1
|
Bajraktari-Sylejmani G, Bay C, Gebauer L, Burhenne J, Weiss J, Sauter M. A Highly Sensitive UPLC-MS/MS Method for the Quantification of the Organic Cation Transporters' Mediated Metformin Uptake and Its Inhibition in Cells. Molecules 2024; 29:5162. [PMID: 39519803 PMCID: PMC11547985 DOI: 10.3390/molecules29215162] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/27/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Metformin is the gold standard substrate for evaluating potential inhibitors of the organic cation transporters (OCTs). Here, we established a UPLC-MS/MS assay to quantify metformin in cell pellets with a range of 0.05-50 ng/mL using 6-deuterated metformin as an internal standard. We used an ion-pairing chromatographic approach with heptafluorobutyric acid, making use of a reverse-phase column, and overcame the associated ion-suppression via previously established post-column injection of aqueous ammonia. The assay was validated according to the Food and Drug Administration (FDA) and the European Medicines Agency (EMA) recommendations for bioanalytical methods. The established extraction procedure was simple, very fast and ensured almost 100% recovery of the analyte. The exceptionally sharp peak form and retention of the ion-pairing chromatography are superior to other methods and allow us to measure as sensitively as 0.05 ng/mL. We used the herein established and validated method to develop a cellular OCT inhibition assay by using metformin as a substrate and human embryonic kidney cells (HEK) overexpressing the OCTs 1-3. The method presented may be useful for identifying new OCT inhibitors, but also for drug-drug interactions and other pharmacokinetic studies, where accurate quantification of low metformin amounts in relevant tissues is mandatory.
Collapse
Affiliation(s)
- Gzona Bajraktari-Sylejmani
- Internal Medicine IX—Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Clinic Heidelberg, Medical Faculty Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany; (C.B.); (J.B.); (M.S.)
| | - Cindy Bay
- Internal Medicine IX—Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Clinic Heidelberg, Medical Faculty Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany; (C.B.); (J.B.); (M.S.)
| | - Lukas Gebauer
- Institute of Clinical Pharmacology, University Medical Center Göttingen, 37075 Göttingen, Germany;
| | - Jürgen Burhenne
- Internal Medicine IX—Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Clinic Heidelberg, Medical Faculty Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany; (C.B.); (J.B.); (M.S.)
| | - Johanna Weiss
- Internal Medicine IX—Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Clinic Heidelberg, Medical Faculty Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany; (C.B.); (J.B.); (M.S.)
| | - Max Sauter
- Internal Medicine IX—Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Clinic Heidelberg, Medical Faculty Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany; (C.B.); (J.B.); (M.S.)
| |
Collapse
|
2
|
Aref H, Hammad S, Darwish KM, Elgawish MS. Unveiling Pharmacokinetics and Drug Interaction of Linagliptin and Pioglitazone HCl in Rat Plasma Using LC-MS/MS. Chem Res Toxicol 2024; 37:779-790. [PMID: 38684131 DOI: 10.1021/acs.chemrestox.4c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The linagliptin (LIN) and pioglitazone HCl (PIO) combination, currently undergoing phase III clinical trials for diabetes mellitus treatment, demonstrated significant improvements in glycemic control. However, the absence of an analytical method for simultaneous determination in biological fluids highlights a crucial gap. This underscores the pressing need for sensitive bioanalytical methods, emphasizing the paramount importance of developing such tools to advance diabetes management strategies and enhance patient care. Herein, a sensitive reverse-phase high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry method was developed for simultaneous determination of LIN and PIO in rat plasma using alogliptin as an internal standard. Chromatographic separation was performed on an Agilent Eclipse Plus C18 (4.6 × 100 mm, 3.5 μm) using an isocratic mobile phase system consisting of ammonium formate (pH 4.5) and methanol using an acetonitrile-induced protein precipitation technique for sample preparation. Multiple reaction monitoring in positive ion mode was used for quantitation of the precursor to production at m/z 473.2 → 419.9 for LIN, 357.1 → 134.2 for PIO, and 340.3 → 116.1 for ALO. The linearity range was 0.5 to 100 and 1 to 2000 ng/mL for LIN and PIO, respectively. The developed method was validated as per US-FDA guidelines and successfully applied to clinical pharmacokinetic and drug-drug interaction studies with a single oral administration of LIN and PIO in rat plasma. Pharmacokinetic parameters of LIN were significantly influenced by the concomitant administration of PIO and vice versa. Molecular modeling revealed the significant interaction of LIN and PIO with P-glycoprotein. Therefore, the drug-drug interaction between LIN and PIO deserves further study to improve drug therapy and prevent dangerous adverse effects.
Collapse
Affiliation(s)
- Heba Aref
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, El Menoufia University, El Menoufia, Shebin El Kom 32511, Egypt
| | - Sherin Hammad
- Analytical Chemistry Department, Faculty of Pharmacy, Tanta University, Tanta 31511, Egypt
| | - Khaled M Darwish
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Mohamed S Elgawish
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Chemistry Department, Korea University, Seoul 02841, Korea Republic
| |
Collapse
|
3
|
Derar AR, Ahmed N, Hussien EM. A new strategy for the determination of the antidiabetics alogliptin, saxagliptin and vildagliptin using all-solid state potentiometric sensors. BMC Chem 2023; 17:79. [PMID: 37455315 DOI: 10.1186/s13065-023-00988-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/30/2023] [Indexed: 07/18/2023] Open
Abstract
Herein, we report on the development of disposable screen printed carbon, nanostructure thin film Au/Pt and Pt/Pt all-solid state potentiometric sensors for some antidiabetic compounds called glibtins. The electrodes showed excellent calibration curves (1 × 10-5-1 × 10-2 M) for alogliptin, saxagliptin and vildagliptin. The electrodes were fully characterized with respect to potential stability, dynamic response time, detection limit, effect of pH and interference according to the IUPAC recommendation. The proposed method is rapid and can be applied for the determination of gliptins at low cost with satisfactory precision (RSD ≤ 1%) and accuracy.
