1
|
Kanwal N, Khan M, Khan SA, Bari A, Ali EA, Sun W, Rehman T, Nishan U, Badshah A. Chitosan-stabilized copper oxide nanoparticles: A novel colorimetric approach for ascorbic acid sensing. Anal Biochem 2025; 702:115855. [PMID: 40157528 DOI: 10.1016/j.ab.2025.115855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/01/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Ascorbic acid is implicated in various diseases such as scurvy, oxidative stress, cardiovascular diseases, etc. Herein, for the first time, a simple and efficient strategy was used to synthesize cross-linked chitosan-stabilized copper oxide nanoparticles (CuO@C-CS) as a non-toxic and biodegradable-based approach. Various spectroscopic techniques, including FTIR, XRD, SEM, EDX, TGA, and elemental mapping, confirmed the synthesis of the material. The synthesized nanozyme (CuO@C-CS) was used as a peroxidase mimic for the detection of ascorbic acid, through the chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB) with the assistance of hydrogen peroxide. The synthesized mimic enzyme transforms colorless TMB into oxTMB. The sensing of ascorbic acid was achieved through the peroxidase-like inhibitory activity of the mimic enzyme along with the reduction of oxTMB. The sensor system was fine-tuned, and it showed a limit of detection, a limit of quantification, a linear range, and regression coefficient values of 0.24 μM, 0.80 μM, 1-96 μM, and 0.999, respectively. The fabricated sensor was very selective in the presence of various potential interferents. The proposed sensor was successfully applied to commercially available orange juices for the qualitative and quantitative determination of ascorbic acid. The sensor can be used for the determination of ascorbic acid in biomedical and food samples.
Collapse
Affiliation(s)
- Nazish Kanwal
- Department of Chemistry, Kohat University of Science and Technology, Kohat, 26000, KP Pakistan
| | - Mansoor Khan
- Department of Chemistry, Kohat University of Science and Technology, Kohat, 26000, KP Pakistan
| | - Saeed Ahmad Khan
- Department of Pharmacy, University of Science and Technology, Kohat, 26000, KP Pakistan
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Essam A Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Wei Sun
- Hainan International Joint Research Center of Marine Advanced Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, PR China
| | - Tanzila Rehman
- Department of Chemistry, The Women University, Multan, Pakistan
| | - Umar Nishan
- Department of Chemistry, Kohat University of Science and Technology, Kohat, 26000, KP Pakistan.
| | - Amir Badshah
- Department of Chemistry, Kohat University of Science and Technology, Kohat, 26000, KP Pakistan.
| |
Collapse
|
2
|
Wei M, Yuan Y, Chen D, Pan L, Tong W, Lu W. A systematic review on electrochemical sensors for the detection of acetaminophen. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6134-6155. [PMID: 39207184 DOI: 10.1039/d4ay01307g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Considerable progress has been made in the electrochemical determination of acetaminophen (AP) over the past few decades. Nanomaterials or enzymes as electrode modifiers greatly improve the performance of AP electrochemical sensors. This review focuses on the development potential, detection principles and techniques for the electrochemical analysis of AP. In particular, the design and construction of AP electrochemical sensors are discussed from the perspective of non-enzyme materials (such as nanomaterials, including precious metals, transition metals and non-metals) and enzyme substances (such as aryl acylamidase, polyphenol oxidase and horseradish peroxidase). Moreover, the influencing factors for AP electrochemical sensors and the simultaneous detection of AP and other targets are summarized, and the future prospective of AP electrochemical sensors is outlined. This review provides a reference and guidance for the development and application of electrochemical sensors for AP detection.
Collapse
Affiliation(s)
- Ming Wei
- Kangda College of Nanjing Medical University, Lianyungang 222000, Jiangsu, China.
| | - Yikai Yuan
- Kangda College of Nanjing Medical University, Lianyungang 222000, Jiangsu, China.
| | - Dongsheng Chen
- Kangda College of Nanjing Medical University, Lianyungang 222000, Jiangsu, China.
| | - Lin Pan
- Department of Laboratory Medicine, Tianjin Peace District Obstetrics and Gynecology Hospital, Tianjin, 300020, China
| | - Wenting Tong
- Kangda College of Nanjing Medical University, Lianyungang 222000, Jiangsu, China.
| | - Wenbo Lu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, Shanxi, China.
| |
Collapse
|
3
|
Tecuapa-Flores ED, Palacios-Cabrera CB, Santiago-Cuevas AJ, Hernández JG, Narayanan J, Thangarasu P. Simultaneous recognition of dopamine and uric acid in real samples through highly sensitive new electrode fabricated using ZnO/carbon quantum dots: bio-imaging and theoretical studies. Analyst 2023; 149:108-124. [PMID: 37982410 DOI: 10.1039/d3an01467c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Dopamine (DA) and uric acid (UA), which are vital components in human metabolism, cause several health problems if they are present in altered concentrations; thus, the determination of DA and UA is essential in real samples using selective sensors. In the present study, graphite carbon paste electrodes (CPE) were fabricated using ZnO/carbon quantum dots (ZnO/CQDs) and employed as electrochemical sensors for the detection of DA and UA. These electrodes were fully characterized via different analytical techniques (XRD, SEM, TEM, XPS, and EDS). The electrochemical responses from the modified electrodes were evaluated using cyclic voltammetry, square wave voltammetry, and electrochemical impedance spectroscopy. The results showed that the present electrode has exhibited high sensitivity towards DA, recognizing even at low concentrations (0.12 μM), and no inference was observed in the presence of UA. The ZnO/CQD electrode was applied for the simultaneous detection of co-existing DA and UA in real human urine samples and the peak potential separation between DA and UA was found to be greatly associated with the synergistic effect originated from ZnO and CQDs. The limit of detection (LOD) of the electrode was analyzed, and compared with other commercially available electrodes. Thus, the ZnO/CQD electrode was used to detect DA and UA in real samples, such as Saccharomyces cerevisiae cells.
