1
|
Li J, Yu M, Liu W, Zheng Z, Liu J, Shi R, Zeb A, Wang Q, Wang J. Effects of compound immobilized bacteria on remediation and bacterial community of PAHs-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136941. [PMID: 39709818 DOI: 10.1016/j.jhazmat.2024.136941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/28/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Immobilized microorganism technology is expected to enhance microbial activity and stability and is considered an effective technique for removing soil polycyclic aromatic hydrocarbons (PAHs). However, there are limited high-efficiency and stable bacterial preparations available. In this study, alkali-modified biochar (Na@CBC700) was used as the adsorption carrier, sodium alginate (SA) and polyvinyl alcohol (PVA) as embedding agents, and CaCl2 as the cross-linking agent to prepare immobilized Acinetobacter (CoIMB) through a composite immobilization method. The CoIMB preparation was optimized using response surface methodology and applied to PAH-contaminated soil remediation. Results indicated that CoIMB exhibited improved mechanical strength and microbial activity, achieving degradation rates of 2-5 rings PAHs up to 82.41 %, averaging 1.5 times higher than CK. High dose CoIMB treatment enhanced soil microbial community diversity, enriching Acinetobacter, and increased the abundance of functional genes related to fatty acid metabolism and energy metabolism (K00249, K01897, K00059). This composite immobilized bacterial particle provides a novel, broad-spectrum, and cost-effective solution for remediating organic pollutants in soil environments.
Collapse
Affiliation(s)
- Jiantao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Miao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| | - Zeqi Zheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| |
Collapse
|
2
|
Chen M, Jin L, Liu X, Li R, Xian H, Guo C. Immobilization of ammonia-oxidizing bacteria using mycelial pellets: Preparation, characteristics, and application for nitritation. BIORESOURCE TECHNOLOGY 2025; 419:132083. [PMID: 39824321 DOI: 10.1016/j.biortech.2025.132083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/04/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Ammonia-oxidizing bacteria (AOB) sourced from an aerobic granular sludge (AGS) process were rapidly enriched by progressively increasing ammonia nitrogen (NH4+-N) loads, achieving a Nitrosomonas abundance of 20.7 % and a nitrite accumulation rate exceeding 80 %. Mycelial pellets formed by Cladosporium, isolated from the same AGS system, provided a porous surface structure for the immobilization of the enriched AOB, creating mycelial pellet/AOB composites. Robust microbial colonization and aggregation in mycelial pellet porous matrix were facilitated by a higher level of extracellular polymeric substances (EPS) compared to conventional AGS. Static tests showed a maximum NH4+-N oxidation rate of 17.7 mg/(gMLVSS·h), higher than free AOB (8.5 mg/(gMLVSS·h)). In multi-recycling tests, the composites maintained 96.6 % NH4+-N oxidation, demonstrating superior repeatability and stability. The results highlight advantages of mycelial pellets as biocompatible carriers in immobilizing AOB sourced from the same system, offering insights into improved nitritation performance and durability, making them promising for practical wastewater treatment.
Collapse
Affiliation(s)
- Ming Chen
- School of Civil Engineering, Southeast University, Nanjing 210096, China.
| | - Lei Jin
- School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Xiaoying Liu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Renjie Li
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Huiling Xian
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Chao Guo
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
3
|
Armanu EG, Bertoldi S, Chrzanowski Ł, Volf I, Heipieper HJ, Eberlein C. Benefits of Immobilized Bacteria in Bioremediation of Sites Contaminated with Toxic Organic Compounds. Microorganisms 2025; 13:155. [PMID: 39858923 PMCID: PMC11768004 DOI: 10.3390/microorganisms13010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Although bioremediation is considered the most environmentally friendly and sustainable technique for remediating contaminated soil and water, it is most effective when combined with physicochemical methods, which allow for the preliminary removal of large quantities of pollutants. This allows microorganisms to efficiently eliminate the remaining contaminants. In addition to requiring the necessary genes and degradation pathways for specific substrates, as well as tolerance to adverse environmental conditions, microorganisms may perform below expectations. One typical reason for this is the high toxicity of xenobiotics present in large concentrations, stemming from the vulnerability of bacteria introduced to a contaminated site. This is especially true for planktonic bacteria, whereas bacteria within biofilms or microcolonies have significant advantages over their planktonic counterparts. A physical matrix is essential for the formation, maintenance, and survival of bacterial biofilms. By providing such a matrix for bacterial immobilization, the formation of biofilms can be facilitated and accelerated. Therefore, bioremediation combined with bacterial immobilization offers a comprehensive solution for environmental cleanup by harnessing the specialized metabolic activities of microorganisms while ensuring their retention and efficacy at target sites. In many cases, such bioremediation can also eliminate the need for physicochemical methods that are otherwise required to initially reduce contaminant concentrations. Then, it will be possible to use microorganisms for the remediation of higher concentrations of xenobiotics, significantly reducing costs while maintaining a rapid rate of remediation processes. This review explores the benefits of bacterial immobilization, highlighting materials and processes for developing an optimal immobilization matrix. It focuses on the following four key areas: (i) the types of organic pollutants impacting environmental and human health, (ii) the bacterial strains used in bioremediation processes, (iii) the types and benefits of immobilization, and (iv) the immobilization of bacterial cells on various carriers for targeted pollutant degradation.