Collapse
Affiliation(s)
- Abeer Rashad Derar
- Egyptian Drug Authority (EDA), 9 Abou-Hazem str, P.O Box 29, Giza, Egypt
| | - Neven Ahmed
- Egyptian Drug Authority (EDA), 9 Abou-Hazem str, P.O Box 29, Giza, Egypt
| | | |
Collapse
|
4
|
Khalifa MK, Dawaba AM, Dawaba HM, Al-Najjar AH, Elzaitony AS, Fouad FA, Soliman MM, Nasr ZA. Fabrication, optimization, and eco-friendly micellar HPLC determination of alogliptin/dapagliflozin pullulan-based sublingual films for therapeutic efficacy improvement in diabetic rats. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
5
|
Current analytical methods to monitor type 2 diabetes medication in biological samples. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Bioanalytical LC-MS/MS method for simultaneous estimation of atorvastatin, its major active metabolites and ezetimibe. Bioanalysis 2022; 14:1349-1363. [PMID: 36621870 DOI: 10.4155/bio-2022-0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background: Hyperlipidemia is one of the most common chronic diseases encountered globally, and atorvastatin (ATV) is mainly metabolized into two major active metabolites. Methodology: Hence, we aimed to estimate ATV and ezetimibe (EZE) simultaneously in the presence of ATV major and active metabolites using a validated LC-MS/MS method. Conclusion: The proposed method was linear (r2 >0.99), accurate (92.02-109.94%) and precise (CV% ≤14) over the concentration range of 0.50-120 ng/ml, 0.20-48 ng/ml, 0.50-120 ng/ml and 0.20-48 ng/ml for ATV, EZE, 2-hydroxy ATV and 4-hydroxy ATV, respectively. The applied liquid-liquid extraction gave rise to reliable extraction recoveries of 84.91 ± 1.14%, 85.20 ± 1.62%, 85.46 ± 0.41% and 105.46 ± 2.35% for ATV, EZE, 2-hydroxy ATV and 4-hydroxy ATV, respectively.
Collapse
|
7
|
Abdelgawad MA, Elmowafy M, Musa A, Al-Sanea MM, Nayl AA, Ghoneim MM, Ahmed YM, Hassan HM, AboulMagd AM, Salem HF, Abdelwahab NS. Development and Greenness Assessment of HPLC Method for Studying the Pharmacokinetics of Co-Administered Metformin and Papaya Extract. Molecules 2022; 27:375. [PMID: 35056687 PMCID: PMC8778412 DOI: 10.3390/molecules27020375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 11/23/2022] Open
Abstract
Foods with medical value have been proven to be beneficial, and they are extensively employed since they integrate two essential elements: food and medication. Accordingly, diabetic patients can benefit from papaya because the fruit is low in sugar and high in antioxidants. An RP-HPLC method was designed for studying the pharmacokinetics of metformin (MET) when concurrently administered with papaya extract. A mobile phase of 0.5 mM of KH2PO4 solution and methanol (65:35, v/v), pH = 5 ± 0.2 using aqueous phosphoric acid and NaOH, and guaifenesin (GUF) were used as an internal standard. To perform non-compartmental pharmacokinetic analysis, the Pharmacokinetic program (PK Solver) was used. The method's greenness was analyzed using two tools: the Analytical GREEnness calculator and the RGB additive color model. Taking papaya with MET improved the rate of absorption substantially (time for reaching maximum concentration (Tmax) significantly decreased by 75% while maximum plasma concentration (Cmax) increased by 7.33%). The extent of absorption reduced by 22.90%. Furthermore, the amount of medication distributed increased (30.83 L for MET concurrently used with papaya extract versus 24.25 L for MET used alone) and the clearance rate rose by roughly 13.50%. The results of the greenness assessment indicated that the method is environmentally friendly. Taking papaya with MET changed the pharmacokinetics of the drug dramatically. Hence, this combination will be particularly effective in maintaining quick blood glucose control.
Collapse
Affiliation(s)
- Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (M.A.A.); (M.M.A.-S.)
| | - Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Arafa Musa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (M.A.A.); (M.M.A.-S.)
| | - AbdElAziz A. Nayl
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, Collage of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Yasmine M. Ahmed
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Nahda University in Beni-Suef (NUB), Beni-Suef 62521, Egypt;
| | - Hossam M. Hassan
- Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt;
- Pharmacognosy Department, Faculty of Pharmacy, Nahda University in Beni-Suef (NUB), Beni-Suef 62521, Egypt
| | - Asmaa M. AboulMagd
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University in Beni-Suef (NUB), Beni-Suef 62521, Egypt;
| | - Heba F. Salem
- Pharmaceutics Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt;
| | - Nada S. Abdelwahab
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University in Beni-Suef (NUB), Beni-Suef 62521, Egypt;
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt
| |
Collapse
|
8
|
Tammam AS, Gahlan AA, Taher MA, Haredy AM. Hantzsch Condensation Reaction as a Spectrofluorometric Method for Determination of Alogliptin, an Anti-diabetic Drug, in Pure, Tablet, Human, and rat plasma. LUMINESCENCE 2021; 37:543-550. [PMID: 34907663 DOI: 10.1002/bio.4178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/13/2021] [Accepted: 11/29/2021] [Indexed: 11/07/2022]
Abstract
To analyze alogliptin in its pharmaceutical dosage forms and human plasma, a sensitive, inexpensive, simple, and precise spectrofluorimetric method was developed and tested. Also, this method was used to investigate the drug pharmacokinetic behavior in the blood of rats. It is based on the Hantzsch reaction, which produces yellowish luminous products that can be detected spectrofluorometrically at 480 and 415 nm, emission, and excitation, respectively, when the primary amine group in the examined drug reacts with acetylacetone and formaldehyde. Several experimental parameters that affect the reaction product's development and stability were explored and improved. The curve of fluorescence and concentration for alogliptin was linear in the concentration range of 0.05-3.60 μg ml-1 . According to ICH criteria, the proposed approach was validated. The method was successfully utilized to evaluate the examined drug in dose formulations and spiked human plasma with high accuracy.
Collapse
Affiliation(s)
- Azza S Tammam
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Ahmed A Gahlan
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Mahmoud A Taher
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Ahmed M Haredy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Merit University, New Sohag, Egypt
| |
Collapse
|
9
|
Salem WA, Elkady EF, Fouad MA, Abdul-Azim Mohammad M. Analysis of Metformin and Five Gliptins in Counterfeit Herbal Products: Designs of Experiment Screening and Optimization. J AOAC Int 2021; 104:1667-1680. [PMID: 34410406 DOI: 10.1093/jaoacint/qsab106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/11/2021] [Accepted: 08/11/2021] [Indexed: 11/12/2022]
Abstract
BACKGROUND Drug counterfeiting is a rising problem due to difficulties with identifying counterfeit drugs and the lack of regulations and legislation in developing countries. OBJECTIVE This study aims to develop a robust and economic reversed phase high performance liquid chromatography (LC) method for simultaneously determining metformin HCl, vildagliptin, saxagliptin, alogliptin benzoate, sitagliptin phosphate monohydrate, and linagliptin to target counterfeiting. METHODS Plackett-Burman (PB) and Box-Behnken (BB) designs were used to screen and optimize the mobile phase composition. Chromatographic separation was carried out on an Inertsil® ODS-3 C18 column with isocratic elution mode and the mobile phase was a mixture of acetonitrile-methanol-ammonium formate buffer, pH 3.5 (25:10:65, v/v/v). This method was applied to analyze synthetic drugs in three traditional Chinese and Indian herbal medicines. To identify the adulterants, thin-layer chromatography (TLC), nuclear magnetic resonance (NMR), and mass spectrometry (MS) were used on counterfeit herbal medicines. RESULTS The developed method is sensitive, simple, rapid, economical, accurate, and highly robust. Student's t-test and variance ratio (F-test at P < 0.05) were used to compare the results statistically with the reference methods. CONCLUSION The study found that the analyzed herbal medicines were adulterated with metformin and the quantification of anti-diabetic counterfeits was therefore applied. HIGHLIGHTS This study determined counterfeited anti-diabetic drugs in Indian and Chinese traditional herbal medicines(THMs). Design-of-experiment, PB, and BB designs were used. Method validation was also performed in accordance with the International Conference on Harmonization guidelines.
