1
|
Ren F, Li Y, Luo H, Gao S, Jiang S, Yang J, Rao C, Chen Y, Peng C. Extraction, detection, bioactivity, and product development of luteolin: A review. Heliyon 2024; 10:e41068. [PMID: 39759280 PMCID: PMC11700251 DOI: 10.1016/j.heliyon.2024.e41068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025] Open
Abstract
Luteolin is a kind of natural flavonoid, widely existing in a variety of plants, has been revealed to have a wide range of biological activities. In recent years, the research results of luteolin are abundant. Here we review the latest research results of luteolin in order to provide new ideas for further research and development of luteolin. In this paper, the focus of the search was published between 2010 and 2024 on the extraction and determination of luteolin, biological activities, and the development and application of luteolin products. A comprehensive search using the keyword "luteolin" was conducted in the PubMed, Web of Science and WIPO databases. Through the collection of related literature, this paper summarized a variety of extraction techniques of luteolin, including immersion extraction, solvent extraction, ultrasonic-assisted extraction, supercritical fluid extraction and so on. The determination methods include: thin layer chromatography (TLC), high performance liquid chromatography (HPLC), capillary electrophoresis (CE), electrochemical method (ED) and so on. In addition, the biological activities of luteolin, including antioxidant, anti-inflammatory, anti-tumor, antibacterial, analgesic and so on, were described. And luteolin as the main component of the product is being gradually developed, and has been used in the field of food, medicine and cosmetics. This paper provides a reference for further study of luteolin.
Collapse
Affiliation(s)
- Fajian Ren
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Ying Li
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Hanyuan Luo
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Song Gao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Shanshan Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Jian Yang
- Chuan-chu UNITED INTERNATIONAL Engineering Co., LTD, Chengdu, China
| | - Chaolong Rao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Cheng Peng
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 611137, China
| |
Collapse
|
2
|
Singhal J, Verma S, Kumar S. The physio-chemical properties and applications of 2D nanomaterials in agricultural and environmental sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155669. [PMID: 35523341 DOI: 10.1016/j.scitotenv.2022.155669] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 05/27/2023]
Abstract
Global hunger and nutritional deficiency demand the advancement of existing and conventional approaches to food production. The application of nanoenabled strategies in agriculture has opened up new avenues for enhancing crop yield and productivity. Recently, two-dimensional (2D) nanomaterials (NMs) have manifested new possibilities for increasing food production and nutrition. Graphene nanosheets, the 2D form of graphene has been exemplary in enhancing the loading capacity of agro-active ingredients, their target-specific delivery, bioavailability, and controlled release with slow degradation, resulting in the increased shelf-life/active time of the agro-active components. Also, the development of novel formulations/composites of MXenes and Transition Metal Dichalcogenides (TMDs) can foster plant growth, metabolism, crop production, protection and improvement of soil quality. Additionally, the 2D NM-based biosensors can monitor the nutrient levels and other parameters affecting agronomical traits in plants. This review provides an insight into the details of 2D NM synthesis and functionalization methods. Notably, the review highlights the broad-range of 2D NM applications and their suitability in the development of nanotechnology-based agriformulations. The 2D NM-based derivatives have shown immense potential in enhancing the pedologic parameters, crop productivity, pest-protection and nutritional value. Thus, assisting in achieving food and environmental sustainability goals.
Collapse
Affiliation(s)
- Jaya Singhal
- Department of Health Research-Multi-Disciplinary Research Unit, King George's Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Saurabh Verma
- Department of Health Research-Multi-Disciplinary Research Unit, King George's Medical University, Lucknow, Uttar Pradesh 226003, India.
| | - Smita Kumar
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh 226003, India.
| |
Collapse
|
3
|
Huang H, Xie S, Deng L, Yuan J, Yue R, Xu J. Fabrication of rGO/MXene-Pd/rGO hierarchical framework as high-performance electrochemical sensing platform for luteolin detection. Mikrochim Acta 2022; 189:59. [PMID: 35015150 DOI: 10.1007/s00604-021-05132-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022]
Abstract
A nanocomposite of rGO/MXene-Pd/rGO with hierarchical structure based on Ti3C2Tx MXene, Pd nanoparticles, and reduced graphene oxide (rGO) was synthesized by a green approach. Ti3C2Tx MXene decorated with Pd nanoparticles (MXene-Pd) was prepared first. Then, graphene oxide (GO), MXene-Pd, and GO were coated on the surface of the glassy carbon electrode (GCE) in sequence. After each coating of the GO layer, the GO nanosheets were reduced to rGO electrochemically. The fabricated rGO/MXene-Pd/rGO hierarchical framework performs a pie structure with MXene-Pd as the stuffing and rGO nanosheets as the crust, which will be beneficial to the enhancement of its electrochemical sensing performance. As compared with other electrodes, the rGO/MXene-Pd/rGO/GCE exhibited higher electrocatalytic activity and better sensing performance for luteolin detection, with a wide linear range of 6.0 × 10-10 to 8 × 10-7 M and 1.0 × 10-6 to 1.0 × 10-5 M (oxidation peak potential Epa = 0.34 V vs. SCE), a low detection limit of 2.0 × 10-10 M, and a high sensitivity of 112.72 µA µM-1 cm-2. Moreover, the fabricated sensor also showed high selectivity, reproducibility, and repeatability toward the detection of luteolin. The real sample analysis for luteolin in honeysuckle was successfully carried out by rGO/MXene-Pd/rGO and verified with high-performance liquid chromatography (HPLC) analysis techniques with acceptable results. All the above tests indicate the promising application prospect of the rGO/MXene-Pd/rGO framework for luteolin detection in honeysuckle and other herbs containing luteolin.
