1
|
Piryaei M, Abolghasemi MM, Nikbakhtan M. Microfluidic analytical devices based on deep eutectic solvent-hydrogel thin film electromembrane extraction of bisphenol A from thermal paper, mineral, and tap water samples, and greenness assessment by AGREEprep tools. Mikrochim Acta 2025; 192:370. [PMID: 40411651 DOI: 10.1007/s00604-025-07229-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 05/07/2025] [Indexed: 05/26/2025]
Abstract
A microfluidic analytical device based on deep eutectic solvent-hydrogel thin film electromembrane extraction was presented for the determination of bisphenol A in thermal paper, mineral, and tap water samples. The microfluidic device is constructed from two polymethyl methacrylate sections, each featuring two engraved channels. These channels serve dual purposes: one as a conduit for the sample solution and the other as a compartment for the acceptor phase. A deep eutectic ionic liquid, employed as a plasticizer, was blended into an agarose polysaccharide to create a stable, conductive, and flexible membrane. This eco-friendly membrane is positioned between the device's two sections to segregate the channels. Platinum electrodes are installed at the base of these channels and connected to a power source that facilitates the electromigration of ionized analytes across the porous agarose membrane. This new configuration enables efficient and consistent extractions using minimal sample volumes. The parameters influencing the microfluidic determination of bisphenol A were meticulously optimized. Under these conditions, the calibration curve demonstrated linearity from 0.0001 to 200 mg L-1 with a coefficient of determination (R2) exceeding 0.9974. The relative standard deviations (RSDs %) for the extraction and quantification of bisphenol A were 3.2%.
Collapse
Affiliation(s)
- Marzieh Piryaei
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran.
| | | | - Mahdiyeh Nikbakhtan
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| |
Collapse
|
2
|
Decheng S, Zhanteng S, Zhiming X, Yang L, Wuyan L, Junming W, Xia F. Trace analysis of 20 antihistamines in milk by ultrahigh performance liquid chromatography coupled with high field quadrupole orbitrap high resolution mass spectrometry followed dispersive micro solid phase extraction. J Chromatogr A 2024; 1727:464989. [PMID: 38763085 DOI: 10.1016/j.chroma.2024.464989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/14/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024]
Abstract
Ultrahigh-performance liquid chromatography coupled with high-field quadrupole Orbitrap high resolution mass spectrometry was used for the separation and determination of 20 antihistamines, and a dispersive micro solid-phase extraction procedure using high-performance absorbing material was developed as a sample preparation strategy for extracting 20 antihistamines from milk. Instrument conditions and key parameters influencing extraction efficiency were investigated to obtain an optimized method. The limit of detection for 20 antihistamines in milk using this method is 0.05 µg/L to 1.0 µg/L. Recoveries are between 80.7 % and 108.3 %, and the relative standard deviation is less than 15 %. It is suitable for confirmatory monitoring and quantitative analysis of 20 antihistamines in milk. The results show that antihistamines in milk may be noteworthy issues for human health and environmental pollution.
Collapse
Affiliation(s)
- Suo Decheng
- Institute of Quality Standards and Testing Technology for Agro-products of Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing 100081, PR China
| | - Song Zhanteng
- Institute of Quality Standard and Testing Technology for Agro-product, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, PR China
| | - Xiao Zhiming
- Institute of Quality Standards and Testing Technology for Agro-products of Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing 100081, PR China
| | - Li Yang
- Institute of Quality Standards and Testing Technology for Agro-products of Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing 100081, PR China
| | - Liu Wuyan
- Shaanxi Qinyun Agricultural Products Inspection and Testing Co., Ltd, Shaanxi, 714299, PR China
| | - Wang Junming
- Shaanxi Qinyun Agricultural Products Inspection and Testing Co., Ltd, Shaanxi, 714299, PR China
| | - Fan Xia
- Institute of Quality Standards and Testing Technology for Agro-products of Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing 100081, PR China.
| |
Collapse
|
3
|
Çiçek Özkul SL, Kaba İ, Ozdemir Olgun FA. Unravelling the potential of magnetic nanoparticles: a comprehensive review of design and applications in analytical chemistry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3620-3640. [PMID: 38814019 DOI: 10.1039/d4ay00206g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The study of nanoparticles has emerged as a prominent research field, offering a wide range of applications across various disciplines. With their unique physical and chemical properties within the size range of 1-100 nm, nanoparticles have garnered significant attention. Among them, magnetic nanoparticles (MNPs) exemplify promising super-magnetic characteristics, especially in the 10-20 nm size range, making them ideal for swift responses to applied magnetic fields. In this comprehensive review, we focus on MNPs suitable for analytical purposes. We investigate and classify them based on their analytical applications, synthesis routes, and overall utility, providing a detailed literature summary. By exploring a diverse range of MNPs, this review offers valuable insights into their potential application in various analytical scenarios.