Collapse
Affiliation(s)
- Eduardo D Tecuapa-Flores
- División de Ingeniería en Nanotecnología, Universidad Politécnica del Valle de México, Av. Mexiquense s/n esquina Av. Universidad Politécnica, Tultitlán, Estado de México CP 54910, México
| | - Cristian B Palacios-Cabrera
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510, México D. F., México.
| | - Alan J Santiago-Cuevas
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510, México D. F., México.
| | - José G Hernández
- Centro Tecnológico, Facultad de Estudios Superiores (FES-Aragón), Universidad Nacional Autónoma de México (UNAM), Estado de México, CP 57130, México
| | - Jayanthi Narayanan
- División de Ingeniería en Nanotecnología, Universidad Politécnica del Valle de México, Av. Mexiquense s/n esquina Av. Universidad Politécnica, Tultitlán, Estado de México CP 54910, México
| | - Pandiyan Thangarasu
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510, México D. F., México.
| |
Collapse
|
4
|
Lei P, Zhou Y, Sun X, Dong C, He Y, Liu Y, Shuang S. Green Synthesis of Carbon Nanospheres for Enhanced Electrochemical Sensing of Dopamine. ChemElectroChem 2023. [DOI: 10.1002/celc.202201129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Peng Lei
- School of Chemistry and Chemical Engineering and Institute of Environmental Science Shanxi University Taiyuan 030006 China
- College of Science and Engineering James Cook University Queensland 4811 Australia
| | - Ying Zhou
- School of Chemistry and Chemical Engineering and Institute of Environmental Science Shanxi University Taiyuan 030006 China
| | - Xincheng Sun
- School of Chemistry and Chemical Engineering and Institute of Environmental Science Shanxi University Taiyuan 030006 China
| | - Chuan Dong
- School of Chemistry and Chemical Engineering and Institute of Environmental Science Shanxi University Taiyuan 030006 China
| | - Yinghe He
- College of Science and Engineering James Cook University Queensland 4811 Australia
| | - Yang Liu
- College of Science and Engineering James Cook University Queensland 4811 Australia
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering and Institute of Environmental Science Shanxi University Taiyuan 030006 China
| |
Collapse
|
5
|
Aliyari M, Ghanbari K. Highly Sensitive and Selective Electrochemical Determination of Uric Acid in the Presence of Ascorbic Acid and Dopamine Using a Copper Nanoparticle-Tartrazine Nanocomposite Modified Glassy Carbon Electrode by Differential Pulse Voltammetry. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2117819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
| | - Kh. Ghanbari
- Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Tehran, Iran
| |
Collapse
|
6
|
Cao T, Zhou Y, Wang H, Qiao R, Zhang X, Liu L, Tong Z. Preparation of polyfluorinated azobenzene/niobate composite as electrochemical sensor for detection of ascorbic acid and dopamine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Charlton van der Horst, Vernon Somerset. Nanoparticles Application in the Determination of Uric Acid, Ascorbic Acid, and Dopamine. RUSS J ELECTROCHEM+ 2022. [DOI: 10.1134/s102319352205010x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Polypyrrole Hollow Nanotubes Loaded with Au and Fe3O4 Nanoparticles for Simultaneous Determination of Ascorbic Acid, Dopamine, and Uric Acid. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2120-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Ali S, Sikdar S, Basak S, Das D, Roy D, Salman Haydar M, Kumar Dakua V, Adhikary P, Mandal P, Nath Roy M. Synthesis of β-Cyclodextrin Grafted Rhombohedral-CuO Antioxidant Nanozyme for Detection of Dopamine and Hexavalent Chromium through off-on Strategy of Peroxidase Mimicking activity. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Iranifam M, Haggi A, Akhteh H, Amini M, Al Lawati HAJ. Synthesis of rod-like CeO 2 nanoparticles and their application to catalyze the luminal-O 2 chemiluminescence reaction used in the determination of oxcarbazepine and ascorbic acid. ANAL SCI 2022; 38:787-793. [PMID: 35298793 DOI: 10.1007/s44211-022-00096-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/27/2022] [Indexed: 11/28/2022]
Abstract
Rod-like CeO2 nanoparticles (NPs) were produced by the quick precipitation approach and employed as a catalyzer to increase the chemiluminescence (CL) intensity of the luminol-O2 reaction. The transmission electron microscopy (TEM) images of the CeO2 NPs showed that rod-like particles with the length and diameter about 15 nm and 5 nm, respectively, were produced. Furthermore, pharmaceuticals including oxcarbazepine (OXP) and ascorbic acid (AA) showed an inhibitory effect against the CL intensity such that the more concentration of the pharmaceuticals, the less was the CL intensity. Therefore, the new CeO2 NPs-luminol-O2 CL reaction was developed to determine OXP and AA in the pharmaceutical formulations. It is the first CL method established for the quantification of OXP. The linear dynamic range of this method for OXP was from 6.0 × 10-7 to 6.0 × 10-5 mol L-1 and for AA from 1.0 × 10-6 to 1.0 × 10-4 mol L-1.
