1
|
Sharma V, Kapil D, Singh B. Recent advances in biomarkers detection of various diseases by biosensors derived from optical chromogenic polymeric transducers: A review. Process Biochem 2025; 148:191-221. [DOI: 10.1016/j.procbio.2024.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Qiu S, Dong Y, Yu X, Ai Q, Yuan L, Zhang L, Zhang D. Highly selective localized surface plasmon resonance sensor for selenium diagnosis in selenium-rich soybeans. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135632. [PMID: 39182288 DOI: 10.1016/j.jhazmat.2024.135632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
It is a challenge to determine selenium in acid aqueous for environmental monitoring and selenium-rich agricultural diagnosis. Herein, we developed a novel localized surface plasmon resonance (LSPR) sensor to detect Se(IV) ions based on the extraordinary laterals etching of gold nanorods (AuNRs). The etching started from the laterals in the low amount of Se(IV) ions, and accompanied by an apparent red shift of the longitudinal plasmon band (LPB), and then transformed to the tips etching with the upward of Se(IV) ions, the LPB band immediately shifted to the shorter wavelength. The red shift change (Δλ) of LPB band was utilized to quantitative analysis instead of blue shift or absorbance intensity, which gave a high selectivity for the proposed sensor. More importantly, this sensor could be performed in 0.1 mol/L of HCl solution, which achieved the seamlessly jointing with the pretreatment of complex samples, without time-consuming pH adjustment.Successful selenium detection was demonstrated in complex soybean samples that collected from the maturity after spraying organic chelated selenium at full flower period. The sensor provided a promising way to monitor and diagnose selenium in complex environmental samples and selenium-rich crops.
Collapse
Affiliation(s)
- Suyan Qiu
- MARA Key Laboratory for Quality and Safety Control of Poultry Products, Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Yifan Dong
- MARA Key Laboratory for Quality and Safety Control of Poultry Products, Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Xiren Yu
- MARA Key Laboratory for Quality and Safety Control of Poultry Products, Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Qiushuang Ai
- MARA Key Laboratory for Quality and Safety Control of Poultry Products, Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Lijuan Yuan
- MARA Key Laboratory for Quality and Safety Control of Poultry Products, Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Li Zhang
- MARA Key Laboratory for Quality and Safety Control of Poultry Products, Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Dawen Zhang
- MARA Key Laboratory for Quality and Safety Control of Poultry Products, Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China.
| |
Collapse
|
3
|
Zain M, Ma H, Ur Rahman S, Nuruzzaman M, Chaudhary S, Azeem I, Mehmood F, Duan A, Sun C. Nanotechnology in precision agriculture: Advancing towards sustainable crop production. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108244. [PMID: 38071802 DOI: 10.1016/j.plaphy.2023.108244] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/21/2023] [Accepted: 11/27/2023] [Indexed: 02/15/2024]
Abstract
Nanotechnology offers many potential solutions for sustainable agroecosystem, including improvement in nutrient use efficiency, efficacy of pest management, and minimizing the adverse environmental effects of agricultural production. Herein, we first highlighted the integrated application of nanotechnology and precision agriculture for sustainable productivity. Application of nanoparticle mediated material and advanced biosensors in precision agriculture is only possible by nanochips or nanosensors. Nanosensors offers the measurement of various stresses, soil quality parameters and detection of heavy metals along with the enhanced data collection, enabling precise decision-making and resource management in agricultural systems. Nanoencapsulation of conventional chemical fertilizers (known as nanofertilizers), and pesticides (known as nanopesticides) helps in sustained and slow release of chemicals to soils and results in precise dosage to plants. Further, nano-based disease detection kits are popular tools for early and speedy detection of viral diseases. Many other innovative approaches including biosynthesized nanoparticles have been evaluated and proposed at various scales, but in fact there are some barriers for practical application of nanotechnology in soil-plant system, including safety and regulatory concerns, efficient delivery at field levels, and consumer acceptance. Finally, we outlined the policy options and actions required for sustainable agricultural productivity, and proposed various research pathways that may help to overcome the upcoming challenges regarding practical implications of nanotechnology.