Collapse
Affiliation(s)
- Serra Lale Çiçek Özkul
- Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, Maslak Campus, Sariyer, Istanbul, Turkey
| | - İbrahim Kaba
- Marmara University, Faculty of Engineering, Department of Chemical Engineering, Maltepe, Istanbul, Turkey
| | - Fatos Ayca Ozdemir Olgun
- Istanbul Health and Technology University, Faculty of Engineering and Natural Sciences, Department of Chemical Engineering, Sutluce, Beyoglu, Istanbul, Turkey.
| |
Collapse
|
4
|
Yang P, Zhu X, Lan H, Wu Y, Pan D. Electrospun of functionalized mesoporous UiO-66 as the selective coating of solid phase microextraction Arrow for the determination of nine alkylphenols. Mikrochim Acta 2024; 191:188. [PMID: 38457047 DOI: 10.1007/s00604-024-06248-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/04/2024] [Indexed: 03/09/2024]
Abstract
A solid-phase microextraction (SPME) Arrow and high-performance liquid chromatography-UV detector (HPLC-UV, detection at 225 nm) based method was developed for the selective determination of nine alkylphenols (APs) in milk. The functionalized mesoporous UiO-66 (4-meso-UiO-66) was utilized as the new coating material, which was synthesized by post-modification of pore-expanded UiO-66-NH2 by an esterification reaction with 4-pentylbenzoic acid. It was fully characterized by X-ray photoelectron spectroscopy (XPS), fourier transformation infrared spectrometry, nitrogen sorption-desorption test, scanning electron microscopy, transmission electron microscopy, and X-ray diffractometer. The characterization results showed the ester groups and benzene rings were introduced into the 4-meso-UiO-66, and the mesoporous structure was predominant in the 4-meso-UiO-66. The extraction mechanism of 4-meso-UiO-66 to APs is the synergistic effect of Zr-O electrostatic interaction and the size exclusion effect resulting from XPS, selectivity test, and nitrogen sorption-desorption test. The electrospinning technique was utilized to fabricate the 4-meso-UiO-66 coated SPME Arrow and polyacrylonitrile (PAN) was used as the adhesive. The mass rate of 4-meso-UiO-66 to PAN and the electrospinning time were evaluated. The extraction and desorption parameters were also studied. The linear range of this method was 0.2-1000 μg L-1 with a coefficient of determination greater than 0.9989 under the optimal conditions. The detection limits were 0.05-1 μg L-1, the inter-day and intra-day precision (RSD) were 2.8-11.5%, and the recovery was 83.6%-112%. The reusability study showed that the extraction performance of this new SPME Arrow could be maintained after 80 adsorption-desorption cycles. This method showed excellent applicability for the selective determination of APs in milk.
Collapse
Affiliation(s)
- Peixun Yang
- State Key Laboratory for Quality and Safety of Agro-Products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition and College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China
| | - Xiaoyan Zhu
- State Key Laboratory for Quality and Safety of Agro-Products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition and College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China
- Ningbo Customs Technology Center, Ningbo, 315048, China
| | - Hangzhen Lan
- State Key Laboratory for Quality and Safety of Agro-Products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition and College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China.
| | - Yichun Wu
- Zhoushan Institute for Food and Drug Control, Zhoushan, 316012, China
| | - Daodong Pan
- State Key Laboratory for Quality and Safety of Agro-Products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition and College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China
| |
Collapse
|
5
|
Mehrabi F, Ghaedi M, Alipanahpour Dil E. dl-carnitine-based green hydrophobic deep eutectic solvent for the enrichment of bisphenol A in mineral water based on ultrasound-assisted liquid-phase microextraction. Talanta 2024; 266:125045. [PMID: 37598441 DOI: 10.1016/j.talanta.2023.125045] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/22/2023]
Abstract
A powerful pretreatment technique, ultrasound-assisted dispersive liquid-phase microextraction (USA-DLPME) based on dl-Carnitine-based deep eutectic solvent (DES), has been developed to efficiently enrichment of bisphenol A from mineral water samples. The DES-based USA-DLPME technique demonstrated superior extraction efficiency for bisphenol A compared to established organic solvent-based liquid-liquid extraction techniques. The conditions for the extraction of bisphenol A were predicted using the response surface methodology. The effects of pH (A: 2-10), NaCl concentration (B: 0.2-1.0%w/v), DES volume (C: 30-150 μL), and sonication time (D: 1-5 min) were examined using an experimental design. The extraction recovery of Bisphenol A under optimum conditions was achieved at 99.897% (A = 8, B = 0.4%w/v, C = 120 μL, and D = 5 min). Under these conditions, a wide linear range of 1-600 ng mL-1, an enrichment factor of 81.52, a low detection limit of 0.26 ng mL-1 and a limit of quantification of 0.87 ng mL-1 were obtained. Lastly, the proposed technique was used to accurately and reliably identify bisphenol A in various mineral water samples, yielding relative recoveries in the 92-96% range with RSD≤3%. These findings imply that DESs can be widely and successfully used to extract chemicals from actual materials. DESs are a class of innovative green solvents with the potential to replace organic solvents.
Collapse
Affiliation(s)
- Fatemeh Mehrabi
- Department of Chemistry, Yasouj University, Yasouj, 75918-74831, Iran
| | - Mehrorang Ghaedi
- Department of Chemistry, Yasouj University, Yasouj, 75918-74831, Iran.