Collapse
Affiliation(s)
- Mortaza Iranifam
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box: 55181-83111, Maragheh, Iran.
| | - Asghar Haggi
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box: 55181-83111, Maragheh, Iran
| | - Hossein Akhteh
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box: 55181-83111, Maragheh, Iran
| | - Mojtaba Amini
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box: 55181-83111, Maragheh, Iran.,Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Haider A J Al Lawati
- Department of Chemistry, College of Science, Sultan Qaboos University, Box 36, Al-Khod, 123, Muscat, Oman
| |
Collapse
|
11
|
Direksilp C, Scheiger JM, Ariyasajjamongkol N, Sirivat A. A highly selective and sensitive electrochemical sensor for dopamine based on a functionalized multi-walled carbon nanotube and poly( N-methylaniline) composite. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:469-479. [PMID: 35029250 DOI: 10.1039/d1ay01943k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dopamine (DA) is an important neurotransmitter used for diagnosing various diseases from its abnormal concentrations in human fluids. Herein, an electrochemical sensor based on a composite of re-doped poly(N-methylaniline) (rePNMA) and modified multi-walled carbon nanotubes (fMWCNTs), termed fMWCNT-rePNMA, was developed to measure DA concentration. The successful modification of the fMWCNT surface was confirmed by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Cyclic voltammetry (CV) displayed an excellent electrocatalytic activity of the fMWCNTs-rePNMA composite towards the oxidation of DA. The developed fMWCNTs-rePNMA composite demonstrated a broad linear range from 5 to 90 μmol L-1 with a low limit of detection (LOD) value of 2.23 μmol L-1, and a fast response with a high sensitivity of 251.5 nA μmol-1 L as determined from the calibration curve of the DA determination. In addition, the fMWCNTs-rePNMA composite selectively identified and quantified DA in the presence of ascorbic acid (AA) and uric acid (UA). Therefore, the fMWCNTs-rePNMA composite sensor shows potential to determine the level of DA in human urine.
Collapse
Affiliation(s)
- Chatrawee Direksilp
- The Conductive and Electroactive Polymer Research Unit, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand.
- Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University Research Building, Soi Chula 12, Phayathai Road, Bangkok 10330, Thailand
| | - Johannes M Scheiger
- Institute of Technical Chemistry and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 20, Karlsruhe 76131, Germany
| | - Nuttha Ariyasajjamongkol
- The Conductive and Electroactive Polymer Research Unit, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Anuvat Sirivat
- The Conductive and Electroactive Polymer Research Unit, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand.
- Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University Research Building, Soi Chula 12, Phayathai Road, Bangkok 10330, Thailand
| |
Collapse
|
12
|
Al-Hinaai M, Khudaish EA. Electrochemical Construction of a Polymer-Metal Complex Surface Network for Selective Determination of Dopamine in Blood Serum. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1993878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mohammad Al-Hinaai
- College of Applied and Health Sciences, Department of Basic Science, A’Sharqiyah University, Ibri, Oman
| | - Emad A. Khudaish
- College of Science, Department of Chemistry, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
13
|
Kujawska M, Bhardwaj SK, Mishra YK, Kaushik A. Using Graphene-Based Biosensors to Detect Dopamine for Efficient Parkinson's Disease Diagnostics. BIOSENSORS 2021; 11:433. [PMID: 34821649 PMCID: PMC8615362 DOI: 10.3390/bios11110433] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 05/08/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease in which the neurotransmitter dopamine (DA) depletes due to the progressive loss of nigrostriatal neurons. Therefore, DA measurement might be a useful diagnostic tool for targeting the early stages of PD, as well as helping to optimize DA replacement therapy. Moreover, DA sensing appears to be a useful analytical tool in complex biological systems in PD studies. To support the feasibility of this concept, this mini-review explores the currently developed graphene-based biosensors dedicated to DA detection. We discuss various graphene modifications designed for high-performance DA sensing electrodes alongside their analytical performances and interference studies, which we listed based on their limit of detection in biological samples. Moreover, graphene-based biosensors for optical DA detection are also presented herein. Regarding clinical relevance, we explored the development trends of graphene-based electrochemical sensing of DA as they relate to point-of-care testing suitable for the site-of-location diagnostics needed for personalized PD management. In this field, the biosensors are developed into smartphone-connected systems for intelligent disease management. However, we highlighted that the focus should be on the clinical utility rather than analytical and technical performance.