Collapse
Affiliation(s)
- Muhammad Zain
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Crop Cultivation and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Haijiao Ma
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Crop Cultivation and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Shafeeq Ur Rahman
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Md Nuruzzaman
- Faculty of Agriculture, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Sadaf Chaudhary
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Imran Azeem
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Faisal Mehmood
- Key Laboratory of Crop Water Use and Regulation, Farmland Irrigation Research Institute, Chinese Academy of Agriculture Sciences, Ministry of Agriculture and Rural Affairs, Xinxiang, 453003, China; Department of Land and Water Management, Faculty of Agricultural Engineering, Sindh Agriculture University, Tandojam, 70060, Pakistan
| | - Aiwang Duan
- Key Laboratory of Crop Water Use and Regulation, Farmland Irrigation Research Institute, Chinese Academy of Agriculture Sciences, Ministry of Agriculture and Rural Affairs, Xinxiang, 453003, China
| | - Chengming Sun
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Crop Cultivation and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
4
|
Traoré NE, Uttinger MJ, Cardenas Lopez P, Drobek D, Gromotka L, Schmidt J, Walter J, Apeleo Zubiri B, Spiecker E, Peukert W. Green room temperature synthesis of silver-gold alloy nanoparticles. NANOSCALE ADVANCES 2023; 5:1450-1464. [PMID: 36866254 PMCID: PMC9972530 DOI: 10.1039/d2na00793b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Metallic alloy nanoparticles (NPs) exhibit interesting optical, electrical and catalytic properties, dependent on their size, shape and composition. In particular, silver-gold alloy NPs are widely applied as model systems to better understand the syntheses and formation (kinetics) of alloy NPs, as the two elements are fully miscible. Our study targets product design via environmentally friendly synthesis conditions. We use dextran as the reducing and stabilizing agent for the synthesis of homogeneous silver-gold alloy NPs at room temperature. Our approach is a one-pot, low temperature, reaction-controlled, green and scalable synthesis route of well-controlled composition and narrow particle size distribution. The composition over a broad range of molar gold contents is confirmed by scanning transmission electron microscopy-energy-dispersive X-ray spectroscopy (STEM-EDX) measurements and auxiliary inductively coupled plasma-optical emission spectroscopy measurements (ICP-OES). The distributions of the resulting particles in size and composition are obtained from multi-wavelength analytical ultracentrifugation using the optical back coupling method and further confirmed by high-pressure liquid chromatography. Finally, we provide insight into the reaction kinetics during the synthesis, discuss the reaction mechanism and demonstrate possibilities for scale-up by a factor of more than 250 by increasing the reactor volume and NP concentration.
Collapse
Affiliation(s)
- N E Traoré
- Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg Cauerstraße 4 91058 Erlangen Germany
- Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-Universität Erlangen-Nürnberg Haberstraße 9a 91058 Erlangen Germany
| | - M J Uttinger
- Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg Cauerstraße 4 91058 Erlangen Germany
- Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-Universität Erlangen-Nürnberg Haberstraße 9a 91058 Erlangen Germany
| | - P Cardenas Lopez
- Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg Cauerstraße 4 91058 Erlangen Germany
- Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-Universität Erlangen-Nürnberg Haberstraße 9a 91058 Erlangen Germany
| | - D Drobek
- Institute of Micro- and Nanostructure Research (IMN), Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg Cauerstraße 3 91058 Erlangen Germany
| | - L Gromotka
- Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg Cauerstraße 4 91058 Erlangen Germany
- Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-Universität Erlangen-Nürnberg Haberstraße 9a 91058 Erlangen Germany
| | - J Schmidt
- Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg Cauerstraße 4 91058 Erlangen Germany
- Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-Universität Erlangen-Nürnberg Haberstraße 9a 91058 Erlangen Germany
| | - J Walter
- Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg Cauerstraße 4 91058 Erlangen Germany
- Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-Universität Erlangen-Nürnberg Haberstraße 9a 91058 Erlangen Germany
| | - B Apeleo Zubiri
- Institute of Micro- and Nanostructure Research (IMN), Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg Cauerstraße 3 91058 Erlangen Germany
| | - E Spiecker
- Institute of Micro- and Nanostructure Research (IMN), Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg Cauerstraße 3 91058 Erlangen Germany
| | - W Peukert
- Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg Cauerstraße 4 91058 Erlangen Germany
- Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-Universität Erlangen-Nürnberg Haberstraße 9a 91058 Erlangen Germany
| |
Collapse
|
5
|
Liaquat H, Imran M, Latif S, Hussain N, Bilal M. Multifunctional nanomaterials and nanocomposites for sensing and monitoring of environmentally hazardous heavy metal contaminants. ENVIRONMENTAL RESEARCH 2022; 214:113795. [PMID: 35803339 DOI: 10.1016/j.envres.2022.113795] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/25/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The applications of conventional sensors are limited by the long response time, high cost, large detection limit, low sensitivity, complicated usage and low selectivity. These sensors are nowadays replaced by Nanocomposite-based modalities and nanomaterials which are known for their high selectivity and physical and chemical properties. These nanosensors effectively detect heavy metal contaminants in the environment as the discharge of heavy metals into natural water as a result of human activity has become a global epidemic. Exposure to these toxic metals might induce many health-related complications, including kidney failure, brain injury, immune disorders, muscle