| | | |
Collapse
|
6
|
Palacios Colón L, Rascón AJ, Ballesteros E. Determination of Parabens and Phenolic Compounds in Dairy Products through the Use of a Two-Step Continuous SPE System Including an Enhanced Matrix Removal Sorbent in Combination with UHPLC-MS/MS. Foods 2023; 12:2909. [PMID: 37569177 PMCID: PMC10418826 DOI: 10.3390/foods12152909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/19/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Dairy products can be contaminated by parabens and phenolic compounds from a vast variety of sources, such as packaging and manufacturing processes, or livestock through feed and environmental water. A two-step continuous solid-phase extraction (SPE) and purification methodology was developed here for the determination of both types of compounds. In the first step, a sample extract is passed in sequence through an EMR-lipid sorbent and an Oasis PRiME HBL sorbent to remove fat and preconcentrate the analytes for subsequent detection and quantification by UHPLC-MS/MS. This method enabled the determination of 28 parabens and phenolic contaminant with excellent recovery (91-105%) thanks to the SPE sorbent combination used. The proposed method was validated through the determination of the target compounds, and was found to provide low detection limits (1-20 ng/kg) with only slight matrix effects (0-10%). It was used to analyse 32 different samples of dairy products with different packaging materials. Bisphenol A and bisphenol Z were the two phenolic compounds quantified in the largest number of samples, at concentrations over the range of 24-580 ng/kg, which did not exceed the limit set by European regulations. On the other hand, ethylparaben was the paraben found at the highest levels (33-470 ng/kg).
Collapse
Affiliation(s)
| | | | - Evaristo Ballesteros
- Department of Physical and Analytical Chemistry, E.P.S of Linares, University of Jaén, 23700 Linares, Jaén, Spain; (L.P.C.); (A.J.R.)
| |
Collapse
|
7
|
Simultaneous determination of phenolic pollutants in dairy products held in various types of packaging by gas chromatography−mass spectrometry. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Saini SS, Copello GJ, Martini MF. Solid phase extraction with rotating cigarette filter for determination of bisphenol A in source and drinking water: computational and analytical studies. ANAL SCI 2023; 39:607-617. [PMID: 36807887 DOI: 10.1007/s44211-023-00276-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/14/2023] [Indexed: 02/23/2023]
Abstract
An ultrasound assisted solid phase extraction method using rotating cigarette filter is developed herein to preconcentrate and determine trace amount of bisphenol in source and drinking water. Qualitative and quantitative measurements were performed using high-performance liquid chromatography coupled with ultra violet detector. Sorbent-analyte interactions were thoroughly investigated computationally and experimentally using molecular dynamics simulations; and attenuated total reflectance Fourier transform infrared spectroscopy, and Raman spectroscopy, respectively. Various extraction parameters were investigated and optimized. Under the optimal conditions, the results were linear in a low scale range of 0.01-55 ng/mL with correlation coefficient of 0.9941 and a low limit of detection (0.04 ng/mL, signal/noise = 3:1). A good precision (intra-day relative standard deviation ≤ 6.05%, inter-day relative standard deviation ≤ 7.12%) and recovery (intra-day ≥ 98.41%, inter-day ≥ 98.04%)) are obtained. Finally, the proposed solid phase extraction method offered a low cost, simple, fast, and sensitive analytical method to determine trace amount of bisphenol A in source and drinking water samples with chromatographic detection.
Collapse
Affiliation(s)
- Shivender Singh Saini
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Samba, Jammu and Kashmir, 181143, India.
| | - Guillermo J Copello
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M Florencia Martini
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Farmacología, UBA, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Junín 956, C1113AAD, Buenos Aires, Argentina
| |
Collapse
|
9
|
Bayatloo MR, Nojavan S. Rapid and simple magnetic solid-phase extraction of bisphenol A from bottled water, baby bottle, and urine samples using green magnetic hydroxyapatite/β-cyclodextrin polymer nanocomposite. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Floare-Avram CV, Marincas O, Feher I, Covaciu FD, Floare CG, Lazar MD, Magdas DA. Characterization of the Adsorption of Bisphenol A and Carbamazepine from Aqueous Solution on Graphene Oxide and Partially Reduced Graphene Oxide by High-Performance Liquid Chromatography (HPLC). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2055562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
| | - Olivian Marincas
- National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Ioana Feher
- National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Florina-Dorina Covaciu
- National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Calin Gabriel Floare
- National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Mihaela Diana Lazar
- National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Dana Alina Magdas
- National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| |
Collapse
|
11
|
Gao M, Wang H, Wang J, Wang X, Wang H. Effervescence-Enhanced Microextraction Based on Acidic Ionic Liquids and In Situ Metathesis Reaction for Bisphenol Detection in Milk Samples. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02263-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
12
|
Abolghasemi MM, Mahmoodzade Laki R, Piryaei M. Molecularly Imprinted Polymer-Coated Vial Solid-Phase Microextraction as a Selective and Manual Method for Determination of Bisphenol a in Mineral and River Water Samples. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.2002373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | - Marzieh Piryaei
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| |
Collapse
|
13
|
Barzegar F, Kamankesh M, Mohammadi A. Recent Development in Formation, Toxic Effects, Human Health and Analytical Techniques of Food Contaminants. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1929303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Fatemeh Barzegar
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Kamankesh
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abdorreza Mohammadi
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Magnetic paper-based sorptive phase for enhanced mass transference in stir membrane environmental samplers. Talanta 2021; 228:122217. [DOI: 10.1016/j.talanta.2021.122217] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/27/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
|
15
|
Validation and Use of an Accurate, Sensitive Method for Sample Preparation and Gas Chromatography-Mass Spectrometry Determination of Different Endocrine-Disrupting Chemicals in Dairy Products. Foods 2021; 10:foods10051040. [PMID: 34068704 PMCID: PMC8151977 DOI: 10.3390/foods10051040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/28/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
Endocrine disrupting chemicals (EDCs) are exogenous substances capable of altering the human hormone system and causing various diseases such as infertility and cancer as a result. In this work, a method for determining twenty-three different EDCs including parabens, alkylphenols, phenylphenols, organophosphorus pesticides, bisphenol A and triclosan in dairy products was developed. Samples are conditioned by addition of acetonitrile containing 1% formic acid, centrifugation and clean-up of the extract by continuous solid-phase extraction. EDCs in the extract are derivatised by heating in a microwave oven and quantified by gas chromatography-mass spectrometry. The proposed method features good limits of detection (6-40 ng/kg) and precision (relative standard deviation < 7.6%); also, it is scarcely subject to matrix effects (1-20%). EDC recoveries from spiked samples ranged from 80 to 108%. The method was used to analyse a total of 33 samples of dairy products including cow, sheep and goat milk, yoghourt, milkshakes, cheese, cream, butter and custard. Bisphenol A was the individual contaminant detected in the greatest number of samples, at concentrations from 180 to 4800 ng/kg. 2-Phenylphenol and ethylparaben were found in more than one-half, at concentrations over the range 130-3500 and 89-4300 ng/kg, respectively. In contrast, alkylphenols, organophosphorus pesticides and triclosan were detected in none.