Collapse
Affiliation(s)
- Wadhah Atef Salem
- Ministry of Health, Quality Control Department, Supreme Board of Drugs and Medical Appliances, Aden 6022, Yemen
| | - Ehab Farouk Elkady
- Cairo University, Faculty of Pharmacy, Pharmaceutical Chemistry Department, Kasr El-Aini St, Cairo 11562, Egypt
| | - Marwa Ahmed Fouad
- Cairo University, Faculty of Pharmacy, Pharmaceutical Chemistry Department, Kasr El-Aini St, Cairo 11562, Egypt.,New Giza University, School of Pharmacy, Department of Pharmaceutical Chemistry, New Giza, km 22 Cairo-Alexandria Desert Road, Cairo, Egypt
| | | |
Collapse
|
10
|
Validation of a novel UPLC-MS/MS method for estimation of metformin and empagliflozin simultaneously in human plasma using freezing lipid precipitation approach and its application to pharmacokinetic study. J Pharm Biomed Anal 2021; 200:114078. [PMID: 33901756 DOI: 10.1016/j.jpba.2021.114078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 12/25/2022]
Abstract
A fast, sensitive one step UPLC ESI-MS/MS method was successfully applied for the simultaneous estimation of two concurrently administrated antidiabetic drugs, Metformin (MET) and Empagliflozin (EMPA) in human plasma. Metformin-d6 (MET-d6) and Empagliflozin-d4 (EMPA-d4) were utilized as internal standards. Extraction of the analytes from the human plasma was performed through acetonitrile precipitation technique followed by freezing the precipitated plasma proteins and lipids to minimize the matrix effect. Chromatographic analysis was developed on Acquity UPLC BEH C18 column (1.7 μm, 2.1 × 50 mm) using isocratic elution mode. A mobile phase of formic acid (0.01 %): acetonitrile (70:30 v/v) with a flow rate of 0.3 mL/min achieved optimum separation. Multiple reaction monitoring (MRM) in positive ion mode, with transitions at (m/z) 130.14 →71.08 for (MET), 451.72 →71.29 for (EMPA), 136.03 →77.02 for (MET-d6), and 455.43 → 75.05 for (EMPA-d4) was used for quantification. The obtained linearity covered the concentration ranges of 10-1500 ng/mL and 2.0-250.0 ng/mL for MET and EMPA, respectively. The run time of the proposed Method didn't exceed 3.0 min allowing faster analysis and determination of larger number of samples per day without affecting accuracy and sensitivity. The presented chromatographic method could be successfully applied in pharmacokinetics studies and therapeutic monitoring of MET and EMPA in patients' plasma administrating fixed dose combination of both drug with high reproducibility and ruggedness.
Collapse
|
11
|
Salting-out induced liquid-liquid microextraction for alogliptin benzoate determination in human plasma by HPLC/UV. BMC Chem 2021; 15:2. [PMID: 33451337 PMCID: PMC7809805 DOI: 10.1186/s13065-020-00729-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/10/2020] [Indexed: 01/22/2023] Open
Abstract
Salting-out induced liquid–liquid microextraction method has been developed for plasma sample treatment before determination of alogliptin by high performance liquid chromatography with UV detection. Several parameters were optimized to achieve maximum enrichment, including type of extractant, volume of extractant, type of anion, type of cation, salt amount and pH. The optimum conditions were attained using 500 µL of acetonitrile, added to 1 mL of aqueous sample containing 250 mg of sodium chloride at pH 12. An RP-HPLC method was developed and validated according to the International Conference on Harmonization guidelines M10. The method was linear in the concentration range of 0.1 to 50 µg/mL (correlation coefficient = 0.997). The limit of detection was 0.019 µg/mL and limit of quantitation was 0.06 µg/mL. The method was accurate and precise with an average % recovery of 99.7% and a % relative standard deviation ranging between 1.5 and 2.5. These results showed that the salting-out induced liquid–liquid microextraction methods could be better than other sample preparation protocols in terms of sensitivity, easiness, solvent consumption and waste reduction.
