1
|
Akbari H, Rahimnejad M, Amani H, Ezoji H. Advancements in electrochemical sensor technology for warfarin detection: a comprehensive review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:8103-8118. [PMID: 39565275 DOI: 10.1039/d4ay01450b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Warfarin (WA), the most prescribed oral anticoagulant in patients with atrial fibrillation, is widely utilized for the treatment of various diseases, such as vascular disorders, venous thrombosis, and atrial fibrillation. However, its abnormal concentration is linked to a variety of disorders and diseases, namely bleeding while brushing teeth, skin tissue issues, hair loss, and chest pain. Therefore, WA monitoring in blood serum is vital due to its narrow therapeutic window. Accordingly, WA determination has been conducted using various methods, such as high-performance liquid chromatography, fluorescent, surface-enhanced Raman scattering, and electrochemical methods. Electrochemical methods have received considerable attention due to their outstanding selectivity, remarkable sensitivity, great time efficiency, and cost-effectiveness. Herein, a comprehensive literature survey on electrochemical methods for determining WA is presented. This review discusses the development of various chemically modified electrodes (CMEs). These CMEs, such as multi-wall carbon nanotubes, molecularly imprinted polymers, metal oxide nanoparticles, and polymer nanocomposites, owing to their morphology and structure, high selectivity, high conductivity, and high volume/area ratio, are designed to overcome the limitations of bare electrodes, which include reduced electrocatalytic activity, slower electron transfer rates, and poor sensitivity. Also, this review presents the advantages and disadvantages of various modified electrodes applied in WA detection.
Collapse
Affiliation(s)
- Hassan Akbari
- Biofuel and Renewable Energy Research Center, Department of Biotechnology, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran.
| | - Mostafa Rahimnejad
- Biofuel and Renewable Energy Research Center, Department of Biotechnology, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran.
| | - Hossein Amani
- Biofuel and Renewable Energy Research Center, Department of Biotechnology, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran.
| | - Hoda Ezoji
- Biofuel and Renewable Energy Research Center, Department of Biotechnology, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran.
| |
Collapse
|
2
|
Saylan Y, Aliyeva N, Eroglu S, Denizli A. Nanomaterial-Based Sensors for Coumarin Detection. ACS OMEGA 2024; 9:30015-30034. [PMID: 39035881 PMCID: PMC11256117 DOI: 10.1021/acsomega.4c01945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024]
Abstract
Sensors are widely used owing to their advantages including excellent sensing performance, user-friendliness, portability, rapid response, high sensitivity, and specificity. Sensor technologies have been expanded rapidly in recent years to offer many applications in medicine, pharmaceuticals, the environment, food safety, and national security. Various nanomaterial-based sensors have been developed for their exciting features, such as a powerful absorption band in the visible region, excellent electrical conductivity, and good mechanical properties. Natural and synthetic coumarin derivatives are attracting attention in the development of functional polymers and polymeric networks for their unique biological, optical, and photochemical properties. They are the most abundant organic molecules in medicine because of their biological and pharmacological impacts. Furthermore, coumarin derivatives can modulate signaling pathways that affect various cellular processes. This review covers the discovery of coumarins and their derivatives, the integration of nanomaterial-based sensors, and recent advances in nanomaterial-based sensing for coumarins. This review also explains how sensors work, their types, their pros and cons, and sensor studies for coumarin detection in recent years.
Collapse
Affiliation(s)
- Yeşeren Saylan
- Department
of Chemistry, Hacettepe University, 06800 Ankara, Turkey
| | - Nilufer Aliyeva
- Department
of Chemistry, Hacettepe University, 06800 Ankara, Turkey
| | - Seckin Eroglu
- Department
of Biological Sciences, Middle East Technical
University, 06800 Ankara, Turkey
| | - Adil Denizli
- Department
of Chemistry, Hacettepe University, 06800 Ankara, Turkey
| |
Collapse
|
3
|
Maheshwaran S, Akilarasan M, Chen SM, Tamilalagan E, Keerthiga E, Alothman AA, Alqahtani KN, Ganesh PS. Synthesis of nickel-doped ceria nanospheres for in situ profiling of Warfarin sodium in biological media. Bioelectrochemistry 2022; 146:108166. [PMID: 35643022 DOI: 10.1016/j.bioelechem.2022.108166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/23/2022] [Accepted: 05/16/2022] [Indexed: 11/23/2022]
Abstract
Venous thromboembolism is one of the major disorders, which is significantly increased the mortality and morbidity rate. Warfarin sodium (WFS) is the most extensively prescribed drug for the prevention of thromboembolic diseases however, it has a narrow therapeutic index. Recently, many methods for detecting and monitoring the level of WFS have been proposed. However, the electrochemical method has gained more interest than the other traditional method due to its ease of operation. This article describes the hydrothermal synthesis of nickel-doped cerium oxide (CeO2@Ni) nanospheres for the selective electrochemical determination of WFS. Various spectroscopic techniques have been used to analyze the chemical composition, and surface morphology of CeO2@Ni nanospheres. Further, the prepared CeO2@Ni nanospheres modified electrode demonstrated excellent electrocatalytic behavior for WFS detection, with an ultralow detection limit of 6.3 × 10-9 M, a linear range of 1.0 × 10-8 M to 1.51 × 10-4 M and 1.51 × 10-4 M to 9.51 × 10-4 M, and a higher sensitivity of 2.9986 µA µM-1 cm2. Therefore, we believe that the CeO2@Ni nanosphere electrocatalyst can serve as a potential electrode catalyst for the sensing of WFS in real-time applications.