paleness, cardiac damage, nervous system impairment and limb paralysis. Therefore, designing and developing novel sensing systems for the detection and recognition of these harmful metals in various environmental matrices, particularly water, is of extremely important. Emerging nanotechnological approaches in the past two decades have played a key role in overcoming environmentally-related problems. Nanomaterial-based fabrication of chemical nanosensors has widely been applied as a powerful analytical tool for sensing heavy metals. Portability, high sensitivity, on-site detection capability, better device performance and selectivity are all advantages of these nanosensors. The detection and selectivity have been improved using molecular recognition probes for selective binding on different nanostructures. This study aims to evaluate the sensing properties of various nanomaterials such as metal-organic frameworks, fluorescent materials, metal-based nanoparticles, carbon-based nanomaterials and quantum dots and graphene-based nanomaterials and quantum dots for heavy metal ions recognition. All these nano-architectures are frequently served as effective fluorescence probes to directly (or by modification with some large or small biomolecules) sense heavy metal ions for improved selectivity. However, efforts are still needed for the simultaneous designing of multiple metal ion-based detection systems, exclusively in colorimetric or optical fluorescence nanosensors for heavy metal cations.
Collapse
Affiliation(s)
- Hina Liaquat
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Shoomaila Latif
- School of Physical Sciences, University of the Punjab, Lahore, 54000, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, 54000, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
6
|
Mercaptosuccinic-Acid-Functionalized Gold Nanoparticles for Highly Sensitive Colorimetric Sensing of Fe(III) Ions. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9100290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The development of reliable and highly sensitive methods for heavy metal detection is a critical task for protecting the environment and human health. In this study, a qualitative colorimetric sensor that used mercaptosuccinic-acid-functionalized gold nanoparticles (MSA-AuNPs) to detect trace amounts of Fe(III) ions was developed. MSA-AuNPs were prepared using a one-step reaction, where mercaptosuccinic acid (MSA) was used for both stabilization, which was provided by the presence of two carboxyl groups, and functionalization of the gold nanoparticle (AuNP) surface. The chelating properties of MSA in the presence of Fe(III) ions and the concentration-dependent aggregation of AuNPs showed the effectiveness of MSA-AuNPs as a sensing probe with the use of an absorbance ratio of A530/A650 as an analytical signal in the developed qualitative assay. Furthermore, the obvious Fe(III)-dependent change in the color of the MSA-AuNP solution from red to gray-blue made it possible to visually assess the metal content in a concentration above the detection limit with an assay time of less than 1 min. The detection limit that was achieved (23 ng/mL) using the proposed colorimetric sensor is more than 10 times lower than the maximum allowable concentration for drinking water defined by the World Health Organization (WHO). The MSA-AuNPs were successfully applied for Fe(III) determination in tap, spring, and drinking water, with a recovery range from 89.6 to 126%. Thus, the practicality of the MSA-AuNP-based sensor and its potential for detecting Fe(III) in real water samples were confirmed by the rapidity of testing and its high sensitivity and selectivity in the presence of competing metal ions.
Collapse
|
7
|
Gold nanorods etching as a powerful signaling process for plasmonic multicolorimetric chemo-/biosensors: Strategies and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213934] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Sharma P, Pandey V, Sharma MMM, Patra A, Singh B, Mehta S, Husen A. A Review on Biosensors and Nanosensors Application in Agroecosystems. NANOSCALE RESEARCH LETTERS 2021; 16:136. [PMID: 34460019 PMCID: PMC8405745 DOI: 10.1186/s11671-021-03593-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/14/2021] [Indexed: 05/19/2023]
Abstract
Previous decades have witnessed a lot of challenges that have provoked a dire need of ensuring global food security. The process of augmenting food production has made the agricultural ecosystems to face a lot of challenges like the persistence of residual particles of different pesticides, accretion of heavy metals, and contamination with toxic elemental particles which have negatively influenced the agricultural environment. The entry of such toxic elements into the human body via agricultural products engenders numerous health effects such as nerve and bone marrow disorders, metabolic disorders, infertility, disruption of biological functions at the cellular level, and respiratory and immunological diseases. The exigency for monitoring the agroecosystems can be appreciated by contemplating the reported 220,000 annual deaths due to toxic effects of residual pesticidal particles. The present practices employed for monitoring agroecosystems rely on techniques like gas chromatography, high-performance liquid chromatography, mass spectroscopy, etc. which have multiple constraints, being expensive, tedious with cumbersome protocol, demanding sophisticated appliances along with skilled personnel. The past couple of decades have witnessed a great expansion of the science of nanotechnology and this development has largely facilitated the development of modest, quick, and economically viable bio and nanosensors for detecting different entities contaminating the natural agroecosystems with an advantage of being innocuous to human health. The growth of nanotechnology has offered rapid development of bio and nanosensors for the detection of several composites which range from several metal ions, proteins, pesticides, to the detection of complete microorganisms. Therefore, the present review focuses on different bio and nanosensors employed for monitoring agricultural ecosystems and also trying to highlight the factor affecting their implementation from proof-of-concept to the commercialization stage.