Collapse
|
12
|
Abdelwahab NS, Morsi A, Ahmed YM, Hassan HM, AboulMagd AM. Ecological HPLC method for analyzing an antidiabetic drug in real rat plasma samples and studying the effects of concurrently administered fenugreek extract on its pharmacokinetics. RSC Adv 2021; 11:4740-4750. [PMID: 35424379 PMCID: PMC8694443 DOI: 10.1039/d0ra08836f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/03/2021] [Indexed: 12/27/2022] Open
Abstract
Currently, the total number of diabetic people worldwide is constantly increasing. Metformin (MET) is known to be a first-line antidiabetic drug with varied, wide-reaching applications. Concurrent administration of phytomedicines such as fenugreek extract with synthetic drugs is very common. It is reported that concomitant administration of fenugreek extract with metformin maintains lower blood glucose levels than metformin alone. In this work, an ecofriendly RP-HPLC method was established to study and compare the pharmacokinetics of metformin with and without the contemporary administration of fenugreek extract using rat as an animal model. In the developed method, a solvent mixture of 0.5 mM KH2PO4 solution : methanol (65 : 35, v/v) was used as a mobile phase and guaiphenesin was used as an internal standard. The plasma concentration–time curve was plotted, and non-compartmental pharmacokinetic analysis was performed using PKSolver. The results of the pharmacokinetic study showed that concurrent administration of fenugreek significantly increased the bioavailability of metformin and doubled the time required to reach the peak plasma concentration (Tmax). Moreover, the volume of drug distribution decreased by about 70%, while its rate of clearance decreased by about 55.96%. Accordingly, the administration of fenugreek in combination with metformin significantly affected the pharmacokinetics of metformin, and this combination will be very useful in controlling blood glucose levels in diabetic patients. The greenness of the method was assessed using the Analytical Eco-Scale, Analytical Method Volume Intensity (AMVI), and National Environmental Method Index (NEMI), and all results affirmed that the method can be considered to be ecological. The combination of fenugreek extract and metformin can be considered as an auspicious treatment for satisfactory diabetes control and minimizing the expected long-term complications of metformin.![]()
Collapse
Affiliation(s)
- Nada S. Abdelwahab
- Pharmaceutical Chemistry Department
- Faculty of Pharmacy
- Nahda University (NUB)
- Beni-Suef
- Egypt
| | - Amani Morsi
- Analytical Chemistry Department
- National Organization of Drug Control and Research (NODCAR)
- Giza
- Egypt
| | - Yasmine M. Ahmed
- Pharmacology & Toxicology Department
- Faculty of Pharmacy
- Nahda University (NUB)
- Beni-Suef
- Egypt
| | - Hossam M. Hassan
- Pharmacognosy Department
- Faculty of Pharmacy
- Beni-Suef University
- Beni-Suef
- Egypt
| | - Asmaa M. AboulMagd
- Pharmaceutical Chemistry Department
- Faculty of Pharmacy
- Nahda University (NUB)
- Beni-Suef
- Egypt
| |
Collapse
|
13
|
Magdy MA, Ali NW, Taha AA, Elgebaly AM, Farid NF. Different chromatographic methods for determination of alogliptin benzoate, metformin hydrochloride, and metformin impurity in bulk and pharmaceutical dosage form. J Sep Sci 2020; 44:833-842. [PMID: 33301650 DOI: 10.1002/jssc.202000937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 11/07/2022]
Abstract
Two simple, sensitive, and reproducible methods were developed for the determination of alogliptin and metformin hydrochloride in presence of metformin impurity "melamin" in pure form and in pharmaceutical formulation. Method (A) was a thin layer chromatographic method in which separation was achieved using ethyl acetate-methanol-formic acid (6:3.8:0.2, by volume) as a developing system followed by densitometric scanning at 230 nm. Method (B) was a high-performance liquid chromatography method; separation was achieved on C18 column, the mobile phase consisted of a mixture of sodium lauryl sulfate buffer 0.1% w/v, pH 3: methanol in the ratio 70:30, v/v and measurement was done at 220 nm. System suitability testing parameters were calculated to ascertain the quality performance of the developed chromatographic methods. The proposed methods have been validated regarding accuracy, precision, and selectivity, moreover they have been successfully applied to Westirizide tablets containing both alogliptin and metformin hydrochloride, results indicate that there was no interference from additives. No significance difference was found when these methods were compared to the reported one.
Collapse
Affiliation(s)
- Maimana A Magdy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Nouruddin W Ali
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed A Taha
- Chemistry Department, Faculty for Girls, Ain Shams University, Cairo, Egypt
| | - Ahmed M Elgebaly
- Analytical Chemistry Department, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Nehal F Farid
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
14
|
Rathod R, Ali F, Chandra A, Kumar R, Dahiya M, Singh GN. Simultaneous Determination of Alogliptin, Linagliptin, Saxagliptin, and Sitagliptin in Bulk Drug and Formulation by UPLC Q-TOF-MS. CURR PHARM ANAL 2020. [DOI: 10.2174/1573412915666190708162012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
A simple and sensitive Ultra Performance Liquid Chromatography-Mass Spectrometry
method was developed and validated to measure the concentrations of Alogliptin (ALO),
Linagliptin (LIN), Saxagliptin (SAX), and Sitagliptin (SIT) using Pioglitazone (PIO) as an internal
standard.
Methods:
Chromatographic separation of six gliptins was achieved on a C-18 column (100×2.1 mm,
2.7 μm) using a mobile phase consisting of formic acid in water, 0.1%v/v: acetonitrile in gradient elution.
Electrospray ionization (ESI) source was operated in the positive ion mode. Targeted MS/MS mode
on a QTOF MS was used to quantify the drug utilizing the transitions of 340.1(m/z), 473.2 (m/z), 316.2 (m/z),
408.1 (m/z), and 357.1 (m/z) for ALO, LIN, SAX, SIT and PIO respectively.
Results:
As per ICH Q2R1 guidelines, a detailed validation of the method was carried out and the
standard curves were found to be linear over the concentration ranges of 1516.0-4548.1 ng mL-1, 519.8-
1559.4 ng mL-1, 1531.4-4594.3 ng mL-1and 1519.6-4558.8 ng mL-1 for ALO, LIN, SAX and SIT respectively.
Precision and accuracy results were within the acceptable limits. The mean recovery was found to be
98.8 _ 0.76 % (GEM), 102.2 _ 1.59 % (LIN), 95.3 _ 2.74 % (SAX) and 99.2 _ 1.75 % (SIT) respectively.
Conclusions:
The optimized validated UPLC QTOF-MS/MS method offered the advantage of shorter
analytical times and higher sensitivity and selectivity. The optimized method is suitable for application
in quantitative analysis of pharmaceutical dosage forms for QC laboratory.
Collapse
Affiliation(s)
- Ramji Rathod
- Central Drugs Standard Control Organisation, Ministry of Health and Family Welfare, Govt. of India, New Delhi, India
| | - Faraat Ali
- Pharmaceutical Chemistry Division, Indian Pharmacopoeia Commission, Ministry of Health and Family Welfare, Govt. of India, Sector- 23, Rajnagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Amrish Chandra
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh 201313, India
| | - Robin Kumar
- Pharmaceutical Chemistry Division, Indian Pharmacopoeia Commission, Ministry of Health and Family Welfare, Govt. of India, Sector- 23, Rajnagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Meenakshi Dahiya
- Pharmaceutical Chemistry Division, Indian Pharmacopoeia Commission, Ministry of Health and Family Welfare, Govt. of India, Sector- 23, Rajnagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Gyanendra Nath Singh
- Pharmaceutical Chemistry Division, Indian Pharmacopoeia Commission, Ministry of Health and Family Welfare, Govt. of India, Sector- 23, Rajnagar, Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
15
|
Lotfy HM, Mohamed EH. Induced mathematical filtration as an innovative strategy for discrimination and estimation of glycemic control drugs in fixed dose combination. Heliyon 2020; 6:e05289. [PMID: 33145447 PMCID: PMC7591735 DOI: 10.1016/j.heliyon.2020.e05289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/14/2020] [Accepted: 10/14/2020] [Indexed: 11/28/2022] Open
Abstract
An innovative strategy was developed for the estimation of a fixed dose combination containing Alogliptin (ALO) and pioglitazone (PIO) using induced concept for resolving the overlapped spectra, lacking isoabsorptive point. This strategy is based on coupling factors as numerical values or ratios as spectrum form with the recorded signals leading to induced mathematical filtration of the drug of interest and complete elimination of the interfering one in the combination without prior physical separation. The calculated factors were factor of equality in induced dual wavelength (IDW) or absorptivity factor in induced concentration subtraction method (ICS) while absorptivity ratio spectrum for induced amplitude modulation method (IAM). The calibration curves displayed linearity within 1.0–16.0 μg/mL for ALO and 2.0–22.0 μg/mL for PIO with good correlation coefficients. The induced methods specificity was also assured through the assaying different synthetic mixtures prepared to contain the two drugs in ratios approaching the ratio actually found in the marketed dosage form. The methods were applicable and suitable for estimating ALO and PIO in both bulk form and their fixed dose combination. Induced methods have been extensively validated in accordance with ICH guidelines and results demonstrated the accuracy and reproducibility in comparison to the reported method.