Collapse
Affiliation(s)
- Selvarasu Maheshwaran
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Muthumariappan Akilarasan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| | - Elayappan Tamilalagan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | | | - Asma A Alothman
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khadraa N Alqahtani
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - P-S Ganesh
- Korea University of Technology and Education, Cheonan-si 31253, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
4
|
Nano optical and electrochemical sensors and biosensors for detection of narrow therapeutic index drugs. Mikrochim Acta 2021; 188:411. [PMID: 34741213 DOI: 10.1007/s00604-021-05003-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/24/2021] [Indexed: 01/02/2023]
Abstract
For the first time, a comprehensive review is presented on the quantitative determination of narrow therapeutic index drugs (NTIDs) by nano optical and electrochemical sensors and biosensors. NTIDs have a narrow index between their effective doses and those at which they produce adverse toxic effects. Therefore, accurate determination of these drugs is very important for clinicians to provide a clear judgment about drug therapy for patients. Routine analytical techniques have limitations such as being expensive, laborious, and time-consuming, and need a skilled user and therefore the nano/(bio)sensing technology leads to high interest.
Collapse
|
5
|
|
6
|
An optoelectronic flow-through detectors for active ingredients determination in the pharmaceutical formulations. J Pharm Biomed Anal 2021; 201:114128. [PMID: 33989992 DOI: 10.1016/j.jpba.2021.114128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/15/2021] [Accepted: 05/04/2021] [Indexed: 11/21/2022]
Abstract
An optoelectronic flow-through detector for active ingredients determination in pharmaceutical formulations is explained. Two consecutive compact photodetector's devices operating according to light-emitting diodes-solar cells concept where the LEDs acting as a light source and solar cells for measuring the attenuated light of the incident light at 180˚ have been developed. The turbidimetric detector, fabricated of ten light-emitting diodes and five solar cells only, integrated with a glass flow cell has been easily adapted in flow injection analysis manifold system. For active ingredients determination, the developed detector was successfully utilized for the development and validation of an analytical method for warfarin determination in pure and pharmaceutical preparations. The developed method is based on the forming of a white, turbid product as a result of a reaction between the warfarin and semicarbazide which was used as an oxidizing agent. The developed flow-through detector system is semi mechanized, economic in materials consumption, easy to operate and characterized by excellent analytical results. Both developed analytical devices used in two channels flow injection system allow for turbidimetric measurements of warfarin in 0.9-154 μg ml-1 and 123-1600 μg ml-1 ranges of concentration, with limits of detections 0.73 μg ml-1 and 24.66 μg ml-1 for photodetectors 1& 2 respectively. The turbidity measurement procedure for the current flow system offers to conduct 60 tests per hour of the warfarin which is the most needs of quality control analysis in industrial applications. To ensure the analytical usefulness of the flow system, the warfarin has been analyzed in the real samples with a fully acceptable agreement and a correlation between the results offered by the developed flow system and the official method.
Collapse
|
7
|
Hassanpour S, Behnam B, Baradaran B, Hashemzaei M, Oroojalian F, Mokhtarzadeh A, de la Guardia M. Carbon based nanomaterials for the detection of narrow therapeutic index pharmaceuticals. Talanta 2020; 221:121610. [PMID: 33076140 DOI: 10.1016/j.talanta.2020.121610] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022]
Abstract
Precise detection of important pharmaceuticals with narrow therapeutic index (NTI) is very critical as there is a small window between their effective dose and the doses at which the adverse reactions are very likely to appear. Regarding the fact that various pharmacokinetics will be plausible while considering pharmacogenetic factors and also differences between generic and brand name drugs, accurate detection of NTI will be more important. Current routine analytical techniques suffer from many drawbacks while using novel biosensors can bring up many advantages including fast detection, accuracy, low cost with simple and repeatable measurements. Recently the well-known carbon Nano-allotropes including carbon nanotubes and graphenes have been widely used for development of different Nano-biosensors for a diverse list of analytes because of their great physiochemical features such as high tensile strength, ultra-light weight, unique electronic construction, high thermo-chemical stability, and an appropriate capacity for electron transfer. Because of these exceptional properties, scientists have developed an immense interest in these nanomaterials. In this case, there are important reports to show the effective Nano-carbon based biosensors in the detection of NTI drugs and the present review will critically summarize the available data in this field.