Collapse
Affiliation(s)
- Emanuel Gheorghita Armanu
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany; (E.G.A.); (S.B.); (C.E.)
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73A Prof. D. Mangeron Blvd., 700050 Iasi, Romania
| | - Simone Bertoldi
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany; (E.G.A.); (S.B.); (C.E.)
| | - Łukasz Chrzanowski
- Institute of Chemical Technology and Engineering, Poznan University of Technology, 60-965 Poznan, Poland;
| | - Irina Volf
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73A Prof. D. Mangeron Blvd., 700050 Iasi, Romania
| | - Hermann J. Heipieper
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany; (E.G.A.); (S.B.); (C.E.)
| | - Christian Eberlein
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany; (E.G.A.); (S.B.); (C.E.)
| |
Collapse
|
4
|
Peng D, Chen X, Zhang S, Zeng G, Yan C, Luo H, Liu H, Xu H. Biochar enhances Cd mineralization through microbially induced carbonate precipitation as a soil remediation strategy for rice paddies. CHEMOSPHERE 2024; 366:143441. [PMID: 39362375 DOI: 10.1016/j.chemosphere.2024.143441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/05/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Microbial induced carbonate precipitation (MICP) is a promising technique for remediating Cd-contaminated soils. However, the high cost and potential disruption to soil micro-ecology due to the excessive urea addition remain significant challenges, limiting the broader application of MICP technology in agricultural soils. This study aims to improve the efficiency of Cd immobilization by MICP under low urea levels by investigating the stimulatory effect of porous materials on urease secretion by ureolytic bacteria. Results demonstrate that these materials, including biochar, activated carbon, zeolite, and oyster shell, can stimulate the growth of ureolytic bacteria strain kp-22, but not diatomite. Urease activity was greatly improved within 12 h, and the Cd removal rate reached over 82.12% within 0.5 h. Notably, biochar supported urealytic bacterium strain kp-22 (BCM) can steadily remove Cd in solution, with the Cd removal rate remaining close to 99% even after multiple additions of Cd. XRD analysis shows that Cd was removed by BCM due to the formation of CdCO3. Soil experiment reveals that BCM significantly decreased the bioavailable Cd content in both flooded and unflooded paddy soils, even when the urea addition was at a dosage suitable for agricultural production. 16S rRNA gene sequencing shows that the disturbance caused by BCM to the soil bacterial community was lower than that caused by strain kp-22 alone. These findings offer new insights into enhancing the efficiency of MICP for Cd remediation, increasing the potential for broader application of MICP technology in sustainable agriculture.
Collapse
Affiliation(s)
- Dinghua Peng
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Xianghan Chen
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Shuling Zhang
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Guoquan Zeng
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Chaoqun Yan
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Huanyan Luo
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Huakang Liu
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China.
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China; Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu, 610065, Sichuan, PR China.