Collapse
Affiliation(s)
- Hayam M Lotfy
- Pharmaceutical Chemistry Department, Faculty of Pharmaceutical Science & Pharmaceutical Industries, Future University in Egypt, 12311, Cairo, Egypt
| | - Ekram H Mohamed
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, 11837, El-Sherouk City, Cairo, Egypt.,The Center of Drug Research and Development, Faculty of Pharmacy, The British University in Egypt, 11837, El-Sherouk City, Cairo, Egypt
| |
Collapse
|
16
|
Kang YJ, Jeong HC, Kim TE, Shin KH. Bioanalytical Method Using Ultra-High-Performance Liquid Chromatography Coupled with High-Resolution Mass Spectrometry (UHPL-CHRMS) for the Detection of Metformin in Human Plasma. Molecules 2020; 25:molecules25204625. [PMID: 33050662 PMCID: PMC7587192 DOI: 10.3390/molecules25204625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 12/18/2022] Open
Abstract
Metformin is the first-line medicine for the treatment of type 2 diabetes. Drug interactions between metformin and other drugs, food, or beverages cannot only cause changes in the pharmacokinetic profiles but also affect the efficacy of metformin. The purpose of this study was to develop a rapid and reliable bioanalytical method for the detection of plasma metformin concentration in humans. To remove interfering substances in plasma, acidified acetonitrile (acetonitrile containing 0.1% formic acid) was added to samples. Ultra-high-performance liquid chromatography (UHPLC) coupled with high resolution mass spectrometry (HRMS) was used to analyze metformin and its internal standard (metformin-d6). Analyte separation was performed on a BEH HILIC analytical column (100 × 2.1 mm, 1.7 μm) using a gradient elution of 0.1% formic acid (A) and acetonitrile with 0.1% formic acid (B). The total chromatographic run time was 2 min. The developed method was validated for its linearity, accuracy and precision, selectivity (signal of interfering substance; analyte, lower limit of quantification (LLOQ) ≤ 20%; IS, IS ≤ 5%), sensitivity (LLOQ, 5 ng/mL; S/N ratio ≥ 10), stability (low quality control (LQC, 15 ng/mL), 2.95–14.19%; high quality control (HQC, 1600 ng/mL), −9.49–15.10%), dilution integrity (diluted QC (4000 ng/mL); 10-folds diluted QC (400 ng/mL); 5-folds diluted QC (800 ng/mL); accuracy, 81.30–91.98%; precision, ≤4.47%), carry-over (signal of double blank; analyte, LLOQ ≤20%; IS, IS ≤5%), and matrix effect (LQC, 10.109%; HQC, 12.271%) under various conditions. The constructed calibration curves were shown linear in the concentration range of 5–2000 ng/mL, with within- and between-run precision values of <8.19% and accuracy in the range of 91.13–105.25%. The plasma metformin concentration of 16 healthy subjects was successfully measured by applying the validated bioanalytical method.
Collapse
Affiliation(s)
- Ye-Ji Kang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (Y.-J.K.); (H.-C.J.)
| | - Hyeon-Cheol Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (Y.-J.K.); (H.-C.J.)
| | - Tae-Eun Kim
- Department of Clinical Pharmacology, Konkuk University Medical Center, Seoul 05029, Korea;
| | - Kwang-Hee Shin
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (Y.-J.K.); (H.-C.J.)
- Correspondence: ; Tel.: +82-53-950-8582
| |
Collapse
|
17
|
Wattamwar T, Mungantiwar A, Gujar S, Pandita N. Development of LC-MS/MS method for simultaneous determination of Canagliflozin and Metformin in human plasma and its pharmacokinetic application in Indian population under fast and fed conditions. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1154:122281. [PMID: 32763846 DOI: 10.1016/j.jchromb.2020.122281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 01/19/2023]
Abstract
A novel, selective and sensitive method is developed for simultaneous estimation of canagliflozin and metformin and successfully applied to fast and fed pharmacokinetic studies in healthy Indian volunteers. The current study reports the development, optimization, and validation of liquid chromatography-mass spectrometry (LC-MS/MS) method for simultaneous quantification of canagliflozin and metformin in human plasma using deuterated canagliflozin D4 and metformin D6 as an internal standard (IS). The solid-phase extraction technique was employed where strata X polymeric reverse phase (30 mg-1 cc) SPE cartridges were used for the extraction of analytes and IS from plasma. The ACE 5 C18 column (50 × 4.6 mm, 5µ) was used to chromatograph the prepared samples. The mobile phase consisted of methanol and 5 mM ammonium trifluoroacetate in water, pH 5 (50:50, v/v) at a flow rate of 0.8 mL/min. Detection was performed by positive ion Turbo ion spray in Multiple reaction monitoring (MRM) mode, monitoring the transitions m/z 461.9 → m/z 191.1 and m/z 461.9 → m/z 267.2, for quantification of canagliflozin. The response of canagliflozin fragments m/z 461.9 → m/z 191.1 and m/z 461.9 → m/z 267.2 was combined. Also, for metformin transitions were monitored at m/z 130.0 → m/z 71.1. Full validation of the method was performed according to the United States Food and Drugs Administration (USFDA) guidelines. Linearity was in the range of 24.95-2806.55 ng/mL for canagliflozin and 24.99-3400.72 ng/mL for metformin. The mean extraction recovery of canagliflozin, canagliflozin D4, metformin, and metformin D6 was 77.240, 84.663, 66.747, and 67.449, respectively across four QC levels. This rapid method with the run time of 2.80 min allows the analysis of more than 400 plasma samples per day.