Collapse
Affiliation(s)
- Pankaj Sharma
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, Haryana 125004 India
| | - Vimal Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Mayur Mukut Murlidhar Sharma
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, Gangwon-do 24341 Republic of Korea
| | - Anupam Patra
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Baljinder Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Sahil Mehta
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Azamal Husen
- Wolaita Sodo University, P.O. Box: 138, Wolaita, Ethiopia
| |
Collapse
|
9
|
Abareshi A, Arshadi Pirlar M, Houshiar M. Experimental and theoretical investigation of the photothermal effect in gold nanorods. NEW J CHEM 2021. [DOI: 10.1039/d0nj04580b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, gold nanorods (GNRs) were synthesized using a seed-mediated route and their photothermal properties were investigated experimentally as well as theoretically.
Collapse
Affiliation(s)
- Afsaneh Abareshi
- Department of Physics
- Shahid Beheshti University
- Tehran 1983969411
- Iran
| | | | | |
Collapse
|
10
|
Smartphone coupled with paper-based chemical sensor for on-site determination of iron(III) in environmental and biological samples. Anal Bioanal Chem 2020; 412:1573-1583. [DOI: 10.1007/s00216-019-02385-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/20/2019] [Accepted: 12/30/2019] [Indexed: 01/09/2023]
|
11
|
Chen S, Chen F, Han P, Ye C, Huang S, Xu L, Wang X, Song Y. A stimuli responsive triplet-triplet annihilation upconversion system and its application as a ratiometric sensor for Fe 3+ ions. RSC Adv 2019; 9:36410-36415. [PMID: 35540611 PMCID: PMC9074917 DOI: 10.1039/c9ra06524e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/31/2019] [Indexed: 11/21/2022] Open
Abstract
A ratiometric fluorescent sensor for the detection of Fe3+ ions is achieved based on triplet-triplet annihilation upconversion (TTA-UC) luminescence. A new anthracene derivative (named as DHTPA) is designed and synthesized and reveals similar optical properties to 9,10-diphenylanthracene (DPA) and is used as a stimuli responsive annihilator in a TTA-UC system due to its complexation ability. As a result, the UC emission can be significantly quenched by Fe3+ ions, while the phosphorescence (PL) emission of sensitizer palladium(ii) octaetylporphyrin (PdOEP) remains nearly constant, which makes the PL signal an appropriate internal reference for the UC signal. The UC and ratio signals (I UC/I PL) both reveal a good linear relationship with Fe3+ ion concentration, which for the first time makes the TTA-UC system a perfect ratiometric sensor for Fe3+ ion detection. This sensing method will open a novel avenue to achieve ratiometric sensors in chemical and biological fields.