Collapse
Affiliation(s)
- Hui Huang
- College of Life Science, Jiangxi Science & Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Shuqian Xie
- College of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Lu Deng
- College of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Jie Yuan
- College of Chemistry & Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Ruirui Yue
- College of Life Science, Jiangxi Science & Technology Normal University, Nanchang, 330013, People's Republic of China.
| | - Jingkun Xu
- College of Chemistry & Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang, 330013, People's Republic of China.
| |
Collapse
|
4
|
Development of Electrochemical Sensors/Biosensors to Detect Natural and Synthetic Compounds Related to Agroalimentary, Environmental and Health Systems in Argentina. A Review of the Last Decade. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9110294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Electrochemical sensors and biosensors are analytical tools, which are in continuous development with the aim of generating new analytical devices which are more reliable, cheaper, faster, sensitive, selective, and robust than others. In matrices related to agroalimentary, environmental, or health systems, natural or synthetic compounds occur which fulfil specific roles; some of them (such as mycotoxins or herbicides) may possess harmful properties, and others (such as antioxidants) beneficial ones. This imposes a challenge to develop new tools and analytical methodologies for their detection and quantification. This review summarises different aspects related to the development of electrochemical sensors and biosensors carried out in Argentina in the last ten years for application in agroalimentary, environmental, and health fields. The discussion focuses on the construction and development of electroanalytical methodologies for the determination of mycotoxins, herbicides, and natural and synthetic antioxidants. Studies based on the use of different electrode materials modified with micro/nanostructures, functional groups, and biomolecules, complemented by the use of chemometric tools, are explored. Results of the latest reports from research groups in Argentina are presented. The main goals are highlighted.
Collapse
|
5
|
Abstract
Plants, through the photosynthesis process, produce the substances necessary for all the life cycles of nature, which are called "primary metabolites." Moreover, there are some plants that synthesize, in addition to these, other substances with more specific functions, which are known as "secondary metabolites." It is inside this group that flavonoids are located, whose main function is to protect organisms from damage caused by different oxidizing agents. Luteolin (3,4,5,7-tetrahydroxy-flavone) belongs to the sub-class of flavonoids known as flavones and is one of 10,000 flavonoids currently known, being one of the most bio-active flavonoids. Its various beneficial properties for health, together with the increasing reduction in the use of synthetic antioxidants, make the study of luteolin a very active field. Within this, the quantification of this molecule has become a subject of very special interest given that it is transversal to all fields. In this review article, we aim to give the reader a broad and deep vision of this topic, focusing on the events reported in the last 5 years and covering all possible techniques related to analytical determinations. We will discuss in terms of advantages and disadvantages between techniques, selectivity, sensitivity, costs, time consumption, and reagents as well as in the complexity of operations.
Collapse
Affiliation(s)
- Alvaro Y Tesio
- Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy (CIDMEJu), Centro de Desarrollo Tecnológico General Savio, Palpalá, Jujuy, Argentina
| | - Sebastian N Robledo
- Departamento de Tecnología Química, Grupo GEANA, Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), Facultad de Ingeniería, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| |
Collapse
|
6
|
Hou X, Wu W, Zhao F, Xie W, Yang Q. Construction of an electrochemical sensor with graphene aerogel doped with ZrO 2 nanoparticles and chitosan for the selective detection of luteolin. Mikrochim Acta 2021; 188:86. [PMID: 33587171 DOI: 10.1007/s00604-021-04743-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/03/2021] [Indexed: 01/15/2023]
Abstract
A simple, fast and sensitive method for the detection of luteolin is proposed based on the chitosan/reduced graphene oxide aerogel with dispersed ZrO2 nanoparticles modified glassy carbon electrode (ZrO2/CS/rGOA-GCE) as an electrochemical sensor. The ZrO2/CS/rGOA composite was prepared by one pot synthesis from a mixture of GO, CS and zirconyl chloride octahydrate, and subsequently be freeze-dried. Scanning electron microscope images showed a typical thin, wrinkled and fluctuant morphology of graphene nanosheets and the polymerized CS and ZrO2 nanoparticles deposited on the surface of rGOA. Cyclic voltammetry and differential pulse voltammetry were used to measure the electrochemical response of ZrO2/CS/rGOA composite-based biosensor towards luteolin at the working potential window (-0.8-0.8 V). The improved performance of this biosensor was attributed to efficient electron transfer and large surface area of 3D rGOA, and high specific activity of Zr towards adjacent hydroxyl groups. Under optimized conditions, the analytical performance of this method towards luteolin was investigated with a detection limit of 1 nM and a linear range from 5 nM to 1000 nM.. Finally, the ZrO2/CS/rGOA-GCE electrochemical method coupled with solid phase extraction was used for the detection of luteolin in real samples. Recoveries of spiked samples with different concentrations were in the range 78.6-103.3% with a relative RSD lower than 12.0%. Graphical abstract Schematic representation of the preparation of the ZrO2 nanoparticles and chitosan doped graphene aerogel modified electrode. The electrode was employed for the detection of luteolin coupled with the solid-phase extraction technique.