Collapse
Affiliation(s)
- Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland
| | - Sheetal K. Bhardwaj
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands;
- Amsterdam Scientific Instruments B.V., Science Park 106, 1098 XG Amsterdam, The Netherlands
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alison 2, 6400 Sønderborg, Denmark;
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health System Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805, USA;
| |
Collapse
|
14
|
Simultaneous and sensitive determination of uric acid and p-cresol in human urine samples based on activated graphite-supported gadolinium hydroxide. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.07.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Soltani N, Tavakkoli N, Shahdost-fard F, Davar F, Kochakalipour Ranjbar A. Applicability of ZnSNP@Gr nanocomposite for fabrication of an electrochemical sensor in simultaneous measuring of naltrexone, acetaminophen and ascorbic acid. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01820-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Gold Nanoparticles/Carbon Nanotubes and Gold Nanoporous as Novel Electrochemical Platforms for L-Ascorbic Acid Detection: Comparative Performance and Application. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, the effects of nanostructured modifications of a gold electrode surface in the development of electrochemical sensors for L-ascorbic acid detection have been investigated. In particular, a bare gold electrode has been modified by electrodeposition of gold single-walled carbon nanotubes (Au/SWCNTs) and by the formation of a highly nanoporous gold (h-nPG) film. The procedure has been realized by sweeping the potential between +0.8 V and 0 V vs. Ag/AgCl for 25 scans in a suspension containing 5 mg/mL of SWCNTs in 10 mM HAuCl4 and 2.5 M NH4Cl solution for Au/SWCNTs modified gold electrode. A similar procedure was applied for a h-nPG electrode in a 10 mM HAuCl4 solution containing 2.5 M NH4Cl, followed by applying a fixed potential of −4 V vs. Ag/AgCl for 60 s. Cyclic voltammetry and electrochemical impedance spectroscopy were used to characterize the properties of the modified electrodes. The developed sensors showed strong electrocatalytic activity towards ascorbic acid oxidation with enhanced sensitivities of 1.7 × 10−2 μA μM−1cm−2 and 2.5 × 10−2 μA μM−1cm−2 for Au/SWCNTs and h-nPG modified electrode, respectively, compared to bare gold electrode (1.0 × 10−2 μA μM−1cm−2). The detection limits were estimated to be 3.1 and 1.8 μM, respectively. The h-nPG electrode was successfully used to determine ascorbic acid in human urine with no significant interference and with satisfactory recovery levels.
Collapse
|
17
|
Teker T, Aslanoglu M. A Hafnium Oxide Based Voltammetric Platform for the Sensitive Determination of Octopamine. ELECTROANAL 2021. [DOI: 10.1002/elan.202100180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tuğçe Teker
- Department of Chemistry Harran University Sanliurfa 63510 Turkey
| | - Mehmet Aslanoglu
- Department of Chemistry Harran University Sanliurfa 63510 Turkey
| |
Collapse
|
18
|
Electrochemical detection of riboflavin using tin-chitosan modified pencil graphite electrode. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
19
|
Arab C, El Kurdi R, Patra D. Chitosan coated zinc curcumin oxide nanoparticles for the determination of ascorbic acid. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
20
|
Li R, Liang H, Zhu M, Lai M, Wang S, Zhang H, Ye H, Zhu R, Zhang W. Electrochemical dual signal sensing platform for the simultaneous determination of dopamine, uric acid and glucose based on copper and cerium bimetallic carbon nanocomposites. Bioelectrochemistry 2021; 139:107745. [PMID: 33524654 DOI: 10.1016/j.bioelechem.2021.107745] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
A highly sensitive electrochemical sensor for the simultaneous dual signal determination of dopamine (DA), uric acid (UA) and glucose (Glu) has been obtained using nanocomposites based on the copper and cerium bimetallic nanoparticles and carbon nanomaterials of graphene and single-walled carbon nanotubes in the presence of Tween 20 (GR-SWCNT-Ce-Cu-Tween 20) modified glassy carbon electrode. The surface morphology of the nanocomposites was characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD), and the electrochemical behavior of the sensor was investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) with potassium ferricyanide as probe. In the coexistence system of DA, UA and Glu, three clear and well-isolated voltammetric peaks were obtained by CV and differential pulse voltammetry (DPV), and oxidation peak currents of DA and UA are positively correlated with their concentrations respectively, while the peak current of Glu is negatively correlated with its concentration. Linearity was obtained in the ranges of 0.1-100 µM for dopamine, 0.08-100 µM for uric acid and 1-1000 µM for glucose with DPV, and the detection limits (S/N = 3) of 0.0072 µM, 0.0063 µM, and 0.095 µM for DA, UA and Glu, respectively. The method was successfully applied to the determination of DA, UA and Glu in blood serum samples, which provided a reference for further sensor research.
Collapse
Affiliation(s)
- Rui Li
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Huanru Liang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Mingfang Zhu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China.
| | - Mushen Lai
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Shumei Wang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou 510006, PR China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangzhou, PR China
| | - Hongwu Zhang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Hongqing Ye
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Rongkun Zhu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Wenhao Zhang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| |
Collapse
|
21
|
Simultaneous Detection of Ascorbic Acid, Dopamine, and Uric Acid Using a Novel Electrochemical Sensor Based on Palladium Nanoparticles/Reduced Graphene Oxide Nanocomposite. Int J Anal Chem 2020; 2020:8812443. [PMID: 33381184 PMCID: PMC7759412 DOI: 10.1155/2020/8812443] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/19/2020] [Accepted: 11/30/2020] [Indexed: 01/08/2023] Open
Abstract
A fresh strategy based on two-step electrochemical reduction for the fabrication of palladium nanoparticles/reduced oxide nanocomposite-modified glass carbon electrode (PdNPs/rGO/GCE) was established in this study. Field emission scanning electron microscopy (FESEM) images showed that spherical PdNPs were evenly distributed on the surface of rGO-modified electrode (rGO/GCE), and the introduction of PdNPs has no effect on the morphology of rGO. Electrochemical impedance spectroscopy (EIS) studies revealed that the conductivity of PdNPs/rGO/GCE was higher than that of rGO/GCE and bare GCE. The electrochemical performances of PdNPs/rGO/GCE sensor were investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and chronoamperometry using ascorbic acid (AA), dopamine (DA), and uric acid (UA) as analytes. At the optimized conditions, wide linear ranges of 0.5–3.5 mM (R2 = 0.99), 3–15 μM (R2 = 0.99) and 15–42 μM (R2 = 0.99), and 0.3–1.4 mM (R2 = 0.99) towards AA, DA, and UA in ternary mixture were observed, respectively. In addition to superior anti-interference capability, fast response (≤5 s), excellent reproducibility, and good long-term stability were also given by this sensor. These results suggested that PdNPs/rGO/GCE is promising for the simultaneous detection of AA, DA, and UA in practical application.