| |
Collapse
|
5
|
Sonsuphab K, Toomsan W, Soontharo S, Supanchaiyamat N, Hunt AJ, Ngernyen Y, Nasompag S, Kiattisaksiri P, Ratpukdi T, Siripattanakul-Ratpukdi S. Integrated remediation and detoxification of triclocarban-contaminated water using waste-derived biochar-immobilized cells by long-term column experiments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124456. [PMID: 38942273 DOI: 10.1016/j.envpol.2024.124456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/16/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Triclocarban (TCC), an antibacterial agent commonly used in personal care products, is one of the top ten contaminants of emerging concern in various environmental media, including soil and contaminated water in vadose zone. This study aimed to investigate TCC-contaminated water remediation using biochar-immobilized bacterial cells. Pseudomonas fluorescens strain MC46 (MC46), an efficient TCC-degrading isolate, was chosen, whereas agro-industrial carbonized waste as biochar was directly used as a sustainable cell immobilization carrier. According to the long-term TCC removal performance results (160 d), the biochar-immobilized cells consistently exhibited high TCC removal efficiencies (84-97%), whereas the free MC46 removed TCC for 76-94%. At 100 days, the detachment of the MC46 cells from the immobilized cell column was observed. The micro-Fourier-transform infrared spectroscopy results indicated that extracellular polymeric substance (EPS) was produced, but polysaccharide and protein fractions were washed out of the column. The lipid fraction of EPS adhered to the biochar, promoting TCC sorption for long-term treatment. The shortening of MC46 cells improved the tolerance of TCC toxicity. The TCC-contaminated water was successfully detoxified by the biochar-immobilized MC46 cells. Overall, the waste-derived biochar-immobilized cell system proposed in this study for the removal of emerging contaminants, including TCC, is efficient, economical, and aligned with the sustainable development concept of value-added utilization of waste.
Collapse
Affiliation(s)
- Khuanchanok Sonsuphab
- Department of Environmental Engineering and Research Center for Environmental and Hazardous Substance Management, Faculty of Engineering, Khon Kaen University, 40002, Thailand.
| | - Wittawat Toomsan
- Department of Environmental Engineering and Research Center for Environmental and Hazardous Substance Management, Faculty of Engineering, Khon Kaen University, 40002, Thailand
| | - Somphong Soontharo
- Department of Environmental Engineering and Research Center for Environmental and Hazardous Substance Management, Faculty of Engineering, Khon Kaen University, 40002, Thailand
| | - Nontipa Supanchaiyamat
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Andrew J Hunt
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Yuvarat Ngernyen
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sawinee Nasompag
- Research Instrument Center (RIC), Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | - Thunyalux Ratpukdi
- Department of Environmental Engineering and Research Center for Environmental and Hazardous Substance Management, Faculty of Engineering, Khon Kaen University, 40002, Thailand
| | - Sumana Siripattanakul-Ratpukdi
- Department of Environmental Engineering and Research Center for Environmental and Hazardous Substance Management, Faculty of Engineering, Khon Kaen University, 40002, Thailand.
| |
Collapse
|
6
|
Xu K, Li Y, Li Q, Yi G, Gao R, Tang KHD, Ali EF, Hooda PS, Shaheen SM, Li R. Biodegradation of bisphenol-A in water using a novel strain of Xenophilus sp. embedded onto biochar: Elucidating the influencing factors and degradation pathway. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135239. [PMID: 39053060 DOI: 10.1016/j.jhazmat.2024.135239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/21/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Bisphenol-A (BPA) is an emerging hazardous contaminant, which is ubiquitous in the environment and can cause endocrine disruptor and cancer risks. Therefore, biodegradation of BPA is an essential issue to mitigate the associated human health. In this work, a bacterial strain enables of degrading BPA, named BPA-LRH8 (identified as Xenophilus sp.), was newly isolated from activated sludge and embedded onto walnut shell biochar (WSBC) to form a bio-composite (BCM) for biodegradation of BPA in water. The Langmuir maximum adsorption capacity of BPA by WSBC was 21.7 mg g-1. The free bacteria of BPA-LRH8 showed high BPA degradation rate (∼100 %) at pH 5-11, while it was lower (<20 %) at pH 3. The BCM eliminated all BPA (∼100 %) at pH 3-11 and 25-45 °C when the BPA level was ≤ 25 mg L-1. The spectrometry investigations suggested two possible degradation routes of BPA by Xenophilus sp. In one route, BPA (C15H16O3) was oxidized to C15H16O3, and then broken into C9H12O3 through chain scission. In another route, BPA was likely hydroxylated, oxidized, and cleaved into C9H10O4P4, which was further metabolized into CO2 and H2O in the TCA cycle. This study concluded that the novel isolated bacteria (BPA-LRH8) embedded onto WSBC is a promising and new method for the effective removal of BPA and similar hazardous substances from contaminated water under high concentrations and wide range of pH and temperature.