Collapse
Affiliation(s)
- Soodabeh Hassanpour
- Department of Analytical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, 77146, Olomouc, Czech Republic
| | - Behzad Behnam
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
8
|
Dong-Wei C, Yuan Z, Xiao-Yi D, Yu Z, Guo-Hui L, Xue-Song F. Progress in Pretreatment and Analytical Methods of Coumarins: An Update since 2012 - A Review. Crit Rev Anal Chem 2020; 51:503-526. [PMID: 32314593 DOI: 10.1080/10408347.2020.1750338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Coumarins are widely used due to their wide range of biological activities, but the long-term or excessive use of coumarin flavors can pose serious health hazards. Therefore, sensitive and specific methods for the quantification of these compounds in different matrices have been developed. In this review, an updated overview of the latest trends in sample preparation techniques and methods used to detect coumarins from March 2012 to April 2019 is provided. This study reviews different analytical methods (such as liquid chromatography coupled with different detectors, electrochemical sensors, capillary electrophoresis, etc.) and different pretreatment methods (such as liquid-liquid extraction, solid-phase extraction, dispersive liquid-liquid microextraction, etc.). Different methods for the pretreatment and determination of coumarins in plant, food, environmental, pharmaceutical and biological samples are summarized, discussed and compared.HighlightsProgress in pretreatment and analytical methods of coumarins are summarized.Fundamentals, instrumentation and applications of purification and quantification are summarized and compared.Optimization of experimental conditions are discussed.Newly emerged eco-friendly methods are introduced.
Collapse
Affiliation(s)
- Cui Dong-Wei
- School of Pharmacy, China Medical University, Shenyang, China
| | - Zhang Yuan
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Duan Xiao-Yi
- School of Pharmacy, China Medical University, Shenyang, China
| | - Zhou Yu
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Guo-Hui
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Feng Xue-Song
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
9
|
Zilberg RA, Maistrenko VN, Zagitova LR, Guskov VY, Dubrovsky DI. Chiral voltammetric sensor for warfarin enantiomers based on carbon black paste electrode modified by 3,4,9,10-perylenetetracarboxylic acid. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113986] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Zhang L, Wei PF, Song YH, Dong L, Wu YD, Hao ZY, Fan S, Tai S, Meng JL, Lu Y, Xue J, Liang CZ, Wen LP. MnFe2O4 nanoparticles accelerate the clearance of mutant huntingtin selectively through ubiquitin-proteasome system. Biomaterials 2019; 216:119248. [DOI: 10.1016/j.biomaterials.2019.119248] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 05/20/2019] [Accepted: 06/05/2019] [Indexed: 02/08/2023]
|
11
|
Erady V, Mascarenhas RJ, Satpati AK, Bhakta AK, Mekhalif Z, Delhalle J, A D. Carbon paste modified with Bi decorated multi-walled carbon nanotubes and CTAB as a sensitive voltammetric sensor for the detection of Caffeic acid. Microchem J 2019. [DOI: 10.1016/j.microc.2018.12.023] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
12
|
de Jesus Guedes T, Pio dos Santos WT. Fast and Simple Electrochemical Analysis Kit for Quality Control of Narrow Therapeutic Index Drugs. ELECTROANAL 2018. [DOI: 10.1002/elan.201800108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Tiago de Jesus Guedes
- Departamento de Química; Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK; 39100-000 Diamantina, MG Brasil
| | - Wallans Torres Pio dos Santos
- Departamento de Farmácia; Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK; 39100-000 Diamantina, MG Brasil
| |
Collapse
|
13
|
Molaakbari E, Mostafavi A, Beitollahi H, Tohidiyan Z. Synthesis of conductive polymeric ionic liquid/Ni nanocomposite and its application to construct a nanostructure based electrochemical sensor for determination of warfarin in the presence of tramadol. Talanta 2017; 171:25-31. [DOI: 10.1016/j.talanta.2017.04.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 04/12/2017] [Accepted: 04/16/2017] [Indexed: 10/19/2022]
|
14
|
Gholivand MB, Solgi M. Sensitive warfarin sensor based on cobalt oxide nanoparticles electrodeposited at multi-walled carbon nanotubes modified glassy carbon electrode (CoxOyNPs/MWCNTs/GCE). Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.06.105] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
de Jesus Guedes T, Antônio Reis Andrade G, Barbosa Lima A, Amorim Bezerra da Silva R, Torres Pio dos Santos W. Simple and Fast Determination of Warfarin in Pharmaceutical Samples Using Boron-doped Diamond Electrode in BIA and FIA Systems with Multiple Pulse Amperometric Detection. ELECTROANAL 2017. [DOI: 10.1002/elan.201700320] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tiago de Jesus Guedes