Collapse
|
22
|
Minta D, Moyseowicz A, Gryglewicz S, Gryglewicz G. A Promising Electrochemical Platform for Dopamine and Uric Acid Detection Based on a Polyaniline/Iron Oxide-Tin Oxide/Reduced Graphene Oxide Ternary Composite. Molecules 2020; 25:molecules25245869. [PMID: 33322578 PMCID: PMC7763624 DOI: 10.3390/molecules25245869] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 02/04/2023] Open
Abstract
A ternary polyaniline/Fe2O3-SnO2/reduced graphene oxide (PFSG) nanocomposite was prepared using a simple two-step hydrothermal treatment. The composite was applied as a glassy carbon electrode modifier (GCE) to enhance dopamine (DA) and uric acid (UA) detection. The ternary PFSG composite was compared with its binary precursor Fe2O3-SnO2/reduced graphene oxide (FSG). The influence of the modified GCE electrodes on their performance as a sensing platform was determined. GCE/PFSG showed better sensing parameters than GCE/FSG due to the introduction of polyaniline (PANI), increasing the electrocatalytic properties of the electrode towards the detected analytes. GCE/PFSG enabled the detection of low concentrations of DA (0.076 µM) and UA (1.6 µM). The peak potential separation between DA and UA was very good (180 mV). Moreover, the DA oxidation peak was unaffected even if the concentration of UA was ten times higher. The fabricated sensor showed excellent performance in the simultaneous detection with DA and UA limits of detection: LODDA = 0.15 µM and LODUA = 6.4 µM, and outstanding long-term stability towards DA and UA, holding 100% and 90% of their initial signals respectively, after one month of use.
Collapse
Affiliation(s)
- Daria Minta
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Gdańska 7/9, 50-344 Wrocław, Poland; (D.M.); (A.M.)
| | - Adam Moyseowicz
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Gdańska 7/9, 50-344 Wrocław, Poland; (D.M.); (A.M.)
| | - Stanisław Gryglewicz
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 42, 50-344 Wrocław, Poland;
| | - Grażyna Gryglewicz
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Gdańska 7/9, 50-344 Wrocław, Poland; (D.M.); (A.M.)
- Correspondence: ; Tel.: +48-71-320-6398; Fax: +48-71-320-6506
| |
Collapse
|
23
|
Cernat A, Ştefan G, Tertis M, Cristea C, Simon I. An overview of the detection of serotonin and dopamine with graphene-based sensors. Bioelectrochemistry 2020; 136:107620. [DOI: 10.1016/j.bioelechem.2020.107620] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023]
|
24
|
Wardak C, Paczosa-Bator B, Malinowski S. Application of cold plasma corona discharge in preparation of laccase-based biosensors for dopamine determination. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111199. [DOI: 10.1016/j.msec.2020.111199] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/03/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022]
|
25
|
Lemos SG, Gonzalez-Rodriguez J. Three-dimensional voltammetry: Use of chronoamperometric E-t-i data to achieve second-order advantage. Anal Chim Acta 2020; 1132:36-46. [PMID: 32980109 DOI: 10.1016/j.aca.2020.07.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 11/30/2022]
Abstract
This work studied the use of three-dimensional voltammetry, particularly potential-time-current (E-t-i) data, on the development of electroanalytical methods. E-t-i data was obtained by taking chronoamperograms at potentials applied as pulses on a staircase waveform. By using this three-way kind of data and appropriate calibration algorithms, the possibility of achieving the second-order advantage was evaluated in the determination of ferrocyanide in the presence of the uncalibrated interference hydroquinone as a model system. The determination of acetaminophen in urine samples, where ascorbic acid and uric acid play the major roles as interferents was also studied. Parallel factor analysis (PARAFAC) and multivariate curve resolution alternating least-squares (MCR-ALS) were the algorithms employed in this work. Both algorithms successfully achieved the second-order advantage by correctly predicting the concentrations of the validation synthetic samples. Excellent predictions were obtained in the direct analysis of acetaminophen-spiked urine samples by E-t-i data and MCR-ALS.
Collapse
Affiliation(s)
| | - Jose Gonzalez-Rodriguez
- School of Chemistry, College of Science, University of Lincoln, Brayford Pool, Lincoln, LN67TS, United Kingdom.
| |
Collapse
|
26
|
Regiart M, Fernández-Baldo MA, Navarro P, Pereira SV, Raba J, Messina GA. Nanostructured electrode using CMK-8/CuNPs platform for herbicide detection in environmental samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
A novel electrochemical sensor based on magnetic core@shell molecularly imprinted nanocomposite (Fe3O4@graphene oxide@MIP) for sensitive and selective determination of anticancer drug capecitabine. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.06.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
28
|
Smartphone-Based Electrochemical Potentiostat Detection System Using PEDOT: PSS/Chitosan/Graphene Modified Screen-Printed Electrodes for Dopamine Detection. SENSORS 2020; 20:s20102781. [PMID: 32422926 PMCID: PMC7285078 DOI: 10.3390/s20102781] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 01/16/2023]
Abstract
In this work, a smartphone-based electrochemical detection system was designed and developed for rapid and real-time detection of dopamine (DA). The system included a screen-printed electrode (SPE) used as a sensor, a hand-held electrochemical potentiostat and a smart phone with a specially designed app. During the detection period, the SPEs modified with poly(3,4-ethylenedioxythiophene) (PEDOT), chitosan (CS) and graphene (G) were used to convert and amplify the electrochemical reaction signals. The electrochemical potentiostat was used to generate excitation electrical signals and collect the electrical signals converted from the sensor. The smartphone—connected to the detector via Bluetooth-was used to control the detector for tests, further process the uploaded data, and plot graphs in real time. Experimental results showed that the self-designed sensing system could be employed for highly selective detection of DA in the presence of interfering substances such as ascorbic acid (AA) and uric acid (UA). CV was carried out to characterize the electrochemical properties of the modified SPEs and the electrochemical behaviors of DA on the modified SPEs. Finally, according to the analysis of DPV responses of DA, the system could detect DA with a detection sensitivity of 0.52 ± 0.01 μA/μM and a limit of detection of 0.29 μM in the linear range of DA concentrations from 0.05 to 70 μM.