Collapse
|
16
|
Gamonchuang J, Burakham R. Surfactant-coupled titanium dioxide coated iron-aluminium mixed metal hydroxide for magnetic solid phase extraction of bisphenols in carbonated beverages. Heliyon 2021; 7:e06964. [PMID: 34007936 PMCID: PMC8111676 DOI: 10.1016/j.heliyon.2021.e06964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/02/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
In this work, the magnetic sorbents based on different surfactant-coupled titanium dioxide coated iron-aluminium mixed metal hydroxide were investigated as sorbent for extraction of bisphenol compounds. The structure, morphology, and magnetic property of the synthesized sorbents were investigated. The cetyltrimethylammonium bromide-titanium dioxide coated iron-aluminium mixed metal hydroxide (Fe-Al MMH@TiO2-CTAB) exhibited excellent extraction performance toward bisphenols and was selected as the sorbent for development of magnetic solid phase extraction (MSPE) method. The entire MSPE process was optimized, and the extract was analyzed by high performance liquid chromatography with photodiode array detector. The method provided wide linear calibration ranges for bisphenols between 0.3-6000 μg L-1 with maximum enrichment factors of 280. The limits of detection and limits of quantification were in the ranges of 0.08-0.3 and 0.3-1.0 μg L-1, respectively. The proposed MSPE method was tested for determination of bisphenols in carbonated beverages. The studied carbonated beverages were mostly free of bisphenol contamination; however, BPS, BPA and BPB were detected in samples taken from defective cans. The relative recoveries ranging of 80.2-118.9% were obtained. The as-prepared Fe-Al MMH@TiO2-CTAB sorbent provided high sorption capacities in the range of 2215-2451 mg kg-1 and could be a promising material for bisphenols in beverage samples.
Collapse
Affiliation(s)
- Jirasak Gamonchuang
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Rodjana Burakham
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
17
|
Jing W, Wang J, Kuipers B, Bi W, Chen DDY. Recent applications of graphene and graphene-based materials as sorbents in trace analysis. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116212] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Yu L, Cheng J, Yang H, Lv J, Wang P, Li JR, Su X. Simultaneous adsorption and determination of bisphenol compounds in water medium with a Zr(IV)-based metal-organic framework. Mikrochim Acta 2021; 188:83. [PMID: 33585953 DOI: 10.1007/s00604-021-04742-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/30/2021] [Indexed: 12/21/2022]
Abstract
A chemically stable Zr(IV)-based metal-organic framework (BUT-17) has been explored for simultaneous adsorption and determination of bisphenol compounds (BPs) in aqueous medium. The prepared BUT-17 possesses a large surface area (2936 m2 g-1) and excellent fluorescent performance. An adsorption capacity of 111 mg g-1 for bisphenol A (BPA) with a rapid adsorption rate (1.76 g mg-1 min-1) is achieved by BUT-17. The excellent adsorption performance could be attributed to the hydrogen bond interaction between BPs and BUT-17. Furthermore, the fluorescent intensity of BUT-17 was quenched up to 92% due to the formation of complexes between BPs and BUT-17. Thus, a BUT-17-based fluorescent sensing method for the rapid determination of BPs has been established with the limit of detection of 10.0 ng mL-1 for BPA and a linear range from 2.0 to 23.0 μg mL-1. These results indicate that as an outstanding multifunctional platform, BUT-17 is promising for the simultaneous removal and determination of BPs in water medium. Simultaneous removal and detection of BPs with BUT-17.
Collapse
Affiliation(s)
- Liming Yu
- Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Jie Cheng
- Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Haosen Yang
- Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Jie Lv
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing, 100124, People's Republic of China
| | - Peilong Wang
- Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing, 100124, People's Republic of China
| | - Xiaoou Su
- Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| |
Collapse
|
19
|
Jagirani MS, Soylak M. Review: Microextraction Technique Based New Trends in Food Analysis. Crit Rev Anal Chem 2020; 52:968-999. [PMID: 33253048 DOI: 10.1080/10408347.2020.1846491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Food chemistry is the study and classification of the quality and origin of foods. The identification of definite biomarkers and the determination of residue contaminants such as toxins, pesticides, metals, human and veterinary drugs, which are a very common source of food-borne diseases. The food analysis is continuously demanding the improvement of more robust, sensitive, highly efficient, and economically beneficial analytical approaches to promise the traceability, safety, and quality of foods in the acquiescence with the consumers and legislation demands. The traditional methods have been used at the starting of the 20th century based on wet chemical methods. Now it existing the powerful analytical techniques used in food analysis and safety. This development has led to substantial enhancements in the analytical accuracy, precision, sensitivity, selectivity, thereby mounting the applied range of food applications. In the present decade, microextraction (micro-scale extraction) pays more attention due to its futures such as low consumption of solvent and sample, throughput analysis easy to operate, greener, robotics, and miniaturization, different adsorbents have been used in the microextraction process with unique nature recognized with wide range applications.