Collapse
Affiliation(s)
- Tejas Wattamwar
- Bioequivalence Department, Macleods Pharmaceuticals Ltd., Mumbai 400093, India; Department of Chemistry, Sunandan Divatia School of Science, NMIMS, Mumbai 400056, India.
| | - Ashish Mungantiwar
- Bioequivalence Department, Macleods Pharmaceuticals Ltd., Mumbai 400093, India
| | - Supriya Gujar
- Bioequivalence Department, Macleods Pharmaceuticals Ltd., Mumbai 400093, India
| | - Nancy Pandita
- Department of Chemistry, Sunandan Divatia School of Science, NMIMS, Mumbai 400056, India
| |
Collapse
|
18
|
Wagner A, Zhang J, Liu C, Covey TR, Olah TV, Weller H(BN, Shou WZ. Ultrahigh-Throughput and Chromatography-Free Bioanalysis of Polar Analytes with Acoustic Ejection Mass Spectrometry. Anal Chem 2020; 92:13525-13531. [DOI: 10.1021/acs.analchem.0c03006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Andrew Wagner
- Bristol-Myers Squibb, 3551 Lawrenceville Princeton Road, Princeton, New Jersey 08648, United States
| | - Jun Zhang
- Bristol-Myers Squibb, 3551 Lawrenceville Princeton Road, Princeton, New Jersey 08648, United States
| | - Chang Liu
- Sciex, 71 Four Valley Drive, Concord, Ontario L4K 4 V8, Canada
| | - Thomas R. Covey
- Sciex, 71 Four Valley Drive, Concord, Ontario L4K 4 V8, Canada
| | - Timothy V. Olah
- Bristol-Myers Squibb, 3551 Lawrenceville Princeton Road, Princeton, New Jersey 08648, United States
| | - Harold (Bud) N. Weller
- Bristol-Myers Squibb, 3551 Lawrenceville Princeton Road, Princeton, New Jersey 08648, United States
| | - Wilson Z. Shou
- Bristol-Myers Squibb, 3551 Lawrenceville Princeton Road, Princeton, New Jersey 08648, United States
| |
Collapse
|
19
|
Wafaa A. Zaghary, Mowaka S, Hendy MS. Sample Enrichment of Canagliflozin Prior to Its Spectrophotometric Determination in Presence of Metformin: Application to Recently Approved Binary Dosage Form. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820060180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Derayea SM, Gahlan AA, Omar MA, Saleh GA, Haredy AM. Spectrofluorometric determination of alogliptin an antidiabetic drug in pure and tablet form using fluorescamine, a fluorogenic agent: application to content uniformity test. LUMINESCENCE 2020; 35:1028-1035. [PMID: 32588538 DOI: 10.1002/bio.3812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 11/09/2022]
Abstract
Alogliptin is an antidiabetic drug that belongs to a group called dipeptidyl peptidase-4 enzyme inhibitors. As the drug contains a primary amino group in its structure, it readily reacts with fluorescamine in slightly alkaline medium (borate buffer, pH 8.8) to form a highly fluorescent product. Emission of this product was measured at 477 nm (λex = 387 nm). The linear range between the fluorescence intensity and the drug concentration was 0.1-0.5 μg ml-1 with a good correlation coefficient (0.9986). Limits of detection and quantitation were 22 and 72 ng ml-1 , respectively. Guidelines of the International Conference for Harmonisation were followed to validate the developed method with acceptable results. Alogliptin content was determined successfully in its commercial dosage form using the fluorescamine method with good recovery (98.60-101.26%). The method has excellent levels of accuracy and precision compared with the reported method as assessed using Student's t-test and Fisher's exact test. The method was applied successfully for the content uniformity test with high recovery and low relative standard deviation.
Collapse
Affiliation(s)
- Sayed M Derayea
- Analytical Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Ahmed A Gahlan
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Mahmoud A Omar
- Analytical Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt.,Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Medinah, Saudi Arabia
| | - Gamal A Saleh
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Ahmed M Haredy
- Analytical Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
21
|
Wattamwar T, Mungantiwar A, Halde S, Pandita N. Development of simultaneous determination of empagliflozin and metformin in human plasma using liquid chromatography-mass spectrometry and application to pharmacokinetics. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2020; 26:117-130. [PMID: 31575298 DOI: 10.1177/1469066719879297] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A rapid and sensitive liquid chromatography-mass spectrometry method was developed, optimized, and validated for simultaneous quantification of empagliflozin and metformin in human plasma using empagliflozin D4and metformin D6 as an internal standard. Analytes and internal standard were extracted from plasma by optimized solid-phase extraction technique using Strata X polymeric reverse phase (30 mg-1cc) solid-phase extraction cartridges. The prepared samples were chromatographed on Orosil C18 column (150 × 4.6 mm, 3 µ). Separation was done by pumping isocratic mobile phase consisting of methanol and 10 mM ammonium trifluoroacetate (90:10, v/v) in positive ion mode at a flow rate of 0.8 mL/min. The API 3200 liquid chromatography-mass spectrometry system having turbo ion spray as an ion source coupled with Shimadzu Prominence ultrafast liquid chromatography system was operated under the selected reaction monitoring mode. Turbo ion spray ionization was used for mass transition of m/z 468.070/355.100 and m/z 130.072/71.200 for empagliflozin and metformin, respectively. A method was successfully validated for concentration range of 10.09-5013.46 ng/mL for both the analytes and according to the United States Food and Drugs Administration guidelines. The linearity was found to be in the range of 10.09-403.46 ng/mL for empagliflozin and 25.44-5013.46 ng/mL for metformin. The limit of quantification was found to be 10.09 ng/mL for empagliflozin and 25.44 ng/mL for metformin. Intra- and inter-day/between batch precision determination for empagliflozin and metformin, expressed as coefficient of variation were within the acceptance limits and ranged below 13.16%. A short run time of 3.3 min allows analysis of more than 400 plasma samples per day. The developed method was successfully applied to fasting pharmacokinetic study in healthy human volunteers. Results of incurred sample re-analysis were within the acceptance range of ±20% of original value, for 97.2% of samples reanalyzed for empagliflozin and 100% of samples reanalyzed for metformin.
Collapse
Affiliation(s)
- Tejas Wattamwar
- Bioequivalence Department, Macleods Pharmaceuticals Ltd, Mumbai, India
- Department of Chemistry, Sunandan Divatia School of Science, NMIMS, Mumbai, India
| | | | - Supriya Halde
- Bioequivalence Department, Macleods Pharmaceuticals Ltd, Mumbai, India
| | - Nancy Pandita
- Department of Chemistry, Sunandan Divatia School of Science, NMIMS, Mumbai, India
| |
Collapse
|
22
|
LC-MS/MS method for simultaneous determination of rivaroxaban and metformin in rat plasma: application to pharmacokinetic interaction study. Bioanalysis 2019; 11:2269-2281. [PMID: 31845601 DOI: 10.4155/bio-2019-0230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: A reliable, sensitive and simple LC-MS/MS method has been established and validated for the quantitation of rivaroxaban (RIV) and metformin (MET) in rat plasma. Results: The procedure of method validation was conducted according to the guiding principles of EMA and US FDA. At the same time, the method was applied to pharmacokinetic interactions study between RIV and MET for the first time. When RIV and MET coadministered to rats, pharmacokinetic parameters of MET like AUC(0-t), AUC(0-∞) and Cmax had statistically significant increased. tmax of RIV was prolonged without affecting t1/2 obviously and Cmax was inhibited significantly (p < 0.05) by comparison to the single group. Conclusion: The results indicated that drug-drug interactions occurred when the coadministration of RIV and MET.