Collapse
Affiliation(s)
- Xiudan Hou
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao Shandong Province, 266109, China
| | - Wei Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao Shandong Province, 266109, China
| | - Fangyuan Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao Shandong Province, 266109, China
| | - Wancui Xie
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong Qingdao, 266042, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao Shandong Province, 266109, China.
| |
Collapse
|
7
|
Carboxyl hydrogel particle film as a local pH buffer for voltammetric determination of luteolin and baicalein. Talanta 2020; 208:120373. [DOI: 10.1016/j.talanta.2019.120373] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 12/23/2022]
|
8
|
Wei M, Geng X, Liu Y, Long H, Du J. A novel electrochemical sensor based on electropolymerized molecularly imprinted polymer for determination of luteolin. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.04.074] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
9
|
Liu J, Cheng H, Xie H, Luo G, Niu Y, Zhang S, Li G, Sun W. Platinum nanoparticles decorating a biomass porous carbon nanocomposite-modified electrode for the electrocatalytic sensing of luteolin and application. RSC Adv 2019; 9:33607-33616. [PMID: 35528916 PMCID: PMC9073529 DOI: 10.1039/c9ra06265c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/03/2019] [Indexed: 12/21/2022] Open
Abstract
A sensitive electrochemical method was proposed for the determination of luteolin based on platinum (Pt) nanoparticles decorating a biomass porous carbon (BPC) composite-modified carbon ionic liquid electrode (CILE). For Pt–BPC/CILE, a pair of well-defined redox peaks of luteolin appeared with enhanced peak currents and the positive movement of peak potentials, proving the electrocatalytic activity of the Pt–BPC nanocomposite for redox reaction. The results can be ascribed to the porous structure of BPC, the catalytic activity of Pt nanoparticles and their synergistic effects. Electrochemical parameters were calculated via cyclic voltammetry and differential pulse voltammetry. The results showed that the oxidation peak currents increased linearly with the concentration of luteolin in the range from 0.008 to 100.0 μmol L−1, with a detection limit of 2.6 ± 0.054 nmol L−1. The analytical performance of this sensor was checked by the detection of luteolin contents in a real Duyiwei capsule sample with satisfactory results. A Pt–BPC nanocomposite-modified electrode was fabricated for luteolin detection.![]()
Collapse
Affiliation(s)
- Juan Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science of Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- PR China
| | - Hui Cheng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science of Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- PR China
| | - Hui Xie
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province
- Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou
- College of Chemistry and Chemical Engineering
- Hainan Normal University
- Haikou 571158
| | - Guiling Luo
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province
- Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou
- College of Chemistry and Chemical Engineering
- Hainan Normal University
- Haikou 571158
| | - Yanyan Niu
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province
- Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou
- College of Chemistry and Chemical Engineering
- Hainan Normal University
- Haikou 571158
| | - Shuyao Zhang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province
- Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou
- College of Chemistry and Chemical Engineering
- Hainan Normal University
- Haikou 571158
| | - Guangjiu Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science of Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- PR China
| | - Wei Sun
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province
- Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou
- College of Chemistry and Chemical Engineering
- Hainan Normal University
- Haikou 571158
| |
Collapse
|
10
|
Sun Q, Long Y, Pan S, Liu H, Yang J, Hu X. Carbon dot-based fluorescent probes for sensitive and selective detection of luteolin through the inner filter effect. LUMINESCENCE 2018; 33:1401-1407. [DOI: 10.1002/bio.3562] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/09/2018] [Accepted: 09/16/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Qianqian Sun
- Key Laboratory of Luminescent and Real-Time analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering; Southwest University; Chongqing China
| | - Yuwei Long
- Key Laboratory of Luminescent and Real-Time analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering; Southwest University; Chongqing China
| | - Shuang Pan
- Key Laboratory of Luminescent and Real-Time analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering; Southwest University; Chongqing China
| | - Hui Liu
- College of Pharmaceutical Sciences; Southwest University; Chongqing China
| | - Jidong Yang
- College of Chemical and Environmental Engineering; Chongqing Three Gorges University; Wanzhou Chongqing China