Collapse
Affiliation(s)
- Muhammed Saqaf Jagirani
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,National Center of Excellence in Analytical Chemistry, University of Sindh, Sindh, Pakistan
| | - Mustafa Soylak
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey
| |
Collapse
|
20
|
Ghorbani M, Aghamohammadhassan M, Ghorbani H, Zabihi A. Trends in sorbent development for dispersive micro-solid phase extraction. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105250] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Huelsmann RD, Will C, Carasek E. Determination of bisphenol A: Old problem, recent creative solutions based on novel materials. J Sep Sci 2020; 44:1148-1173. [PMID: 33006433 DOI: 10.1002/jssc.202000923] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 01/03/2023]
Abstract
Bisphenol A is a synthetic compound widely used in industry, in the production of polycarbonate, epoxy resins, and thermal paper, among others. Its annual production is estimated at millions of tons per year, demonstrating its importance. Despite its wide application in various everyday products, once in the environment (due to its disposal or leaching), it has high toxicity to humans and animal life, and this problem has been well known for years. Given this problem, many researchers seek alternatives for its monitoring in matrices such as natural water, waste, food, and biological matrices. For this, new advanced materials have been developed, characterized, and applied in creative ways for the preparation of samples for the determination of bisphenol A. This article aims to present some of these important and recent applications, describing the use of molecularly imprinted polymers, metal and covalent organic frameworks, ionic liquids and magnetic ionic liquids, and deep eutectic solvents as creative solutions in sample preparation for the long-standing problem of bisphenol A determination.
Collapse
Affiliation(s)
| | - Camila Will
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Eduardo Carasek
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
22
|
Díaz-Liñán MC, García-Valverde MT, Lucena R, Cárdenas S, López-Lorente AI. Paper-based sorptive phases for microextraction and sensing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3074-3091. [PMID: 32930167 DOI: 10.1039/d0ay00702a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The simplification of the analytical procedures, including cost-effective materials and detectors, is a current research trend. In this context, paper has been identified as a useful material thanks to its low price and high availability in different compositions (office, filter, chromatographic). Its porosity, flexibility, and planar geometry permit the design of flow-through devices compatible with most instrumental techniques. This article provides a general overview of the potential of paper, as substrate, on the simplification of analytical chemistry methodologies. The design of paper-based sorptive phases is considered in-depth, and the different functionalization strategies are described. Considering our experience in sample preparation, special attention has been paid to the use of these phases under the classical microextraction-analysis workflow, which usually includes a chromatographic separation of the analytes before their determination. However, the interest of these materials extends beyond this field as they can be easily implemented into spectroscopic and electrochemical sensors. Finally, the direct analysis of paper substrates in mass spectrometry, in the so-called paper-spray technique is also discussed. This review is more focused on presenting ideas rather than the description of specific applications to draw a general picture of the potential of these materials.
Collapse
Affiliation(s)
- M C Díaz-Liñán
- Departamento de Química Analítica, Instituto, Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain.
| | - M T García-Valverde
- Departamento de Química Analítica, Instituto, Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain.
| | - R Lucena
- Departamento de Química Analítica, Instituto, Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain.
| | - S Cárdenas
- Departamento de Química Analítica, Instituto, Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain.
| | - A I López-Lorente
- Departamento de Química Analítica, Instituto, Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain.
| |
Collapse
|
23
|
Mohammadi SZ, Safari Z, Madady N. Synthesis of Co3O4@SiO2 Core/Shell–Nylon 6 Magnetic Nanocomposite as an Adsorbent for Removal of Congo Red from Wastewater. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01485-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Lai EP, Kersten H, Benter T. Ion-Trap Mass Spectrometric Analysis of Bisphenol A Interactions With Titanium Dioxide Nanoparticles and Milk Proteins. Molecules 2020; 25:E708. [PMID: 32041367 PMCID: PMC7037553 DOI: 10.3390/molecules25030708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 01/27/2020] [Accepted: 02/05/2020] [Indexed: 11/21/2022] Open
Abstract
Quantitative analysis of endocrine-disrupting molecules such as bisphenol A (BPA) in freshwater to determine their widespread occurrence in environmental resources has been challenged by various adsorption and desorption processes. In this work, ion trap mass spectrometry (ITMS) analysis of BPA was aimed at studying its molecular interactions with titanium dioxide (TiO2) nanoparticles and milk whey proteins. Addition of sodium formate prevented TiO2 nanoparticles from sedimentation while enhancing the electrospray ionization (ESI) efficiency to produce an abundance of [BPA + Na]+ ions at m/z 251.0. More importantly, the ESI-ITMS instrument could operate properly during a direct infusion of nanoparticles up to 500 μg/mL without clogging the intake capillary. Milk protein adsorption of BPA could decrease the [BPA + Na]+ peak intensity significantly unless the proteins were partially removed by curdling to produce whey, which allowed BPA desorption during ESI for quantitative analysis by ITMS.
