1
|
Li Y, Qin M, Niu W, Gao C, Wang Y, Han S, Xia X. Microplastics colonized by Hafnia paralvei through biofilm formation regulated by c-di-GMP and cAMP promote its spread in water. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107127. [PMID: 39427346 DOI: 10.1016/j.aquatox.2024.107127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Microplastics (MPs) colonized by pathogens pose significant risks to the environment and health of animals and humans, however, the strategies for pathogens colonization in MPs and the effects of its colonization on spread of pathogens have not been fully characterized. Here, we investigated the biofilm formation mechanism regulated by c-di-GMP in Hafnia paralvei Z11, and determined the effect of MPs colonized by H. paralvei Z11 on the spread of strain Z11. Overexpression of yhjH, a c-di-GMP phosphodiesterase gene, attenuated intracellular c-di-GMP level in strain Z11, leading to an increase in biofilm dispersal and a decrease in biofilm formation. Meanwhile, the decline of c-di-GMP inhibited the expression of cAMP phosphodiesterase genes, increasing the cAMP content and promoting bacterial motility, that was responsible for the increase of biofilm dispersal. Furthermore, the formation of biofilms by strain Z11 on MPs promotes its colonization, which contributes to its vertical and horizontal spread in water after colonizing polyvinyl chloride-MPs and polypropylene-MPs, respectively. Therefore, this study reveals, for the first time, MPs colonized by H. paralvei Z11 through biofilms regulated by crosstalk between c-di GMP and cAMP promote the spread of strain Z11 in water, which expands the understanding of colonization strategy of pathogens on MPs and its risk on spread of pathogens.
Collapse
Affiliation(s)
- Yi Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang 453007, China
| | - Mengyuan Qin
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang 453007, China
| | - Wenfang Niu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang 453007, China
| | - Chao Gao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang 453007, China
| | - Yuqi Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang 453007, China
| | - Shuo Han
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang 453007, China
| | - Xiaohua Xia
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
2
|
Sun X, Xiao F, Su Y, Li Z, Yu X, Parales RE, Li L. Cyclic di-GMP incorporates the transcriptional factor FleQ03 in Pseudomonas syringae MB03 to elicit biofilm-dependent resistance in response to Caenorhabditis elegans predation. J Invertebr Pathol 2024; 207:108189. [PMID: 39251105 DOI: 10.1016/j.jip.2024.108189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/24/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Bacteria usually form biofilms as a defense mechanism against predation by bacterivorous nematodes. In this context, the second messenger c-di-GMP from the wild-type Pseudomonas syringae MB03 actuates the transcriptional factor FleQ03 to elicit biofilm-dependent nematicidal activity against Caenorhabditis elegans N2. P. syringae MB03 cells exhibited nematicidal activity and c-di-GMP content in P. syringae MB03 cells was increased after feeding to nematodes. Expression of a diguanylate cyclase (DGC) gene in P. syringae MB03 resulted in an increased c-di-GMP content, biofilm yield and nematicidal activity, whereas converse effects were obtained when expressing a phosphodiesterase (PDE) gene. Molecular docking and isothermal titration calorimetry assays verified the affinity activity between c-di-GMP and the FleQ03 protein. The disruption of the fleQ03 gene in P. syringae MB03, while increasing c-di-GMP content, significantly diminished both biofilm formation and nematicidal activity. Interestingly, P. syringae MB03 formed a full-body biofilm around the worms against predation, probably extending from the tail to the head, whereas it was not observed in the fleQ03 gene disrupted cells. Thus, we hypothesized that c-di-GMP incorporated FleQ03 to reinforce bacterial biofilm and biofilm-dependent pathogenicity in response to C. elegans predation, providing insights into a possible means of resisting bacterivorous nematodes by bacteria in natural ecosystems.
Collapse
Affiliation(s)
- Xiaowen Sun
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; School of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Fan Xiao
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuwei Su
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xun Yu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Rebecca E Parales
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, USA.