Collapse
Affiliation(s)
- Shuoran Chen
- Research Centre for Green Printing Nanophotonic Materials, Jiangsu Key Laboratory for Environmental Functional Materials, Institute of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology Suzhou 215009 P. R. China
| | - Fuming Chen
- Research Centre for Green Printing Nanophotonic Materials, Jiangsu Key Laboratory for Environmental Functional Materials, Institute of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology Suzhou 215009 P. R. China
| | - Pengju Han
- Research Centre for Green Printing Nanophotonic Materials, Jiangsu Key Laboratory for Environmental Functional Materials, Institute of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology Suzhou 215009 P. R. China
| | - Changqing Ye
- Research Centre for Green Printing Nanophotonic Materials, Jiangsu Key Laboratory for Environmental Functional Materials, Institute of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology Suzhou 215009 P. R. China
| | - Suqin Huang
- Research Centre for Green Printing Nanophotonic Materials, Jiangsu Key Laboratory for Environmental Functional Materials, Institute of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology Suzhou 215009 P. R. China
| | - Lei Xu
- Research Centre for Green Printing Nanophotonic Materials, Jiangsu Key Laboratory for Environmental Functional Materials, Institute of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology Suzhou 215009 P. R. China
| | - Xiaomei Wang
- Research Centre for Green Printing Nanophotonic Materials, Jiangsu Key Laboratory for Environmental Functional Materials, Institute of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology Suzhou 215009 P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
12
|
Zayed MF, Eisa WH, El-Kousy SM, Mleha WK, Kamal N. Ficus retusa-stabilized gold and silver nanoparticles: Controlled synthesis, spectroscopic characterization, and sensing properties. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 214:496-512. [PMID: 30812012 DOI: 10.1016/j.saa.2019.02.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/15/2018] [Accepted: 02/16/2019] [Indexed: 06/09/2023]
Abstract
Ficus retusa was used as reducing and stabilizing agent in the green synthesis of silver and gold nanoparticles with high dispersion stability and controllable size and shape. The controlling of reaction conditions i.e. contact time, extract quantity, metal concentration, and pH value enables the tuning of the particle size and size distribution of the metal nanoparticles. UV-visible spectroscopy was used to follow the spectral profile changes of the surface plasmon resonance of the metal nanoparticles due to different treatments. The surface plasmon resonance varies between 400 and 432 nm and between 522 and 554 nm for silver and gold nanoparticles, respectively, depending on the different reaction parameters. Atomic force and transmission electron microscopy results confirmed the success of preparation of spherical silver (15 nm) and gold (10-25 nm) nanoparticles with narrow size-distribution. Fourier transform infrared spectroscopy suggested the phenolic compounds play the key role in the reduction and stabilizing of metal ions. The colorimetric sensitivity of silver and gold nanoparticles to detect the presence of heavy metals in water was studied.
Collapse
Affiliation(s)
- Mervat F Zayed
- Chemistry Department, Faculty of Science, Menoufia University, Egypt.
| | - Wael H Eisa
- Spectroscopy Department, Physics Division, National Research Center (NRC), Egypt
| | - Salah M El-Kousy
- Chemistry Department, Faculty of Science, Menoufia University, Egypt
| | - Walaa K Mleha
- Chemistry Department, Faculty of Science, Menoufia University, Egypt
| | - Nermeen Kamal
- Chemistry Department, Faculty of Science, Menoufia University, Egypt
| |
Collapse
|
13
|
Elahi N, Kamali M, Baghersad MH. Recent biomedical applications of gold nanoparticles: A review. Talanta 2018; 184:537-556. [PMID: 29674080 DOI: 10.1016/j.talanta.2018.02.088] [Citation(s) in RCA: 608] [Impact Index Per Article: 86.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 12/12/2022]
Abstract
Recent advances in nanotechnology are as a result of the development of engineered nanoparticles. Efficiently, metallic nanoparticles have been widely exploited for biomedical application and among them, gold nanoparticles (AuNPs) are highly remarkable. Consequent upon their significant nature, spherical and gold nanorods (Au NRs) nanoparticles attract extreme attention. Their intrinsic features such as optical, electronic, physicochemical and, surface plasmon resonance (SPR); which can be altered by changing the characterizations of particles such as shape, size, aspect ratio, or environment; ease of synthesis and functionalization properties have resulted to various applications in different fields of biomedicine such as sensing, targeted drug delivery, imaging, photothermal and photodynamic therapy as well as the modulation of two or three applications. This article reviewed the popular AuNPs synthesis methods and mentioned their established applications in various demands, especially in biological sensing.