Collapse
|
29
|
Derivative UV/Vis spectroelectrochemistry in a thin-layer regime: deconvolution and simultaneous quantification of ascorbic acid, dopamine and uric acid. Anal Bioanal Chem 2020; 412:6329-6339. [DOI: 10.1007/s00216-020-02564-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/23/2020] [Accepted: 02/28/2020] [Indexed: 01/06/2023]
|
30
|
Liu YC, Hsu WF, Wu TM. Electrochemical determination of dopamine using a conductive polypyrrole/carbon-coated mesoporous silica composite electrode. J APPL ELECTROCHEM 2020. [DOI: 10.1007/s10800-019-01391-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
31
|
Tan C, Zhao J, Sun P, Zheng W, Cui G. Gold nanoparticle decorated polypyrrole/graphene oxide nanosheets as a modified electrode for simultaneous determination of ascorbic acid, dopamine and uric acid. NEW J CHEM 2020. [DOI: 10.1039/d0nj00166j] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AuNPs, GO and PPy are combined effectively to form a novel composite showing a huge enhancement in electrochemical performance compared to the single materials.
Collapse
Affiliation(s)
- Chaoli Tan
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
- China
| | - Jie Zhao
- School of Mechanical and Automotive Engineering
- South China University of Technology
- Guangzhou
- China
| | - Peng Sun
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
- China
| | - Wei Zheng
- William and Mary Research Institute
- The College of William and Mary
- USA
| | - Guofeng Cui
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
- China
| |
Collapse
|
32
|
Anojčić J, Guzsvány V, Kónya Z, Mikov M. Rapid, trace-level direct cathodic voltammetric determination of dopamine by oxidized multiwalled carbon nanotube–modified carbon paste electrode in selected samples of pharmaceutical importance. IONICS 2019; 25:6093-6106. [DOI: 10.1007/s11581-019-03156-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 01/04/2023]
|
33
|
Dhara K, Debiprosad RM. Review on nanomaterials-enabled electrochemical sensors for ascorbic acid detection. Anal Biochem 2019; 586:113415. [DOI: 10.1016/j.ab.2019.113415] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/31/2019] [Accepted: 08/31/2019] [Indexed: 02/08/2023]
|
34
|
Sanati A, Jalali M, Raeissi K, Karimzadeh F, Kharaziha M, Mahshid SS, Mahshid S. A review on recent advancements in electrochemical biosensing using carbonaceous nanomaterials. Mikrochim Acta 2019; 186:773. [PMID: 31720840 DOI: 10.1007/s00604-019-3854-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/19/2019] [Indexed: 12/29/2022]
Abstract
This review, with 201 references, describes the recent advancement in the application of carbonaceous nanomaterials as highly conductive platforms in electrochemical biosensing. The electrochemical biosensing is described in introduction by classifying biosensors into catalytic-based and affinity-based biosensors and statistically demonstrates the most recent published works in each category. The introduction is followed by sections on electrochemical biosensors configurations and common carbonaceous nanomaterials applied in electrochemical biosensing, including graphene and its derivatives, carbon nanotubes, mesoporous carbon, carbon nanofibers and carbon nanospheres. In the following sections, carbonaceous catalytic-based and affinity-based biosensors are discussed in detail. In the category of catalytic-based biosensors, a comparison between enzymatic biosensors and non-enzymatic electrochemical sensors is carried out. Regarding the affinity-based biosensors, scholarly articles related to biological elements such as antibodies, deoxyribonucleic acids (DNAs) and aptamers are discussed in separate sections. The last section discusses recent advancements in carbonaceous screen-printed electrodes as a growing field in electrochemical biosensing. Tables are presented that give an overview on the diversity of analytes, type of materials and the sensors performance. Ultimately, general considerations, challenges and future perspectives in this field of science are discussed. Recent findings suggest that interests towards 2D nanostructured electrodes based on graphene and its derivatives are still growing in the field of electrochemical biosensing. That is because of their exceptional electrical conductivity, active surface area and more convenient production methods compared to carbon nanotubes. Graphical abstract Schematic representation of carbonaceous nanomaterials used in electrochemical biosensing. The content is classified into non-enzymatic sensors and affinity/ catalytic biosensors. Recent publications are tabulated and compared, considering materials, target, limit of detection and linear range of detection.
