1
|
Tabrizi L, M. Jones A, Romero-Canelon I, Erxleben A. Multiaction Pt(IV) Complexes: Cytotoxicity in Ovarian Cancer Cell Lines and Mechanistic Studies. Inorg Chem 2024; 63:14958-14968. [PMID: 39083592 PMCID: PMC11323244 DOI: 10.1021/acs.inorgchem.4c01586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024]
Abstract
Ovarian cancer has the worst case-to-fatality ratio of all gynecologic malignancies. The main reasons for the high mortality rate are relapse and the development of chemoresistance. In this paper, the cytotoxic activity of two new multiaction platinum(IV) derivatives of cisplatin and oxaliplatin in a panel of ovarian cancer cells is reported. Cis,cis,trans-[Pt(NH3)2Cl2(IPA)(DCA)] (1) and trans-[Pt(DACH)(OX)(IPA)(DCA)] (2) (IPA = indole-3-propionic acid, DCA = dichloroacetate, DACH = 1R,2R-1,2-diaminocyclohexane, OX = oxalate) were synthesized and characterized by elemental analysis, ESI-MS, FT-IR, and 1H, 13C, and195Pt NMR spectroscopy. The biological activity was evaluated in A2780, PEA1, PEA2, SKOV3, SW626, and OVCAR3 cells. Both complexes are potent cytotoxins. Remarkably, complex 2 is 14 times more active in OVCAR3 cells than cisplatin and is able to overcome cisplatin resistance in PEA2 and A2780cis cells, which are models of post-treatment patient-developed and laboratory-induced resistance. This complex also shows activity in 3D cancer models of the A2780 cells. Mechanistic studies revealed that the complexes induce apoptosis via DNA damage and ROS generation.
Collapse
Affiliation(s)
- Leila Tabrizi
- School
of Biological and Chemical Sciences, University
of Galway, Galway H91 TK33, Ireland
- School
of Chemical Sciences, Dublin City University, Dublin D09W6Y4, Ireland
| | - Alan M. Jones
- School
of Pharmacy, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Isolda Romero-Canelon
- School
of Pharmacy, University of Birmingham, Birmingham B15 2TT, U.K.
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Andrea Erxleben
- School
of Biological and Chemical Sciences, University
of Galway, Galway H91 TK33, Ireland
- Synthesis
and Solid State Pharmaceutical Centre (SSPC), Limerick V94 T9PX, Ireland
| |
Collapse
|
2
|
Hrichi H, Kouki N, Tar H. Analytical methods for the quantification of cisplatin, carboplatin, and oxaliplatin in various matrices over the last two decades. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412918666210929105058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Platinum derivatives including cisplatin and its later generations carboplatin, and oxaliplatin remain the most largely used drugs in the therapy of malignant diseases. They exert notable anticancer activity towards numerous types of solid tumors such as gastric, colorectal, bladder, ovary, and several others. The chemotherapeutic activity of these compounds, however, is associated with many unwanted side effects and drug resistance problems limiting their application and effectiveness. Proper dosage is still an inherent problem, as these drugs are usually prescribed in small doses.
Objective:
Several analytical methods have been reported for the accurate quantification of cisplatin, carboplatin, and oxaliplatin and their metabolites either alone or in combination with other chemotherapeutic drugs, in different matrices such as pharmaceutical formulations, biological fluids, cancer cells, and environmental samples. The main goal of this review is to systematically study the analytical methods already used for the analysis of cisplatin, carboplatin, and oxaliplatin in various matrices during the last two decades.
Results and Conclusion:
In the literature, reviews showed that numerous analytical methods such as electroanalytical, UV-visible spectrophotometry, chromatographic, fluorescence, atomic absorption spectrophotometry, and other spectroscopic methods combined with mass spectrometry were used for the determination of these compounds in various matrices.