Collapse
Affiliation(s)
- Narges Elahi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Kamali
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hadi Baghersad
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Zhou J, Cao Z, Panwar N, Hu R, Wang X, Qu J, Tjin SC, Xu G, Yong KT. Functionalized gold nanorods for nanomedicine: Past, present and future. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.08.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Luty-Błocho M, Wojnicki M, Fitzner K. Gold Nanoparticles Formation via Au(III) Complex Ions Reduction with l
-Ascorbic Acid. INT J CHEM KINET 2017. [DOI: 10.1002/kin.21115] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- M. Luty-Błocho
- AGH University of Science and Technology; Faculty of Non-Ferrous Metals; al. A. Mickiewicza 30; 30-059 Krakow Poland
| | - M. Wojnicki
- AGH University of Science and Technology; Faculty of Non-Ferrous Metals; al. A. Mickiewicza 30; 30-059 Krakow Poland
| | - K. Fitzner
- AGH University of Science and Technology; Faculty of Non-Ferrous Metals; al. A. Mickiewicza 30; 30-059 Krakow Poland
| |
Collapse
|
16
|
Kim K, Nam YS, Lee Y, Lee KB. Highly Sensitive Colorimetric Assay for Determining Fe 3+ Based on Gold Nanoparticles Conjugated with Glycol Chitosan. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2017; 2017:3648564. [PMID: 28630783 PMCID: PMC5463166 DOI: 10.1155/2017/3648564] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 04/13/2017] [Indexed: 06/10/2023]
Abstract
A highly sensitive and simple colorimetric assay for the detection of Fe3+ ions was developed using gold nanoparticles (AuNPs) conjugated with glycol chitosan (GC). The Fe3+ ion coordinates with the oxygen atoms of GC in a hexadentate manner (O-Fe3+-O), decreasing the interparticle distance and inducing aggregation. Time-of-flight secondary ion mass spectrometry showed that the bound Fe3+ was coordinated to the oxygen atoms of the ethylene glycol in GC, which resulted in a significant color change from light red to dark midnight blue due to aggregation. Using this GC-AuNP probe, the quantitative determination of Fe3+ in biological, environmental, and pharmaceutical samples could be achieved by the naked eye and spectrophotometric methods. Sensitive response and pronounced color change of the GC-AuNPs in the presence of Fe3+ were optimized at pH 6, 70°C, and 300 mM NaCl concentration. The absorption intensity ratio (A700/A510) linearly correlated to the Fe3+ concentration in the linear range of 0-180 μM. The limits of detection were 11.3, 29.2, and 46.0 nM for tap water, pond water, and iron supplement tablets, respectively. Owing to its facile and sensitive nature, this assay method for Fe3+ ions can be applied to the analysis of drinking water and pharmaceutical samples.
Collapse
Affiliation(s)
- Kyungmin Kim
- Green City Technology Institute, Korea Institute of Science and Technology, Hwarang-ro 14gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department of Chemistry, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yun-Sik Nam
- Advanced Analysis Center, Korea Institute of Science and Technology, Hwarang-ro 14gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Yeonhee Lee
- Advanced Analysis Center, Korea Institute of Science and Technology, Hwarang-ro 14gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Kang-Bong Lee
- Green City Technology Institute, Korea Institute of Science and Technology, Hwarang-ro 14gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
17
|
Photo-mediated optimized synthesis of silver nanoparticles for the selective detection of Iron(III), antibacterial and antioxidant activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 71:1004-1019. [PMID: 27987654 DOI: 10.1016/j.msec.2016.11.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/12/2016] [Accepted: 11/06/2016] [Indexed: 11/21/2022]
Abstract
The AgNPs synthesized by green method have shown great potential in several applications such as biosensing, biomedical, catalysis, electronic etc. The present study deals with the selective colorimetric detection of Fe3+ using photoinduced green synthesized AgNPs. For the synthesis purpose, an aqueous extract of Croton bonplandianum (AEC) was used as a reducing and stabilizing agent. The biosynthesis was confirmed by UV-visible spectroscopy where an SPR band at λmax 436nm after 40s and 428nm after 30min corresponded to the existence of AgNPs. The optimum conditions for biosynthesis of AgNPs were 30min sunlight exposure time, 5.0% (v/v) AEC inoculum dose and 4mM AgNO3 concentration. The stability of synthesized AgNPs was monitored up to 9months. The size and shape of AgNPs with average size 19.4nm were determined by Field Emission Scanning Electron Microscope (FE-SEM) and High-Resolution Transmission Electron Microscope (HR-TEM). The crystallinity was determined by High-Resolution X-ray Diffractometer (HR-XRD) and Selected Area Electron Diffraction (SAED) pattern. The chemical and elemental compositions were determined by Fourier Transformed Infrared Spectroscopy (FTIR) and Energy Dispersive X-ray Spectroscopy (EDX) respectively. The Atomic Force Microscopy (AFM) images represented the lateral and 3D topological characteristics of AgNPs. The XPS analysis confirmed the presence of two individual peaks which attributed to the Ag 3d3/2 and Ag 3d5/2 binding energies corresponding to the presence of metallic silver. The biosynthesized AgNPs showed potent antibacterial activity against both gram-positive and gram-negative bacterial strains as well as antioxidant activity. On the basis of results and facts, a probable mechanism was also proposed to explore the possible route of AgNPs synthesis, colorimetric detection of Fe3+, antibacterial and antioxidant activity.