Collapse
Affiliation(s)
- Edward P.C. Lai
- Ottawa-Carleton Chemistry Institute, Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Hendrik Kersten
- Institute for Pure and Applied Mass Spectrometry, Physical and Theoretical Chemistry, Bergische Universität Wuppertal, Gaussstr. 20, 42119 Wuppertal, Germany; (H.K.); (T.B.)
| | - Thorsten Benter
- Institute for Pure and Applied Mass Spectrometry, Physical and Theoretical Chemistry, Bergische Universität Wuppertal, Gaussstr. 20, 42119 Wuppertal, Germany; (H.K.); (T.B.)
| |
Collapse
|
25
|
Magnetic Graphene Oxide Composite for the Microextraction and Determination of Benzophenones in Water Samples. NANOMATERIALS 2020; 10:nano10010168. [PMID: 31963652 PMCID: PMC7022302 DOI: 10.3390/nano10010168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/11/2020] [Accepted: 01/16/2020] [Indexed: 11/16/2022]
Abstract
Magnetite nanoparticles (Fe3O4) functionalized with graphene oxide (GO) have been synthesized through a silanization process of the magnetic nanoparticles with tetraethyl orthosilicate and (3-aminopropyl)triethoxysilane and further coupling of GO. The synthesized nanomaterials have been characterized by several techniques, such as transmission electron microscopy (TEM), and infrared and Raman spectroscopy, which enabled the evaluation of the different steps of the functionalization process. The hybrid nanomaterial has been employed for the extraction of five benzophenones (benzophenone-1, benzophenone-3, 4-hydroxybenzophenone, benzophenone-6 and benzophenone-8) in aqueous samples by dispersive micro-solid phase extraction, combining the magnetic properties of magnetite nanoparticles with the excellent sorption capacity of graphene oxide via hydrophobic interactions with the analytes. The subsequent separation and quantification of the analytes was performed by liquid chromatography with tandem mass spectrometric detection, achieving limits of detection (LODs) in the range 2.5 to 8.2 μg·L-1, with relative standard deviations ranging from 1.3-9.8% and relative recovering in the range 86 to 105%. Positive swimming pool water samples analysed following the developed method revealed the presence of benzophenones in from 14.3 to 39 μg·L-1.
Collapse
|
26
|
Kates PA, Tomashek JJ, Miles DA, Lee LA. Parallel sample processing using dispersive INtip micro-purification on programmable multichannel pipettes. Biotechniques 2020; 68:148-154. [PMID: 31939309 DOI: 10.2144/btn-2019-0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Automation gives researchers the ability to process and screen orders of magnitude higher numbers of samples than manual experimentation. Current biomacromolecule separation methodologies suffer from necessary manual intervention, making their translation to high-throughput automation difficult. Herein, we present the first characterization of biomacromolecule affinity purification via dispersive solid-phase extraction in a pipette tip (INtip). We use commercially available resin and compare efficiency with batch and spin column methodologies. Moreover, we measure the kinetics of binding and evaluate resin binding capacities. INtip technology is effective on, and scalable for, an automated platform (INTEGRA ASSIST). The results suggest that high-throughput biomolecular workflows will benefit from the integration of INtip separations.
Collapse
Affiliation(s)
- Patrick A Kates
- Integrated Micro-Chromatography Systems, Inc., Irmo, SC, USA
| | - John J Tomashek
- Integrated Micro-Chromatography Systems, Inc., Irmo, SC, USA
| | - David A Miles
- Integrated Micro-Chromatography Systems, Inc., Irmo, SC, USA
| | - L Andrew Lee
- Integrated Micro-Chromatography Systems, Inc., Irmo, SC, USA
| |
Collapse
|
27
|
Yang D, Wang Y, Li H, Yang Y. Acid-base-governed deep eutectic solvent-based microextraction combined with magnetic solid-phase extraction for determination of phenolic compounds. Mikrochim Acta 2020; 187:124. [DOI: 10.1007/s00604-020-4109-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 01/01/2020] [Indexed: 01/29/2023]
|
28
|
Guo X, Li Y, Zhang B, Yang L, Di X, Di X. Development of dispersive solid phase extraction based on dissolvable Fe3O4-layered double hydroxide for high-performance liquid chromatographic determination of phenoxy acid herbicides in water samples. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104443] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Deng ZH, Li N, Jiang HL, Lin JM, Zhao RS. Pretreatment techniques and analytical methods for phenolic endocrine disrupting chemicals in food and environmental samples. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Lian L, Jiang X, Lv J, Bai F, Zhu B, Lou D. Fabrication of glucose-derived carbon-decorated magnetic microspheres for extraction of bisphenols from water and tea drinks. J Sep Sci 2019; 42:3451-3458. [PMID: 31512367 DOI: 10.1002/jssc.201900611] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/19/2019] [Accepted: 09/07/2019] [Indexed: 11/10/2022]
Abstract
Glucose-derived carbon-decorated magnetic microspheres were synthesized by an easy hydrothermal carbonization method and used as a high-efficiency adsorbent to extract bisphenols in water and tea drinks. The as-prepared carbon-decorated magnetic microspheres had a well-defined core-shell structure with a shell thickness of about 5 nm. The microspheres possessed high saturation magnetization at 60.8 emu/g and excellent chemical stability in aqueous solution. The experimental parameters affecting the extraction efficiency, including extraction time, pH, adsorbent dosage, desorption solvents, desorption time, and solution volume were evaluated. Electrostatic and π-π interactions were the major driving forces during extraction. Overall, a new magnetic solid-phase extraction method of determining bisphenols was developed on the basis of as-prepared magnetic microspheres. The method had a wide linear range, low limits of detection (0.03-0.10 µg/L), and high recoveries (85.4-104.6%).