Collapse
Affiliation(s)
- Hajer Hrichi
- Chemistry Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Noura Kouki
- Chemistry Department, College of Science and Arts, Qassim University, Buraidah, P.O. Box: 51911, Saudi Arabia
| | - Haja Tar
- Chemistry Department, College of Science and Arts, Qassim University, Buraidah, P.O. Box: 51911, Saudi Arabia
| |
Collapse
|
3
|
Tabrizi L, Thompson K, Mnich K, Chintha C, Gorman AM, Morrison L, Luessing J, Lowndes NF, Dockery P, Samali A, Erxleben A. Novel Pt(IV) Prodrugs Displaying Antimitochondrial Effects. Mol Pharm 2020; 17:3009-3023. [PMID: 32628022 DOI: 10.1021/acs.molpharmaceut.0c00417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The design, synthesis, characterization, and biological activity of a series of platinum(IV) prodrugs containing the axial ligand 3-(4-phenylquinazoline-2-carboxamido)propanoate (L3) are reported. L3 is a derivative of the quinazolinecarboxamide class of ligands that binds to the translocator protein (TSPO) at the outer mitochondrial membrane. The cytotoxicities of cis,cis,trans-[Pt(NH3)2Cl2(L3)(OH)] (C-Pt1), cis,cis,trans-[Pt(NH3)2Cl2(L3)(BZ)] (C-Pt2), trans-[Pt(DACH)(OX)(L3)(OH)] (C-Pt3), and trans-[Pt(DACH)(OX)(L3)(BZ)] (C-Pt4) (DACH: R,R-diaminocyclohexane, BZ: benzoate, OX: oxalate) in MCF-7 breast cancer and noncancerous MCF-10A epithelial cells were assessed and compared with those of cisplatin, oxaliplatin, and the free ligand L3. Moreover, the cellular uptake, ROS generation, DNA damage, and the effect on the mitochondrial function, mitochondrial membrane potential, and morphology were investigated. Molecular interactions of L3 in the TSPO binding site were studied using molecular docking. The results showed that complex C-Pt1 is the most effective Pt(IV) complex and exerts a multimodal mechanism involving DNA damage, potent ROS production, loss of the mitochondrial membrane potential, and mitochondrial damage.
Collapse
Affiliation(s)
- Leila Tabrizi
- School of Chemistry, National University of Ireland, Galway H91 TK33, Ireland
| | - Kerry Thompson
- Anatomy, School of Medicine, National University of Ireland, Galway H91 TK33, Ireland
| | - Katarzyna Mnich
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway H91 TK33, Ireland
| | - Chetan Chintha
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway H91 TK33, Ireland
| | - Adrienne M Gorman
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway H91 TK33, Ireland
| | - Liam Morrison
- Earth and Ocean Sciences, School of Natural Sciences and Ryan Institute, National University of Ireland, Galway H91 TK33, Ireland
| | - Janna Luessing
- Genome Stability Laboratory, Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway H91 TK33, Ireland
| | - Noel F Lowndes
- Genome Stability Laboratory, Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway H91 TK33, Ireland
| | - Peter Dockery
- Anatomy, School of Medicine, National University of Ireland, Galway H91 TK33, Ireland
| | - Afshin Samali
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway H91 TK33, Ireland
| | - Andrea Erxleben
- School of Chemistry, National University of Ireland, Galway H91 TK33, Ireland
| |
Collapse
|
4
|
Almotairy ARZ, Montagner D, Morrison L, Devereux M, Howe O, Erxleben A. Pt(IV) pro-drugs with an axial HDAC inhibitor demonstrate multimodal mechanisms involving DNA damage and apoptosis independent of cisplatin resistance in A2780/A2780cis cells. J Inorg Biochem 2020; 210:111125. [PMID: 32521289 DOI: 10.1016/j.jinorgbio.2020.111125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/21/2022]
Abstract
Epigenetic agents such as histone deacetylase (HDAC) inhibitors are widely investigated for use in combined anticancer therapy and the co-administration of Pt drugs with HDAC inhibitors has shown promise for the treatment of resistant cancers. Coordination of an HDAC inhibitor to an axial position of a Pt(IV) derivative of cisplatin allows the combination of the epigenetic drug and the Pt chemotherapeutic into a single molecule. In this work we carry out mechanistic studies on the known Pt(IV) complex cis,cis,trans-[Pt(NH3)2Cl2(PBA)2] (B) with the HDAC inhibitor 4-phenylbutyrate (PBA) and its derivatives cis,cis,trans-[Pt(NH3)2Cl2(PBA)(OH)] (A), cis,cis,trans-[Pt(NH3)2Cl2(PBA)(Bz)] (C), and cis,cis,trans-[Pt(NH3)2Cl2(PBA)(Suc)] (D) (Bz = benzoate, Suc = succinate). The comparison of the cytotoxicity, effect on HDAC activity, reactive oxygen species (ROS) generation, γ-H2AX (histone 2A-family member X) foci generation and induction of apoptosis in cisplatin-sensitive and cisplatin-resistant ovarian cancer cells shows that A - C exhibit multimodal mechanisms involving DNA damage and apoptosis independent of cisplatin resistance.