| | - Lin Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
3
|
Zhang YM, Qiao B, Shang W, Ding MZ, Xu QM, Duan TX, Cheng JS. Improving salt-tolerant artificial consortium of Bacillus amyloliquefaciens for bioconverting food waste to lipopeptides. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 181:89-100. [PMID: 38598883 DOI: 10.1016/j.wasman.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
High-salt content in food waste (FW) affects its resource utilization during biotransformation. In this study, adaptive laboratory evolution (ALE), gene editing, and artificial consortia were performed out to improve the salt-tolerance of Bacillus amyloliquefaciens for producing lipopeptide under FW and seawater. High-salt stress significantly decreased lipopeptide production in the B. amyloliquefaciens HM618 and ALE strains. The total lipopeptide production in the recombinant B. amyloliquefaciens HM-4KSMSO after overexpressing the ion transportor gene ktrA and proline transporter gene opuE and replacing the promoter of gene mrp was 1.34 times higher than that in the strain HM618 in medium containing 30 g/L NaCl. Lipopeptide production under salt-tolerant consortia containing two strains (HM-4KSMSO and Corynebacterium glutamicum) and three-strains (HM-4KSMSO, salt-tolerant C. glutamicum, and Yarrowia lipolytica) was 1.81- and 2.28-fold higher than that under pure culture in a medium containing FW or both FW and seawater, respectively. These findings provide a new strategy for using high-salt FW and seawater to produce value-added chemicals.
Collapse
Affiliation(s)
- Yu-Miao Zhang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China
| | - Bin Qiao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China
| | - Wei Shang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China
| | - Ming-Zhu Ding
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China
| | - Qiu-Man Xu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Binshuixi Road 393, Xiqing District, Tianjin 300387, People's Republic of China
| | - Tian-Xu Duan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China
| | - Jing-Sheng Cheng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China.
| |
Collapse
|
4
|
Sun J, Nie L, Xie W, Zheng X, Zhou WW. Potentiation effect of the AI-2 signaling molecule on postharvest disease control of pear and loquat by Bacillus amyloliquefaciens and its mechanism. Food Chem 2024; 441:138373. [PMID: 38219365 DOI: 10.1016/j.foodchem.2024.138373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/23/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
An autoinducer-2 (AI-2) signaling molecule from Bacillus was synthesized, and its mechanism on the biofilm formation and biocontrol ability of B. amyloliquefaciens was verified in vitro and in vivo. The 16S/ITS amplicon sequencing was used to analyze the effect of B. amyloliquefaciens B4 with or without AI-2 on the microflora of pears during storage. The results showed that B. amyloliquefaciens B4 secreted AI-2, which promoted biofilm formation. Additionally, AI-2 at a concentration of 40 μmol/L enhanced the biocontrol ability of B. amyloliquefaciens B4 on postharvest pear and loquat fruits. Finally, amplicon sequencing demonstrated that the addition of AI-2 increased the abundance of B. amyloliquefaciens B4 in fruit by stimulating the growth and biofilm formation of this bacterium.
Collapse
Affiliation(s)
- Jinyue Sun
- Institute of Food Bioscience and Technology, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Linjie Nie
- Institute of Food Bioscience and Technology, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Wanyue Xie
- Institute of Food Bioscience and Technology, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiaodong Zheng
- Institute of Food Bioscience and Technology, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Wen-Wen Zhou
- Institute of Food Bioscience and Technology, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
5
|
Li B, He X, Guo S, Li D, Wang Y, Meng X, Dai P, Hu T, Cao K, Wang S. Characterization of Bacillus amyloliquefaciens BA-4 and its biocontrol potential against Fusarium-related apple replant disease. FRONTIERS IN PLANT SCIENCE 2024; 15:1370440. [PMID: 38708392 PMCID: PMC11067707 DOI: 10.3389/fpls.2024.1370440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/03/2024] [Indexed: 05/07/2024]
Abstract
Apple replant disease (ARD), caused by Fusarium pathogens, is a formidable threat to the renewal of apple varieties in China, necessitating the development of effective and sustainable control strategies. In this study, the bacterial strain BA-4 was isolated from the rhizosphere soil of healthy apple trees in a replanted orchard, demonstrating a broad-spectrum antifungal activity against five crucial apple fungal pathogens. Based on its morphology, physiological and biochemical traits, utilization of carbon sources, and Gram stain, strain BA-4 was tentatively identified as Bacillus amyloliquefaciens. Phylogenetic analysis using 16S rDNA and gyrB genes conclusively identified BA-4 as B. amyloliquefaciens. In-depth investigations into B. amyloliquefaciens BA-4 revealed that the strain possesses the capacity to could secrete cell wall degrading enzymes (protease and cellulase), produce molecules analogous to indole-3-acetic acid (IAA) and siderophores, and solubilize phosphorus and potassium. The diverse attributes observed in B. amyloliquefaciens BA-4 underscore its potential as a versatile microorganism with multifaceted benefits for both plant well-being and soil fertility. The extracellular metabolites produced by BA-4 displayed a robust inhibitory effect on Fusarium hyphal growth and spore germination, inducing irregular swelling, atrophy, and abnormal branching of fungal hyphae. In greenhouse experiments, BA-4 markedly reduced the disease index of Fusarium-related ARD, exhibiting protective and therapeutic efficiencies exceeding 80% and 50%, respectively. Moreover, BA-4 demonstrated plant-promoting abilities on both bean and Malus robusta Rehd. (MR) seedlings, leading to increased plant height and primary root length. Field experiments further validated the biocontrol effectiveness of BA-4, demonstrating its ability to mitigate ARD symptoms in MR seedlings with a notable 33.34% reduction in mortality rate and improved biomass. Additionally, BA-4 demonstrates robust and stable colonization capabilities in apple rhizosphere soil, particularly within the 10-20 cm soil layer, which indicates that it has long-term effectiveness potential in field conditions. Overall, B. amyloliquefaciens BA-4 emerges as a promising biocontrol agent with broad-spectrum antagonistic capabilities, positive effects on plant growth, and strong colonization abilities for the sustainable management of ARD in apple cultivation.