Collapse
Affiliation(s)
- Lili Lian
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, Jilin, P. R. China
| | - Xinhao Jiang
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, Jilin, P. R. China
| | - Jinyi Lv
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, Jilin, P. R. China
| | - Fengkun Bai
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, Jilin, P. R. China
| | - Bo Zhu
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, Jilin, P. R. China
| | - Dawei Lou
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, Jilin, P. R. China
| |
Collapse
|
31
|
A nanoporous carbon derived from bimetallic organic-framework for magnetic solid-phase extraction of bisphenol analogs. Talanta 2019; 202:479-485. [DOI: 10.1016/j.talanta.2019.04.079] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/12/2019] [Accepted: 04/28/2019] [Indexed: 12/28/2022]
|
32
|
|
33
|
Vilarinho F, Sendón R, van der Kellen A, Vaz M, Silva AS. Bisphenol A in food as a result of its migration from food packaging. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.06.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
34
|
Kubiak A, Biesaga M. Application of Molecularly Imprinted Polymers for Bisphenols Extraction from Food Samples – A Review. Crit Rev Anal Chem 2019; 50:311-321. [DOI: 10.1080/10408347.2019.1626698] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Anna Kubiak
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
35
|
Efficiency comparison of nylon-6-based solid-phase and stir bar sorptive extractors for carbamazepine extraction. Bioanalysis 2019; 11:899-911. [DOI: 10.4155/bio-2018-0321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aim: Two approaches based on molecularly imprinted polymers-stir bar sorptive extraction (MIP-SBSE) and -magnetic solid-phase extraction (MIP-MSPE) have been used for extraction of carbamazepine (CBZ) from serum samples. Methodology: In MSPE and SBSE, development was achieved by employing a polycaprolactam coating. The Cecil® chromatographic system equipped with a UV-Vis detector was used for analytical determination of CBZ. Results: The linearity of calibration curves was in the concentration ranges of 0.2–12 and 0.05–12 μg ml-1 for MIP-SBSE and MIP-MSPE, respectively. Conclusion: MIP-MSPE was selected in preference to MIP-SBSE since lower limits of detection were achievable using MIP-MSPE method. The CBZ-MIP-MSPE-HPLC-UV method was successfully applied to CBZ determination in real serum samples of patients receiving CBZ.
Collapse
|
36
|
Magnetic Polyamide Nanocomposites for the Microextraction of Benzophenones from Water Samples. MOLECULES (BASEL, SWITZERLAND) 2019; 24:molecules24050953. [PMID: 30857139 PMCID: PMC6429122 DOI: 10.3390/molecules24050953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/18/2019] [Accepted: 03/01/2019] [Indexed: 11/30/2022]
Abstract
In this article, the influence of the monomers on the extraction efficiency and the effect of the addition of surfactants during the synthesis have also been considered. The sorption capacity of the resulting nanocomposites has been evaluated, in the dispersive micro-solid phase extraction format, by determining that of six benzophenones in water using ultra performance liquid chromatography (UPLC) combined with photodiode array detection. Under the optimum conditions, the limits of detection were in the range of 0.5–4.3 ng/mL and the repeatability, expressed as the relative standard deviation (RSD), varied between 1.5% and 5.6%. The proposed method has been applied for the analysis of real water samples, providing relative recoveries in the interval of 84–105%
Collapse
|
37
|
Liu J, Ma X, Zhang S, Wu T, Liu H, Xia M, You J. Cationic gemini surfactant templated magnetic cubic mesoporous silica and its application in the magnetic dispersive solid phase extraction of endocrine-disrupting compounds from the migrants of food contact materials. Microchem J 2019. [DOI: 10.1016/j.microc.2018.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Butmee P, Tumcharern G, Saejueng P, Stankovic D, Ortner A, Jitcharoen J, Kalcher K, Samphao A. A direct and sensitive electrochemical sensing platform based on ionic liquid functionalized graphene nanoplatelets for the detection of bisphenol A. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.12.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
39
|
Fresco-Cala B, Cárdenas S. Potential of nanoparticle-based hybrid monoliths as sorbents in microextraction techniques. Anal Chim Acta 2018; 1031:15-27. [DOI: 10.1016/j.aca.2018.05.069] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/25/2018] [Accepted: 05/27/2018] [Indexed: 12/29/2022]
|
40
|
A novel air-assisted liquid-liquid microextraction based on in-situ phase separation for the HPLC determination of bisphenols migration from disposable lunch boxes to contacting water. Talanta 2018; 189:116-121. [DOI: 10.1016/j.talanta.2018.06.072] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/31/2018] [Accepted: 06/24/2018] [Indexed: 11/18/2022]
|
41
|
Yang J, Li Y, Huang C, Jiao Y, Chen J. A Phenolphthalein-Dummy Template Molecularly Imprinted Polymer for Highly Selective Extraction and Clean-Up of Bisphenol A in Complex Biological, Environmental and Food Samples. Polymers (Basel) 2018; 10:E1150. [PMID: 30961075 PMCID: PMC6403629 DOI: 10.3390/polym10101150] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/05/2018] [Accepted: 10/12/2018] [Indexed: 11/16/2022] Open
Abstract
A molecularly imprinted polymer (MIP) for highly selective solid-phase extraction (SPE) of bisphenol A (BPA) was prepared using phenolphthalein (PP) as the novel dummy template by bulk polymerization. A particle diameter distribution of 40⁻60 μm, a specific surface area of 359.8 m²·g-1, and a total pore volume of 0.730 cm³·g-1 for the prepared PP-imprinted polymer (PPMIP) were obtained. Good selectivity and specific adsorption capacity for BPA of the prepared PPMIP were also demonstrated by the chromatographic evaluation and sorption experiments. The PPMIP as a SPE sorbent was evaluated for the selective extraction and clean-up of BPA from complex biological, environmental, and food samples. Meanwhile, an accurate and sensitive analytical method based on the PPMIP-SPE purification procedure coupled with high performance liquid chromatography-diode array detector (HPLC-DAD) detection has been successfully developed for the rapid determination of BPA from these samples, with detection limits of 1.3 ng·mL-1 for bovine serum and milk, 2.6 ng·mL-1 for human urine and edible oil, 5.2 ng·mL-1 for soybean sauce, and 1.3 ng·g-1 for sediment. The BPA recoveries at two different spiking levels were in the range of 82.1⁻106.9%, with relative standard deviation (RSD) values below 7.7%.