Collapse
Affiliation(s)
- Awatif Rashed Z Almotairy
- School of Chemistry, National University of Ireland, Galway, Ireland; School of Biological & Health Sciences, Technological University Dublin, City Campus, Dublin, Ireland
| | - Diego Montagner
- Department of Chemistry, Maynooth University, Maynooth, Ireland
| | - Liam Morrison
- Earth and Ocean Sciences, School of Natural Sciences and Ryan Institute, National University of Ireland, Galway, Ireland
| | - Michael Devereux
- School of Biological & Health Sciences, Technological University Dublin, City Campus, Dublin, Ireland
| | - Orla Howe
- School of Biological & Health Sciences, Technological University Dublin, City Campus, Dublin, Ireland.
| | - Andrea Erxleben
- School of Chemistry, National University of Ireland, Galway, Ireland.
| |
Collapse
|
5
|
Gui J, Huang C, Yuan J, Huang Q, Long F, Ma A, Pan J. Handy cloud point extraction coupled with inductively coupled plasma mass spectrometry for analysis of trace zirconium in complex biological samples. Microchem J 2018. [DOI: 10.1016/j.microc.2018.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
Almotairy ARZ, Gandin V, Morrison L, Marzano C, Montagner D, Erxleben A. Antitumor platinum(IV) derivatives of carboplatin and the histone deacetylase inhibitor 4-phenylbutyric acid. J Inorg Biochem 2017; 177:1-7. [PMID: 28918353 DOI: 10.1016/j.jinorgbio.2017.09.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 11/16/2022]
Abstract
Five new platinum(IV) derivatives of carboplatin each incorporating the histone deacetylase inhibitor 4-phenylbutyrate in axial position were synthesized and characterized by 1H and 195Pt NMR spectroscopy, electrospray ionization mass spectrometry and elemental analysis, namely cis,trans-[Pt(CBDCA)(NH3)2(PBA)(OH)] (1), cis,trans-[Pt(CBDCA)(NH3)2(PBA)2] (2), cis,trans-[Pt(CBDCA)(NH3)2(PBA)(bz)] (3), cis,trans-[Pt(CBDCA)(NH3)2(PBA)(suc)] (4) and cis,trans-[Pt(CBDCA)(NH3)2)(PBA)(ac)] (5) (PBA=4-phenylbutyrate, CBDCA=1,1-cyclobutane dicarboxylate, bz=benzoate, suc=succinate and ac=acetate). The reduction behavior in the presence of ascorbic acid was studied by high performance liquid chromatography. The cytotoxicity against a panel of human tumor cell lines, histone deacetylase (HDAC) inhibitory activity, cellular accumulation and the ability to induce apoptosis were evaluated. The most effective complex, compound 3, was found to be up to ten times more effective than carboplatin and to decrease cellular basal HDAC activity by approximately 18% in A431 human cervical cancer cells.