Collapse
Affiliation(s)
- Kaili Xu
- School of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling 712100, Shaanxi, China
| | - Yimeng Li
- School of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling 712100, Shaanxi, China
| | - Qian Li
- School of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling 712100, Shaanxi, China
| | - Guorong Yi
- School of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling 712100, Shaanxi, China
| | - Runyu Gao
- School of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling 712100, Shaanxi, China
| | - Kuok Ho Daniel Tang
- The University of Arizona (UA), The Department of Environmental Science, Tucson, AZ 85721, USA; School of Natural Resources and Environment, NWAFU-UA micro-campus, Yangling, Shaanxi 712100, China
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, 11099, Taif 21944, Saudi Arabia
| | - Peter S Hooda
- Faculty of Engineering, Computing and the Environment, Kingston University London, Kingston Upon Thames, KT1 2EE London, UK
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Laboratory of Soil and Groundwater Management, Institute of Foundation Engineering, Water, and Waste-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt.
| | - Ronghua Li
- School of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling 712100, Shaanxi, China; School of Natural Resources and Environment, NWAFU-UA micro-campus, Yangling, Shaanxi 712100, China.
| |
Collapse
|
7
|
Cao R, Kang G, Zhang W, Zhou J, Xie W, Liu Z, Xu L, Hu F, Li Z, Li H. Biochar loaded with ferrihydrite and Bacillus pseudomycoides enhances remediation of co-existed Cd(II) and As(III) in solution. BIORESOURCE TECHNOLOGY 2024; 395:130323. [PMID: 38228221 DOI: 10.1016/j.biortech.2024.130323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/18/2024]
Abstract
Bioremediation is one of the effective ways for heavy metal remediation. Iron-modified biochar (F@BC) loaded with Bacillus pseudomycoides (BF@BC) was synthesized to remove the coexistence of cadmium (Cd) and arsenic (As) in solutions. The results showed that B. pseudomycoides significantly increased the removal rate of Cd(II) by enhancing the specific surface area and Si-containing functional groups of biochar (BC). The surface of F@BC was enriched with Fe-containing functional groups, significantly improving As(III) adsorption. The combination of ferrihydrite and strains on BF@BC enhanced the removal of Cd(II) and As(III). It also promoted the oxidation of As(III) by producing an abundance of hydroxyl radicals (·OH). The maximum saturated adsorption capacity of BF@BC for Cd(II) and As(III) increased by 52.47% and 2.99 folds compared with BC, respectively. This study suggests that biochar loaded with Fe and bacteria could be sustainable for the remediation of the coexistence of Cd(II) and As(III) in solutions.
Collapse
Affiliation(s)
- Rui Cao
- Laboratory of Soil Ecology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Guodong Kang
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, Jiangsu, 210042, China
| | - Weiwen Zhang
- Laboratory of Soil Ecology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jihai Zhou
- Provincial Collaborative Innovation Center for Restoration and Reconstruction of Degraded Ecosystems in Wanjiang Basin, College of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Wangliang Xie
- Laboratory of Soil Ecology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhenzhen Liu
- Laboratory of Soil Ecology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Li Xu
- Laboratory of Soil Ecology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya, Hainan, 572000, China
| | - Feng Hu
- Laboratory of Soil Ecology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, Jiangsu, 210095, China
| | - Zhen Li
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu, Sichuan, 610059, China.
| | - Huixin Li
- Laboratory of Soil Ecology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
8
|
Wu X, Quan W, Chen Q, Gong W, Wang A. Efficient Adsorption of Nitrogen and Phosphorus in Wastewater by Biochar. Molecules 2024; 29:1005. [PMID: 38474517 PMCID: PMC10935008 DOI: 10.3390/molecules29051005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Nitrogen and phosphorus play essential roles in ecosystems and organisms. However, with the development of industry and agriculture in recent years, excessive N and P have flowed into water bodies, leading to eutrophication, algal proliferation, and red tides, which are harmful to aquatic organisms. Biochar has a high specific surface area, abundant functional groups, and porous structure, which can effectively adsorb nitrogen and phosphorus in water, thus reducing environmental pollution, achieving the reusability of elements. This article provides an overview of the preparation of biochar, modification methods of biochar, advancements in the adsorption of nitrogen and phosphorus by biochar, factors influencing the adsorption of nitrogen and phosphorus in water by biochar, as well as reusability and adsorption mechanisms. Furthermore, the difficulties encountered and future research directions regarding the adsorption of nitrogen and phosphorus by biochar were proposed, providing references for the future application of biochar in nitrogen and phosphorus adsorption.
Collapse
Affiliation(s)
- Xichang Wu
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550025, China;
| | - Wenxuan Quan
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550025, China;
| | - Qi Chen
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China; (Q.C.); (W.G.)
| | - Wei Gong
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China; (Q.C.); (W.G.)
| | - Anping Wang
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550025, China;
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China; (Q.C.); (W.G.)
| |
Collapse
|