Collapse
Affiliation(s)
- Alireza Sanati
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.,Department of Bioengineering, McGill University, Montreal, Quebec, H3A 0E9, Canada
| | - Mahsa Jalali
- Department of Bioengineering, McGill University, Montreal, Quebec, H3A 0E9, Canada
| | - Keyvan Raeissi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Fathallah Karimzadeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Sahar Sadat Mahshid
- Sunnybrook Research Institute, Sunnybrook Hospital, Toronto, Ontario, M4N 3M5, Canada.
| | - Sara Mahshid
- Department of Bioengineering, McGill University, Montreal, Quebec, H3A 0E9, Canada.
| |
Collapse
|
35
|
Soltani N, Tavakkoli N, Shahdost-Fard F, Salavati H, Abdoli F. A carbon paste electrode modified with Al 2O 3-supported palladium nanoparticles for simultaneous voltammetric determination of melatonin, dopamine, and acetaminophen. Mikrochim Acta 2019; 186:540. [PMID: 31317272 DOI: 10.1007/s00604-019-3541-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/22/2019] [Indexed: 11/26/2022]
Abstract
The authors have modified a carbon paste electrode with Al2O3-supported palladium nanoparticles (PdNP@Al2O3) to obtain a sensor for simultaneous voltammetric determination of melatonin (MT), dopamine (DA) and acetaminophen (AC). The PdNP@Al2O3 was characterized by scanning electron microscopy and energy-dispersive X-ray spectra. The sensor can detect DA, AC, MT and their mixtures by giving distinct signals at working voltages of typically 236, 480 and 650 mV (vs. Ag/AgCl), respectively. Differential pulse voltammetric peak currents of DA, AC and MT increase linearly in the 50 nmol L-1 - 1.45 mmol L-1, 40 nmol L-1 -1.4 mmol L-1, and 6.0 nmol L-1 - 1.4 mmol L-1 concentration ranges. The limits of detection are 36.5 nmol L-1 for DA, 36.5 nmol L-1 for AC, and 21.6 nmol L-1 for MT. The sensor was successfully used to detect the analytes in (spiked) human serum and drug samples. Graphical abstract Schematic presentation of Al2O3-supported palladium nanoparticles (PdNP@Al2O3) for modification of a carbon paste electrode (CPE) to develop a voltammetric sensor for the simultaneous determination of dopamine (DA), acetaminophen (AC) and melatonin (MT).
Collapse
Affiliation(s)
- Nasrin Soltani
- Chemistry Department, Payame Noor University, Tehran, 19395-4697, Iran.
| | - Nahid Tavakkoli
- Chemistry Department, Payame Noor University, Tehran, 19395-4697, Iran
| | - Faezeh Shahdost-Fard
- Department of Chemistry, University of Ilam, Ilam, 69315-516, Iran
- Faculty of Medicine, Ilam University of Medical Sciences, Ilam, 69391-77143, Iran
| | - Hossein Salavati
- Chemistry Department, Payame Noor University, Tehran, 19395-4697, Iran
| | - Fatemeh Abdoli
- Chemistry Department, Payame Noor University, Tehran, 19395-4697, Iran
| |
Collapse
|
36
|
The selective electrochemical detection of dopamine in the presence of ascorbic acid and uric acid using electro-polymerised-β-cyclodextrin incorporated f-MWCNTs/polyaniline modified glassy carbon electrode. Microchem J 2019. [DOI: 10.1016/j.microc.2019.04.081] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
37
|
Mohamed MA, Atty SA, Asran AM, Boukherroub R. One-pot green synthesis of reduced graphene oxide decorated with β-Ni(OH)2-nanoflakes as an efficient electrochemical platform for the determination of antipsychotic drug sulpiride. Microchem J 2019. [DOI: 10.1016/j.microc.2019.03.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
38
|
Yue HY, Wu PF, Huang S, Wang ZZ, Gao X, Song SS, Wang WQ, Zhang HJ, Guo XR. Golf ball-like MoS 2 nanosheet arrays anchored onto carbon nanofibers for electrochemical detection of dopamine. Mikrochim Acta 2019; 186:378. [PMID: 31134402 DOI: 10.1007/s00604-019-3495-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/12/2019] [Indexed: 10/26/2022]
Abstract
Arrays of molybdenum(IV) disulfide nanosheets resembling the shape of golf balls (MoS2 NSBs) were deposited on carbon nanofibers (CNFs), which are shown to enable superior electrochemical detection of dopamine without any interference by uric acid. The MoS2 NSBs have a diameter of ∼ 2 μm and are made up of numerous bent nanosheets. MoS2 NSBs are connected by the CNFs through the center of the balls. Figures of merit for the resulting electrode include (a) a sensitivity of 6.24 μA·μM-1·cm-2, (b) a low working voltage (+0.17 V vs. Ag/AgCl), and (c) a low limit of detection (36 nM at S/N = 3). The electrode is selective over uric acid, reproducible and stable. It was applied to the determination of dopamine in spiked urine samples. The recoveries at levels of 10, 20 and 40 μM of DA are 101.6, 99.8 and 107.8%. Graphical abstract Schematic presentation of the golf ball-like MoS2 nanosheet balls/carbon nanofibers (MoS2 NSB/CNFs) by electrospining and hydrothermal process to detect dopamine (DA).