Collapse
|
23
|
Scherf-Clavel O, Kinzig M, Stoffel MS, Fuhr U, Sörgel F. A HILIC-MS/MS assay for the quantification of metformin and sitagliptin in human plasma and urine: A tool for studying drug transporter perturbation. J Pharm Biomed Anal 2019; 175:112754. [PMID: 31336285 DOI: 10.1016/j.jpba.2019.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 12/19/2022]
Abstract
This article describes the development and validation of a HILIC-MS/MS method for the simultaneous quantification of metformin and sitagliptin from human plasma and urine. The presented method uses quick sample preparation and fast chromatography allowing for high sample throughput. The quantification is performed using multi-reaction monitoring and ESI positive mode with stable isotope labelled internal standards for both metformin and sitagliptin. Excellent linearity in the selected calibrations ranges, low inter-day variability (CV% <6.7%), and high accuracy (95.5-104.1%) were obtained. Adequate retention was attained for both analytes by hydrophilic interaction liquid chromatography using a plain silica column in combination with a mobile phase composed of ammonium formate, acetonitrile, formic acid and water in gradient separation mode.
Collapse
Affiliation(s)
- Oliver Scherf-Clavel
- IMBP - Institute for Biomedical and Pharmaceutical Research, Paul-Ehrlich-Straße 19, D-90562, Nürnberg-Heroldsberg, Germany
| | - Martina Kinzig
- IMBP - Institute for Biomedical and Pharmaceutical Research, Paul-Ehrlich-Straße 19, D-90562, Nürnberg-Heroldsberg, Germany
| | - Marc S Stoffel
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Gleueler Str. 24, D-50931, Cologne, Germany
| | - Uwe Fuhr
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Gleueler Str. 24, D-50931, Cologne, Germany
| | - Fritz Sörgel
- IMBP - Institute for Biomedical and Pharmaceutical Research, Paul-Ehrlich-Straße 19, D-90562, Nürnberg-Heroldsberg, Germany; University of Duisburg-Essen, Faculty of Medicine,Institute of Pharmacology, Hufelandstraße 55, D-45122, Essen, Germany.
| |
Collapse
|
24
|
Attallah MA, Mowaka S, Elkady EF, Fouad M, Ayoub B. Analysis and bio-analysis of omarigliptin, trelagliptin and alogliptin: Applied to biological samples and degradation kinetic study. Microchem J 2019. [DOI: 10.1016/j.microc.2019.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Mahrouse MA, Lamie NT. Experimental design methodology for optimization and robustness determination in ion pair RP-HPLC method development: Application for the simultaneous determination of metformin hydrochloride, alogliptin benzoate and repaglinide in tablets. Microchem J 2019. [DOI: 10.1016/j.microc.2019.03.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Elgawish MS, Nasser S, Salama I, Abbas AM, Mostafa SM. Liquid chromatography tandem mass spectrometry for the simultaneous determination of metformin and pioglitazone in rat plasma: Application to pharmacokinetic and drug-drug interaction studies. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1124:47-57. [PMID: 31177048 DOI: 10.1016/j.jchromb.2019.05.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/27/2019] [Accepted: 05/30/2019] [Indexed: 01/13/2023]
Abstract
Failure to attain and sustain long term glycemic control is an ongoing challenge in diabetes therapy. The trend to use a combined therapy and the risk of drug-drug interaction (DDI) are elevated and thus the need for sensitive analytical methods is of great significance. Herein, a simple, robust, and sensitive reverse phase high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (ESI-MS/MS) method for simultaneous determination of metformin (MET) and pioglitazone (PGT) in rat plasma using canagliflozin (CAN) as internal standards (IS) was developed and fully validated. Prior Chromatographic separation on an Agilent Eclipse Plus C18 (4.6 × 100 mm, 3.5 μm) using gradient mobile phase system consisting of ammonium formate pH 4.5 and acetonitrile at a flow rate of 0.5 mL min-1, within a run time of 14 min, the antidiabetic drugs were extracted from rat plasma using acetonitrile-induced protein precipitation technique. Multiple reaction monitoring in positive ion mode was used for quantitation of precursor to production at m/z 130.1 → 71.0 & 60 for MET, 357.2 → 134.2 for PGT, and 462.16 → 191.1 for CAN. Method linearity was obeyed in the range of 1 to 5000 and 1 to 2500 ng mL-1 for MET and PGT, respectively. The developed method was validated in terms of accuracy, precision, selectivity, recovery, matrix effects, and stability as per US-FDA bioanalytical guidelines and successfully applied to clinical pharmacokinetic and DDI studies with a single oral administration of target compounds. The peak plasma concentrations (Cmax) and area under the concentration-time curve (AUC) of MET was significantly influenced by the concomitant administration of PGT at equal concentration and vice versa. PGT affected the absorption and elimination rate of MET via inhibition of organic cationic transporter (OCT). Molecular modeling study revealed the significant interaction of PGT with OCT. A potential DDI in type 2 diabetic patient receiving chronic treatment with MET and PGT deserves further attention and study to improve drug therapy and prevent adverse effects.
Collapse
Affiliation(s)
- Mohamed Saleh Elgawish
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt.
| | - Sally Nasser
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Pharmaceutical Industries, Sinai University, Arish, Egypt
| | - Ismail Salama
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Abbas Mamdoh Abbas
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Samia M Mostafa
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
27
|
Kinetic Degradation Study of Dapagliflozin Coupled with UHPLC Separation in the Presence of Major Degradation Product and Metformin. Chromatographia 2019. [DOI: 10.1007/s10337-019-03702-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
28
|
Shah PA, Shrivastav PS. Ion-pair solid phase extraction for the simultaneous separation and quantitation of metformin and canagliflozin in human plasma by LC-MS/MS. Microchem J 2018. [DOI: 10.1016/j.microc.2018.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
29
|
Ayoub BM, Mowaka S, Safar MM, Ashoush N, Arafa MG, Michel HE, Tadros MM, Elmazar MM, Mousa SA. Repositioning of Omarigliptin as a once-weekly intranasal Anti-parkinsonian Agent. Sci Rep 2018; 8:8959. [PMID: 29895906 PMCID: PMC5997767 DOI: 10.1038/s41598-018-27395-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/30/2018] [Indexed: 12/13/2022] Open
Abstract
Drug repositioning is a revolution breakthrough of drug discovery that presents outstanding privilege with already safer agents by scanning the existing candidates as therapeutic switching or repurposing for marketed drugs. Sitagliptin, vildagliptin, saxagliptin & linagliptin showed antioxidant and neurorestorative effects in previous studies linked to DPP-4 inhibition. Literature showed that gliptins did not cross the blood brain barrier (BBB) while omarigliptin was the first gliptin that crossed it successfully in the present work. LC-MS/MS determination of once-weekly anti-diabetic DPP-4 inhibitors; omarigliptin & trelagliptin in plasma and brain tissue was employed after 2 h of oral administration to rats. The brain/plasma concentration ratio was used to deduce the penetration power through the BBB. Results showed that only omarigliptin crossed the BBB due to its low molecular weight & lipophilic properties suggesting its repositioning as antiparkinsonian agent. The results of BBB crossing will be of interest for researchers interested in Parkinson's disease. A novel intranasal formulation was developed using sodium lauryl sulphate surfactant to solubilize the lipophilic omarigliptin with penetration enhancing & antimicrobial properties. Intranasal administration showed enhanced brain/plasma ratio by 3.3 folds compared to the oral group accompanied with 2.6 folds increase in brain glucagon-like peptide-1 concentration compared to the control group.
