone (AHL) molecules as autoinducers to sense population density and modulate gene expression. The LuxI-type enzymes synthesize AHL molecules, while the LuxR-type proteins (AHL transcriptional regulators) bind to AHLs to regulate QS-dependent gene expression. Diverse AHLs have been identified, and the diversity extends to AHL synthases and AHL receptors. This review comprehensively explains the molecular diversity of AHL signaling components of Pseudomonas aeruginosa, Chromobacterium violaceum, Agrobacterium tumefaciens, and Escherichia coli. The regulatory mechanism of AHL signaling is also highlighted in this review, which adds to the current understanding of AHL signaling in Gram-negative bacteria. We summarize molecular diversity among well-studied QS systems and recent advances in the role of QS proteins in bacterial cellular signaling pathways. This review describes AHL-dependent QS details in bacteria that can be employed to understand their features, improve environmental adaptation, and develop broad biomolecule-based biotechnological applications.
Collapse
|