Collapse
Affiliation(s)
| | - Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Liam Morrison
- Earth and Ocean Sciences, School of Natural Sciences and Ryan Institute, National University of Ireland, Galway, Ireland
| | - Cristina Marzano
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | - Andrea Erxleben
- School of Chemistry, National University of Ireland, Galway, Ireland.
| |
Collapse
|
7
|
Vitkova M, Koellensperger G, Hann S. Environmental Speciation of Platinum Emissions from Chemotherapy. Metallomics 2016. [DOI: 10.1002/9783527694907.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Marianna Vitkova
- University of Natural Resources and Life Sciences, BOKU-Vienna; Department of Chemistry, Division of Analytical Chemistry; Muthgasse 18 1190 Vienna Austria
| | - Gunda Koellensperger
- University of Vienna; Institute of Analytical Chemistry; Waehringer Strasse 38 1090 Vienna Austria
| | - Stephan Hann
- University of Natural Resources and Life Sciences, BOKU-Vienna; Department of Chemistry, Division of Analytical Chemistry; Muthgasse 18 1190 Vienna Austria
| |
Collapse
|
8
|
Tolan D, Gandin V, Morrison L, El-Nahas A, Marzano C, Montagner D, Erxleben A. Oxidative Stress Induced by Pt(IV) Pro-drugs Based on the Cisplatin Scaffold and Indole Carboxylic Acids in Axial Position. Sci Rep 2016; 6:29367. [PMID: 27404565 PMCID: PMC4941645 DOI: 10.1038/srep29367] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/07/2016] [Indexed: 12/18/2022] Open
Abstract
The use of Pt(IV) complexes as pro-drugs that are activated by intracellular reduction is a widely investigated approach to overcome the limitations of Pt(II) anticancer agents. A series of ten mono- and bis-carboxylated Pt(IV) complexes with axial indole-3-acetic acid (IAA) and indole-3-propionic acid (IPA) ligands were synthesized and characterized by elemental analysis, ESI-MS, FT-IR, (1)H and (195)Pt NMR spectroscopy. Cellular uptake, DNA platination and cytotoxicity against a panel of human tumor cell lines were evaluated. All the complexes are able to overcome cisplatin-resistance and the most potent complex, cis,cis,trans-[Pt(NH3)2Cl2(IPA)(OH)] was on average three times more active than cisplatin. Mechanistic studies revealed that the trend in cytotoxicity of the Pt(IV) complexes is primarily consistent with their ability to accumulate into cancer cells and to increase intracellular basal reactive oxygen species levels, which in turn results in the loss of mitochondrial membrane potential and apoptosis induction. The role of the indole acid ligand as a redox modulator is discussed.
Collapse
Affiliation(s)
- Dina Tolan
- School of Chemistry, National University of Ireland, Galway, Ireland.,Department of Chemistry, Faculty of Science, El-Menoufia University, Shebin El-Kom, Egypt
| | - Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| | - Liam Morrison
- Earth and Ocean Sciences, School of Natural Sciences and Ryan Institute, National University of Ireland, Galway, Ireland
| | - Ahmed El-Nahas
- Department of Chemistry, Faculty of Science, El-Menoufia University, Shebin El-Kom, Egypt
| | - Cristina Marzano
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| | - Diego Montagner
- School of Chemistry, National University of Ireland, Galway, Ireland.,Department of Chemistry, National University of Ireland, Maynooth, Ireland
| | - Andrea Erxleben
- School of Chemistry, National University of Ireland, Galway, Ireland
| |
Collapse
|
9
|
Trace metal determination as it relates to metallosis of orthopaedic implants: Evolution and current status. Clin Biochem 2016; 49:617-35. [PMID: 26794632 DOI: 10.1016/j.clinbiochem.2016.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/01/2016] [Accepted: 01/02/2016] [Indexed: 01/22/2023]
Abstract
In utilising metal surfaces that are in constant contact with each other, metal-on-metal (MoM) surgical implants present a unique challenge, in the sense that their necessity is accompanied by the potential risk of wear particle generation, metal ion release and subsequent patient toxicity. This is especially true of orthopaedic devices that are faulty and subject to failure, where the metal surfaces undergo atypical degradation and release even more unwanted byproducts, as was highlighted by the recent recall of orthopaedic surgical implants. The aim of this review is to examine the area of metallosis arising from the wear of MoM articulations in orthopaedic devices, including how the surgical procedures and detection methods have advanced to meet growing performance and analytical needs, respectively.
Collapse
|