Collapse
|
18
|
Highly sensitive photometric determination of cyanide based on selective etching of gold nanorods. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1952-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
19
|
Pandey GP, Singh AK, Prasad S, Deshmukh L, Asthana A, Mathew SB, Yoshida M. Kinetic determination of trace amount of mercury(II) in environmental samples. Microchem J 2016. [DOI: 10.1016/j.microc.2016.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Zaleska-Medynska A, Marchelek M, Diak M, Grabowska E. Noble metal-based bimetallic nanoparticles: the effect of the structure on the optical, catalytic and photocatalytic properties. Adv Colloid Interface Sci 2016; 229:80-107. [PMID: 26805520 DOI: 10.1016/j.cis.2015.12.008] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 12/12/2022]
Abstract
Nanoparticles composed of two different metal elements show novel electronic, optical, catalytic or photocatalytic properties from monometallic nanoparticles. Bimetallic nanoparticles could show not only the combination of the properties related to the presence of two individual metals, but also new properties due to a synergy between two metals. The structure of bimetallic nanoparticles can be oriented in random alloy, alloy with an intermetallic compound, cluster-in-cluster or core-shell structures and is strictly dependent on the relative strengths of metal-metal bond, surface energies of bulk elements, relative atomic sizes, preparation method and conditions, etc. In this review, selected properties, such as structure, optical, catalytic and photocatalytic of noble metals-based bimetallic nanoparticles, are discussed together with preparation routes. The effects of preparation method conditions as well as metal properties on the final structure of bimetallic nanoparticles (from alloy to core-shell structure) are followed. The role of bimetallic nanoparticles in heterogeneous catalysis and photocatalysis are discussed. Furthermore, structure and optical characteristics of bimetallic nanoparticles are described in relation to the some features of monometallic NPs. Such a complex approach allows to systematize knowledge and to identify the future direction of research.
Collapse
|
21
|
Trace colorimetric detection of Pb 2+ using plasmonic gold nanoparticles and silica–gold nanocomposites. Microchem J 2016. [DOI: 10.1016/j.microc.2015.07.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
22
|
Khurana P, Thatai S, Prasad S, Soni S, Kumar D. Agcore–Aushell bimetallic nanocomposites: Gold shell thickness dependent study for SERS enhancement. Microchem J 2016. [DOI: 10.1016/j.microc.2015.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Alex SA, Chandrasekaran N, Mukherjee A. State-of-the-art strategies for the colorimetric detection of heavy metals using gold nanorods based on aspect ratio reduction. ANALYTICAL METHODS 2016; 8:2131-2137. [DOI: 10.1039/c5ay03428k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Current colorimetric detection techniques for metals using gold nanorods based on variations in the aspect ratio have been summarized.
Collapse
Affiliation(s)
- Sruthi Ann Alex
- Centre for Nanobiotechnology
- VIT University
- Vellore-632014
- India
| | | | | |
Collapse
|
24
|
Dhillon A, Nair M, Bhargava SK, Kumar D. Excellent fluoride decontamination and antibacterial efficacy of Fe–Ca–Zr hybrid metal oxide nanomaterial. J Colloid Interface Sci 2015. [DOI: 10.1016/j.jcis.2015.06.045] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
25
|
Jayabal S, Pandikumar A, Lim HN, Ramaraj R, Sun T, Huang NM. A gold nanorod-based localized surface plasmon resonance platform for the detection of environmentally toxic metal ions. Analyst 2015; 140:2540-55. [PMID: 25738185 DOI: 10.1039/c4an02330g] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gold nanorods (Au NRs) are elongated nanoparticles with unique optical properties which depend on their shape anisometry. The Au NR-based longitudinal localized surface plasmon resonance (longitudinal LSPR) band is very sensitive to the surrounding local environment and upon the addition of target analytes, the interaction between the analytes and the surface of the Au NRs leads to a change in the longitudinal LSPR band. This makes it possible to devise Au NR probes with application potential to the detection of toxic metal ions with an improved limit of detection, response time, and selectivity for the fabrication of sensing devices. The effective surface modification of Au NRs helps in improving their selectivity and sensitivity toward the detection of toxic metal ions. In this review, we discuss different methods for the preparation of surface modified Au NRs for the detection of toxic metal ions based on the LSPR band of the Au NRs and the types of interactions between the surface of Au NRs and metal ions. We summarize the work that has been done on Au NR-based longitudinal LSPR detection of environmentally toxic metal ions, sensing mechanisms, and the current progress in various modified Au NR-based longitudinal LSPR sensors for toxic metal ions. Finally, we discuss the applications of Au NR-based longitudinal LSPR sensors to real sample analysis and some of the future challenges facing longitudinal LSPR-based sensors for the detection of toxic metal ions toward commercial devices.