Collapse
Affiliation(s)
- Jiajia Yang
- College of Materials Science and Engineering, Hebei University of Engineering, 199 South Guangming Street, Handan 056038, China.
| | - Yun Li
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Chaonan Huang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yanna Jiao
- Inspection and Quarantine Technology Centre, Hunan Entry-Exit Inspection and Quarantine Bureau, Changsha 410004, China.
| | - Jiping Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| |
Collapse
|
42
|
Yang D, Li G, Wu L, Yang Y. Ferrofluid-based liquid-phase microextraction: Analysis of four phenolic compounds in milks and fruit juices. Food Chem 2018; 261:96-102. [DOI: 10.1016/j.foodchem.2018.04.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 03/21/2018] [Accepted: 04/12/2018] [Indexed: 10/17/2022]
|
43
|
Novel microporous β-cyclodextrin polymer as sorbent for solid-phase extraction of bisphenols in water samples and orange juice. Talanta 2018; 187:207-215. [DOI: 10.1016/j.talanta.2018.05.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 04/27/2018] [Accepted: 05/08/2018] [Indexed: 11/17/2022]
|
44
|
Yang D, Li X, Meng D, Yang Y. Carbon quantum dots-modified ferrofluid for dispersive solid-phase extraction of phenolic compounds in water and milk samples. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.04.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
45
|
Yang L, Chen Y, Shen Y, Yang M, Li X, Han X, Jiang X, Zhao B. SERS strategy based on the modified Au nanoparticles for highly sensitive detection of bisphenol A residues in milk. Talanta 2018; 179:37-42. [DOI: 10.1016/j.talanta.2017.10.055] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/16/2017] [Accepted: 10/25/2017] [Indexed: 12/21/2022]
|
46
|
Li Y, Lu P, Cheng J, Wang Q, He C. Simultaneous Solid-Phase Extraction and Determination of Three Bisphenols in Water Samples and Orange Juice by a Porous β-Cyclodextrin Polymer. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-1131-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Vinković K, Rožić M, Galić N. Development and validation of an HPLC method for the determination of endocrine disruptors bisphenol A and benzophenone in thermochromic printing inks. J LIQ CHROMATOGR R T 2017. [DOI: 10.1080/10826076.2017.1391102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Kristinka Vinković
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Mirela Rožić
- Faculty of Graphic Arts, University of Zagreb, Zagreb, Croatia
| | - Nives Galić
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
48
|
Dispersive Solid Phase Extraction for the Analysis of Veterinary Drugs Applied to Food Samples: A Review. Int J Anal Chem 2017; 2017:8215271. [PMID: 29181027 PMCID: PMC5664330 DOI: 10.1155/2017/8215271] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/16/2017] [Accepted: 08/29/2017] [Indexed: 12/01/2022] Open
Abstract
To achieve analytical success, it is necessary to develop thorough clean-up procedures to extract analytes from the matrix. Dispersive solid phase extraction (DSPE) has been used as a pretreatment technique for the analysis of several compounds. This technique is based on the dispersion of a solid sorbent in liquid samples in the extraction isolation and clean-up of different analytes from complex matrices. DSPE has found a wide range of applications in several fields, and it is considered to be a selective, robust, and versatile technique. The applications of dispersive techniques in the analysis of veterinary drugs in different matrices involve magnetic sorbents, molecularly imprinted polymers, carbon-based nanomaterials, and the Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) method. Techniques based on DSPE permit minimization of additional steps such as precipitation, centrifugation, and filtration, which decreases the manipulation of the sample. In this review, we describe the main procedures used for synthesis, characterization, and application of this pretreatment technique and how it has been applied to food analysis.
Collapse
|
49
|
Recycling polymer residues to synthesize magnetic nanocomposites for dispersive micro-solid phase extraction. Talanta 2017; 170:451-456. [DOI: 10.1016/j.talanta.2017.04.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/03/2017] [Accepted: 04/11/2017] [Indexed: 11/18/2022]
|
50
|
Rozaini MNH, Yahaya N, Saad B, Kamaruzaman S, Hanapi NSM. Rapid ultrasound assisted emulsification micro-solid phase extraction based on molecularly imprinted polymer for HPLC-DAD determination of bisphenol A in aqueous matrices. Talanta 2017; 171:242-249. [DOI: 10.1016/j.talanta.2017.05.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 01/12/2023]
|