- Departamento de Química; Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK; 39100-000 Diamantina - MG Brasil
| | - Glauber Antônio Reis Andrade
- Departamento de Química; Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK; 39100-000 Diamantina - MG Brasil
| | - Amanda Barbosa Lima
- Departamento de Química; Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK; 39100-000 Diamantina - MG Brasil
| | | | - Wallans Torres Pio dos Santos
- Departamento de Farmácia; Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK; 39100-000 Diamantina - MG Brasil
| |
Collapse
|
16
|
A new 2-amino-3-pynanopyrane-3- carbonitrile derivative for electrocatalytic oxidation and determination of hydrazine. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:1154-1160. [PMID: 28415401 DOI: 10.1016/j.msec.2017.02.129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/22/2016] [Accepted: 02/24/2017] [Indexed: 11/22/2022]
Abstract
A noble glassy carbon electrode modified with Au nanoparticles and 2-amino-4-(3,4-dihydroxyphenyl)-6-(hydroxymethyl)-8-oxo-4,8-dihydropyrano[3,2-b]pyran-3-carbonitrile, was fabricated for electrocatalytic determination of hydrazine (AuNPs/APP/GCE). Large over-potential and interference of some species are two limitation factors for the determination of hydrazine at bare electrode. This modified electrode is able to shift a signal to the negative potential, and can amplify the oxidation current of hydrazine by 28.0 time, compared to bare electrode. The diffusion coefficient, D, and the heterogeneous rate constant, kh, for the oxidation of hydrazine at the modified surface were calculated by chronoamperometric studies. Finally, the fabricated sensor was agreeably utilized for the determination of hydrazine in real samples.
Collapse
|
17
|
Liu J, Zhang Y, Jiang M, Tian L, Sun S, Zhao N, Zhao F, Li Y. Electrochemical microfluidic chip based on molecular imprinting technique applied for therapeutic drug monitoring. Biosens Bioelectron 2017; 91:714-720. [PMID: 28126661 DOI: 10.1016/j.bios.2017.01.037] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 01/11/2017] [Accepted: 01/18/2017] [Indexed: 01/04/2023]
Abstract
In this work, a novel electrochemical detection platform was established by integrating molecularly imprinting technique with microfluidic chip and applied for trace measurement of three therapeutic drugs. The chip foundation is acrylic panel with designed grooves. In the detection cell of the chip, a Pt wire is used as the counter electrode and reference electrode, and a Au-Ag alloy microwire (NPAMW) with 3D nanoporous surface modified with electro-polymerized molecularly imprinted polymer (MIP) film as the working electrode. Detailed characterization of the chip and the working electrode was performed, and the properties were explored by cyclic voltammetry and electrochemical impedance spectroscopy. Two methods, respectively based on electrochemical catalysis and MIP/gate effect were employed for detecting warfarin sodium by using the prepared chip. The linearity of electrochemical catalysis method was in the range of 5×10-6-4×10-4M, which fails to meet clinical testing demand. By contrast, the linearity of gate effect was 2×10-11-4×10-9M with remarkably low detection limit of 8×10-12M (S/N=3), which is able to satisfy clinical assay. Then the system was applied for 24-h monitoring of drug concentration in plasma after administration of warfarin sodium in rabbit, and the corresponding pharmacokinetic parameters were obtained. In addition, the microfluidic chip was successfully adopted to analyze cyclophosphamide and carbamazepine, implying its good versatile ability. It is expected that this novel electrochemical microfluidic chip can act as a promising format for point-of-care testing via monitoring different analytes sensitively and conveniently.
Collapse
Affiliation(s)
- Jiang Liu
- College of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Yu Zhang
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| | - Min Jiang
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| | - Liping Tian
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| | - Shiguo Sun
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| | - Na Zhao
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| | - Feilang Zhao
- Jiangsu Devote Instrumental Science & Technology Co., Ltd., Huai'an, China
| | - Yingchun Li
- College of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, China; Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China.
| |
Collapse
|
18
|
Taei M, Jamshidi MS. A voltammetric sensor for simultaneous determination of ascorbic acid, noradrenaline, acetaminophen and tryptophan. Microchem J 2017. [DOI: 10.1016/j.microc.2016.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|