Collapse
Affiliation(s)
- Subramaniam Jayabal
- Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | | | | | | | | | | |
Collapse
|
26
|
Gao X, Lu Y, He S, Li X, Chen W. Colorimetric detection of iron ions (III) based on the highly sensitive plasmonic response of the N-acetyl-L-cysteine-stabilized silver nanoparticles. Anal Chim Acta 2015; 879:118-25. [PMID: 26002486 DOI: 10.1016/j.aca.2015.04.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/29/2015] [Accepted: 04/01/2015] [Indexed: 12/21/2022]
Abstract
We report here a facile colorimetric sensor based on the N-acetyl-L-cysteine (NALC)-stabilized Ag nanoparticles (NALC-Ag NPs) for detection of Fe(3+) ions in aqueous solution. The Ag NPs with an average diameter of 6.55±1.0 nm are successfully synthesized through a simple method using sodium borohydride as reducing agent and N-acetyl-L-cysteine as protecting ligand. The synthesized silver nanoparticles show a strong surface plasmon resonance (SPR) around 400 nm and the SPR intensity decreases with the increasing of Fe(3+) concentration in aqueous solution. Based on the linear relationship between SPR intensity and concentration of Fe(3+) ions, the as-synthesized water-soluble silver nanoparticles can be used for the sensitive and selective detection of Fe(3+) ions in water with a linear range from 80 nM to 80 μM and a detection limit of 80 nM. On the basis of the experimental results, a new detection mechanism of oxidation-reduction reaction between Ag NPs and Fe(3+) ions is proposed, which is different from previously reported mechanisms. Moreover, the NALC-Ag NPs could be applied to the detection of Fe(3+) ions in real environmental water samples.
Collapse
Affiliation(s)
- Xiaohui Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yizhong Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Shuijian He
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaokun Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Wei Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
27
|
Thatai S, Khurana P, Prasad S, Kumar D. Plasmonic detection of Cd 2+ ions using surface-enhanced Raman scattering active core–shell nanocomposite. Talanta 2015; 134:568-575. [DOI: 10.1016/j.talanta.2014.11.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 11/11/2014] [Accepted: 11/12/2014] [Indexed: 10/24/2022]
|
28
|
Functionalization of Smart Gels with Beta-Cyclodextrin and Release Characteristics to Simulating Drugs. ACTA ACUST UNITED AC 2015. [DOI: 10.4028/www.scientific.net/msf.815.675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Smart gels have many applications in sensors, actuators, shape memory intelligent devices, recognition, self-healing, drug release, biomimetic soft robot design, biomimetic tactile, neural regeneration, biomimetic membranes, supercapacitor, dye-sensitized solar cells, advanced lithium polymer batteries, environmental fields, biomedical fields, et al. And that cyclodextrins are one of the typical macrocycles with good recognition ability, and endowed with fascinating hydrophobic cavities and hydrophilic surface, which enable the encapsulation of diverse small organic molecules by forming inclusion complexes. In this paper, grafted copolymerization between acrylic acid and N,N-dimethyl acrylamide in the presence of water-soluble cyclodextrins was carried out. The effect of ratio of copolymerization monomer on the grafted polymer was examined. The results indicated that self-crosslinking smart gel with multi-stimuli responsive was obtained by selecting suitable the ratio of copolymerization monomer, its behaviors of swelling/shrinking were examined. The adsorption properties and releasing characteristics of smart gel were performed with simulating drugs. Some meaningful results were obtained. These series grafted copolymer would also be used to modify the surface and interface properties of low-dimensional functional materials or heterostructured nanocomposites for intelligent organic-inorganic functional nanocomposites, some good results were obtained.
Collapse
|
29
|
Pandey GP, Singh AK, Prasad S, Deshmukh L, Asthana A. Development of surfactant assisted kinetic method for trace determination of thallium in environmental samples. Microchem J 2015. [DOI: 10.1016/j.microc.2014.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Highly selective visual monitoring of hazardous fluoride ion in aqueous media using thiobarbituric-capped gold nanoparticles. Talanta 2015; 132:278-84. [DOI: 10.1016/j.talanta.2014.08.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/14/2014] [Accepted: 08/14/2014] [Indexed: 11/19/2022]
|
31
|
Thatai S, Khurana P, Boken J, Prasad S, Kumar D. Nanoparticles and core–shell nanocomposite based new generation water remediation materials and analytical techniques: A review. Microchem J 2014. [DOI: 10.1016/j.microc.2014.04.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|