Collapse
Affiliation(s)
- Bassam M Ayoub
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo, Egypt.
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo, Egypt.
| | - Shereen Mowaka
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo, Egypt
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo, Egypt
- Analytical Chemistry Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, Egypt
| | - Marwa M Safar
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo, Egypt
- Pharmacology & Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo, Egypt
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini st., Cairo, Egypt
| | - Nermeen Ashoush
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo, Egypt
- Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo, Egypt
| | - Mona G Arafa
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo, Egypt
- Pharmaceutics Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo, Egypt
- Chemotheraputic Unit, Mansoura University Hospitals, Mansoura, 35516, Egypt
| | - Haidy E Michel
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Ain Shams University, El-Abaseya, Cairo, Egypt
| | - Mariam M Tadros
- Analytical Chemistry Department, Faculty of Pharmacy, Ain Shams University, El-Abaseya, Cairo, Egypt
| | - Mohamed M Elmazar
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo, Egypt
- Pharmacology & Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo, Egypt
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
| |
Collapse
|
30
|
Mechanistic study for the simultaneous determination of metformin and teneligliptin in human plasma using hydrophilic interaction liquid chromatography–MS/MS. Bioanalysis 2018; 10:475-488. [DOI: 10.4155/bio-2018-0007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aim: A simple, selective and sensitive hydrophilic interaction liquid chromatography-MS/MS method is developed for the simultaneous determination of metformin (MET) and teneligliptin (TEN) in human plasma using deuterated internal standards. The mechanism of retention of analytes was studied by varying the proportion of organic diluent, buffer strength, pH of the mobile phase and temperature. Results: The results showed a mixed-mode mechanism comprising of hydrophilic (partition) and electrostatic interaction (ion exchange) for MET and essentially hydrophilic for TEN. The linear calibration curves were established in the concentration range of 1.0–1000 ng/ml for MET and 0.50–750 ng/ml for TEN. Conclusion: The method was applied to determine plasma concentration of MET and TEN in healthy subjects.
Collapse
|
31
|
Zaghary WA, Mowaka S, Hendy MS. Comparative Liquid Chromatographic Study for Concurrent Determination of Canagliflozin and Metformin in Combined Tablets. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2017; 2017:9197230. [PMID: 29333319 PMCID: PMC5733124 DOI: 10.1155/2017/9197230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/08/2017] [Accepted: 10/16/2017] [Indexed: 06/07/2023]
Abstract
New HPLC-UV method (method A), for simultaneous determination of metformin (MET) and canagliflozin (CANA), was developed and compared to another novel UPLC-UV method (method B) in their tablet combination. Concerning method A, isocratic separation was done by C18 column (100 mm × 2.1 mm, 3 μm) using methanol and 0.03 M phosphate buffer (75 : 25, v/v) at pH 3.2 as a mobile phase. Meanwhile, chromatographic separation in method B was achieved via Hypersil® gold (50 mm × 2.1 mm, 1.9 μm). Mobile phase was methanol and 0.03 M phosphate buffer at ratio of 80 : 20 v/v. In both, detection was done at wavelength of 240 nm. Method A showed satisfactory linearity results over 1-50 μg·mL-1 and 0.5-100 μg·mL-1, while method B linearity was at 0.1-50 μg·mL-1 and 0.25-100 μg·mL-1 for CANA and MET, respectively. In terms of accuracy and precision, method A accuracy was 99.81 ± 0.73 and 99.37 ± 0.54, while method B gave accuracy of 99.47 ± 1.03 and 99.73 ± 0.89 for CANA and MET, respectively. For precision, the % RSD was found to be less than 2% for three concentrations analyzed three times. The two methods are convenient for quality laboratories, yet the UPLC method offered the advantage of shorter run times and higher sensitivity.
Collapse
Affiliation(s)
- Wafaa A. Zaghary
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo 11795, Egypt
| | - Shereen Mowaka
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt
- Analytical Chemistry Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo 11795, Egypt
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt
| | - Moataz S. Hendy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt
| |
Collapse
|
32
|
A validated UHPLC-QTOF-MS method for quantification of metformin and teneligliptin in rat plasma: Application to pharmacokinetic interaction study. J Pharm Biomed Anal 2017; 143:1-8. [DOI: 10.1016/j.jpba.2017.05.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 12/11/2022]
|
33
|
Abdel-Ghany MF, Ayad MF, Tadros MM. Enhanced LC-MS/MS analysis of alogliptin and pioglitazone in human plasma: Applied to a preliminary pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1058:93-101. [PMID: 28528664 DOI: 10.1016/j.jchromb.2017.04.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 04/07/2017] [Accepted: 04/25/2017] [Indexed: 10/19/2022]
Abstract
A new fast LC-MS/MS method was developed for determination of alogliptin and pioglitazone in human plasma. Linearity ranges of 10-400ngmL-1 for alogliptin and 25-2000ngmL-1 for pioglitazone, were found to be suitable for their bioanalysis covering the Cmin and Cmax values of the drugs. Direct precipitation technique was used for simultaneous extraction of the drugs successfully from human plasma samples. Chromatographic separation was achieved on a BEH C18 column (50mm×2.1mm, 1.7μm) with 0.1% aqueous formic acid: acetonitrile (40:60, v/v) at a flow rate of 0.3mLmin-1. The validated method was applied to a preliminary pharmacokinetic study on human volunteers. Monitoring the transition pairs of m/z 340.18 to 116.08 for alogliptin and m/z 356.99 to 133.92 for pioglitazone, using triple quadrupole mass spectrometer with multiple reaction monitoring, was achieved in the positive mode. The validated method is accurate and suitable for further clinical applications and possible bioequivalence studies.
Collapse
Affiliation(s)
- Maha F Abdel-Ghany
- Analytical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Miriam F Ayad
- Analytical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Mariam M Tadros
- Analytical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt.
| |
Collapse
|