Collapse
Affiliation(s)
- Bo Li
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Institute of Agricultural Information and Economics, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Xiaoxing He
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Saiya Guo
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Dongxu Li
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Yanan Wang
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Xianglong Meng
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Pengbo Dai
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Tongle Hu
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Keqiang Cao
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Shutong Wang
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| |
Collapse
|
6
|
Tang T, Wang F, Huang H, Guo J, Guo X, Duan Y, Wang X, Wang Q, You J. Bacillus velezensis LT1: a potential biocontrol agent for southern blight on Coptis chinensis. Front Microbiol 2024; 15:1337655. [PMID: 38500587 PMCID: PMC10946422 DOI: 10.3389/fmicb.2024.1337655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/12/2024] [Indexed: 03/20/2024] Open
Abstract
Introduction Southern blight, caused by Sclerotium rolfsii, poses a serious threat to the cultivation of Coptis chinensis, a plant with significant medicinal value. The overreliance on fungicides for controlling this pathogen has led to environmental concerns and resistance issues. There is an urgent need for alternative, sustainable disease management strategies. Methods In this study, Bacillus velezensis LT1 was isolated from the rhizosphere soil of diseased C. chinensis plants. Its biocontrol efficacy against S. rolfsii LC1 was evaluated through a confrontation assay. The antimicrobial lipopeptides in the fermentation liquid of B. velezensis LT1 were identified using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF-MS). The effects of B. velezensis LT1 on the mycelial morphology of S. rolfsii LC1 were examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results The confrontation assay indicated that B. velezensis LT1 significantly inhibited the growth of S. rolfsii LC1, with an inhibition efficiency of 78.41%. MALDI-TOF-MS analysis detected the presence of bacillomycin, surfactin, iturin, and fengycin in the fermentation liquid, all known for their antifungal properties. SEM and TEM observations revealed that the mycelial and cellular structures of S. rolfsii LC1 were markedly distorted when exposed to B. velezensis LT1. Discussion The findings demonstrate that B. velezensis LT1 has considerable potential as a biocontrol agent against S. rolfsii LC1. The identified lipopeptides likely contribute to the antifungal activity, and the morphological damage to S. rolfsii LC1 suggests a mechanism of action. This study underscores the importance of exploring microbial biocontrol agents as a sustainable alternative to chemical fungicides in the management of plant diseases. Further research into the genetic and functional aspects of B. velezensis LT1 could provide deeper insights into its biocontrol mechanisms and facilitate its application in agriculture.
Collapse
Affiliation(s)
- Tao Tang
- Key Laboratory of Chinese Herbal Medicine Biology and Cultivation, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicine, Hubei Academy of Agricultural Science, Enshi, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Fanfan Wang
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Houyun Huang
- Key Laboratory of Chinese Herbal Medicine Biology and Cultivation, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicine, Hubei Academy of Agricultural Science, Enshi, China
| | - Jie Guo
- Key Laboratory of Chinese Herbal Medicine Biology and Cultivation, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicine, Hubei Academy of Agricultural Science, Enshi, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Xiaoliang Guo
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Yuanyuan Duan
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Xiaoyue Wang
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Qingfang Wang
- Key Laboratory of Chinese Herbal Medicine Biology and Cultivation, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicine, Hubei Academy of Agricultural Science, Enshi, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Jingmao You
- Key Laboratory of Chinese Herbal Medicine Biology and Cultivation, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicine, Hubei Academy of Agricultural Science, Enshi, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| |
Collapse
|