| | - Xiaoli Hu
- Key Laboratory of Luminescent and Real-Time analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering; Southwest University; Chongqing China
| |
Collapse
|
11
|
Square wave voltammetric quantitative determination of flavonoid luteolin in peanut hulls and Perilla based on Au NPs loaded boron nitride nanosheets. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Tuma Sabah J, Zulkifli RM, Shahir S, Ahmed F, Abdul Kadir MR, Zakaria Z. In vitro selection and characterization of single stranded DNA aptamers for luteolin: A possible recognition tool. Anal Biochem 2018. [PMID: 29524380 DOI: 10.1016/j.ab.2018.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Distinctive bioactivities possessed by luteolin (3', 4', 5, 7-tetrahydroxy-flavone) are advantageous for sundry practical applications. This paper reports the in vitro selection and characterization of single stranded-DNA (ssDNA) aptamers, specific for luteolin (LUT). 76-mer library containing 1015 randomized ssDNA were screened via systematic evolution of ligands by exponential enrichment (SELEX). The recovered ssDNA pool from the 8th round was amplified with unlabeled primers and cloned into PSTBlue-1 vector prior to sequencing. 22 of LUT-binding aptamer variants were further classified into one of the seven groups based on their N40 random sequence regions, wherein one representative from each group was characterized. The dissociation constant of aptamers designated as LUT#28, LUT#20 and LUT#3 was discerned to be 107, 214 and 109 nM, respectively with high binding affinity towards LUT. Prediction analysis of the secondary structure suggested discrete features with typical loop and stem motifs. Furthermore, LUT#3 displayed higher specificity with insignificant binding toward kaempferol and quercetin despite its structural and functional similarity compared to LUT#28 and LUT#20. Further LUT#3 can detect free luteolin within 0.2-1 mM in solution. It was suggested that LUT#3 aptamer were the most suitable for LUT recognition tool at laboratory scale based on the condition tested.
Collapse
Affiliation(s)
- Jinan Tuma Sabah
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Malaysia
| | | | - Shafinaz Shahir
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Malaysia
| | - Farediah Ahmed
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Malaysia
| | | | - Zarita Zakaria
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Malaysia
| |
Collapse
|
13
|
Electrochemical determination of luteolin using molecularly imprinted poly-carbazole on MoS2/graphene-carbon nanotubes nanocomposite modified electrode. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.12.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
14
|
Jia Q, Peng Y, Pan J, Huang X, Niu X, Zhang T. Fe3O4@PVIM@Zn(ii) magnetic microspheres for luteolin recognition via combined reflux-precipitation polymerization and metal-ion affinity strategy. NEW J CHEM 2017. [DOI: 10.1039/c6nj03868a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mild ploy base on acid response affinity of Fe3O4@PVIM@Zn(ii) for luteolin extraction.
Collapse
Affiliation(s)
- Qiang Jia
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang
- China
- School of Chemistry and Chemical Engineering
| | - Yinxian Peng
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang
- China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Xiaobin Huang
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang
- China
| | - Xiangheng Niu
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| |
Collapse
|
15
|
Alkaline phosphatase mediated synthesis of carbon nanotube–hydroxyapatite nanocomposite and its application for electrochemical determination of luteolin. ADV POWDER TECHNOL 2016. [DOI: 10.1016/j.apt.2016.02.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Liao Y, Wang N, Ni Y, Xu J, Shao S. Electrochemical sensor based on Nbim/CNT composite for selective determination of luteolin in the flavonoids. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.07.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Ran X, Yang L, Zhao G, Ye H, Zhang Y, Fan S, Xie X, Zhao H, Li CP. Simultaneous determination of two flavonoids based on disulfide linked β-cyclodextrin dimer and Pd cluster functionalized graphene-modified electrode. RSC Adv 2015. [DOI: 10.1039/c5ra12865j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Illustration of the SS-β-CD–Pd@RGO nanohybrids simultaneously sensing baicalin and luteolin by an electrochemical strategy.
Collapse
Affiliation(s)
- Xin Ran
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Long Yang
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Genfu Zhao
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Hanzhang Ye
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Yanqiong Zhang
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Shuangmei Fan
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Xiaoguang Xie
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Hui Zhao
- Laboratory for Conservation and Utilization of Bio-resource
- Yunnan University
- Kunming 650091
- PR China
| | - Can-Peng Li
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| |
Collapse
|