Collapse
Affiliation(s)
- Hong Yan Yue
- School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China.
| | - Peng Fei Wu
- School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China
| | - Shuo Huang
- School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China.,Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Zeng Ze Wang
- School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China
| | - Xin Gao
- School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China
| | - Shan Shan Song
- School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China
| | - Wan Qiu Wang
- School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China
| | - Hong Jie Zhang
- School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China
| | - Xin Rui Guo
- School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China
| |
Collapse
|
39
|
Huang ZN, Teng J, Liu Q, Yuan MM, Jiao FP, Jiang XY, Yu JG. A novel electrochemical sensor based on self-assembled platinum nanochains - Multi-walled carbon nanotubes-graphene nanoparticles composite for simultaneous determination of dopamine and ascorbic acid. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:167-175. [PMID: 30708228 DOI: 10.1016/j.ecoenv.2019.01.091] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/25/2019] [Accepted: 01/26/2019] [Indexed: 05/17/2023]
Abstract
In this study, platinum nanochains (PtNCs), multi-walled carbon nanotubes (MWCNTs) and graphene nanoparticles (GNPs) were assembled together to form a novel nanocomposite by a facile ultrasonic-assisted blending process. The PtNCs-MWCNTs-GNPs nanocomposite was characterized by high resolution transmission electron microscopy (HR-TEM), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The nanocomposite was used for the modification of glass carbon electrode (GCE) and simultaneous determination of dopamine (DA) and ascorbic acid (AA) by differential pulse voltammetry (DPV) and cycle voltammetry (CV). Under the optimum conditions, the calibration curves obtained are linear for the currents versus DA and AA concentrations over the range 2.00-50.0 μM and 100-1200 μM, respectively. And the detection limits for DA and AA are 0.500 μM and 10.0 μM, respectively. The detection and quantitative analysis of DA and AA in human serum and vitamin C tablets on PtNCs-MWCNTs-GNPs/GCE gave the recoveries of 104-110% and 101-108% with relative standard deviations (RSD) of 4.36-7.48% and 0.620-2.90%, respectively. The proposed PtNCs-MWCNTs-GNPs composite could provide a new platform for the routine analysis of DA and AA in terms of its good anti-interference ability, excellent reproducibility and repeatability, and feasibility of use.
Collapse
Affiliation(s)
- Zhao-Ning Huang
- College of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, Hunan 410083, China
| | - Jie Teng
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, Hunan 410083, China
| | - Meng-Meng Yuan
- College of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, Hunan 410083, China
| | - Fei-Peng Jiao
- College of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, Hunan 410083, China
| | - Xin-Yu Jiang
- College of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, Hunan 410083, China
| | - Jin-Gang Yu
- College of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
40
|
Au nanoparticles attached Ag@C core-shell nanocomposites for highly selective electrochemical detection of dopamine. Microchem J 2019. [DOI: 10.1016/j.microc.2019.01.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
41
|
Abbas MW, Soomro RA, Kalwar NH, Zahoor M, Avci A, Pehlivan E, Hallam KR, Willander M. Carbon quantum dot coated Fe3O4 hybrid composites for sensitive electrochemical detection of uric acid. Microchem J 2019. [DOI: 10.1016/j.microc.2019.01.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
42
|
Ait Ahmed N, Hammache H, Eyraud M, Chassigneux C, Vacandio F, Knauth P, Makhloufi L, Gabouze NE. Voltammetric determination of ascorbic acid with zinc oxide modified glassy carbon electrode. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01668-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
43
|
Manbohi A, Ahmadi SH. Sensitive and selective detection of dopamine using electrochemical microfluidic paper-based analytical nanosensor. SENSING AND BIO-SENSING RESEARCH 2019. [DOI: 10.1016/j.sbsr.2019.100270] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
44
|
Ahammad AJS, Odhikari N, Shah SS, Hasan MM, Islam T, Pal PR, Ahmed Qasem MA, Aziz MA. Porous tal palm carbon nanosheets: preparation, characterization and application for the simultaneous determination of dopamine and uric acid. NANOSCALE ADVANCES 2019; 1:613-626. [PMID: 36132238 PMCID: PMC9473265 DOI: 10.1039/c8na00090e] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 10/03/2018] [Indexed: 05/15/2023]
Abstract
A novel porous tal palm carbon nanosheet (PTPCN) material was synthesized from the leaves of Borassus flabellifer (tal palm) and used for developing an electrochemical sensor through modifying a glassy carbon electrode (GCE) simply by drop-casting on it a solution of the material for the sensitive simultaneous detection of dopamine (DA) and uric acid (UA), even in the presence of interfering species. The drop-casting solution was prepared by simply dispersing the PTPCNs in ethanol without using any other binding materials (e.g. Nafion). The surface morphologies of the PTPCNs were studied through field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and high resolution TEM (HRTEM). Energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction spectroscopy (XPS) studies revealed the chemical composition of the PTPCNs' surface. Their structural properties were studied using X-ray diffraction (XRD) and Raman spectroscopy. Brunauer-Emmett-Teller (BET) analysis confirmed the surface area and pore volume to be 1094.53 m2 g-1 and 0.74 cm3 g-1, respectively, while Barrett-Joyner-Halenda (BJH) pore-size distribution showed the average pore size to be 22 nm. The sufficiently large surface area and pore-size distribution suggested better electrocatalytic properties compared to the average modifying materials. The modified electrode (PTPCNs/GCE) was characterized through impedimetric and CV techniques in standard potassium ferricyanide solution for evaluating their charge-transfer resistance and electrochemical properties. The limits of detection (S/N = 3) were 0.17 μM and 0.078 μM and the sensitivities were 1.2057 μA μM-1 cm-2 and 2.693 μA μM-1 cm-2 for UA and DA, respectively. The possible interactions that took place between the PTPCNs and the analytes that aided in the enhancement of the electroanalytical performance of the PTPCNs/GCE are discussed based on the experimental findings and established theoretical concepts. The PTPCNs/GCE was successfully employed for analyzing real samples, like dopamine injection and urine.
Collapse
Affiliation(s)
- A J Saleh Ahammad
- Department of Chemistry, Jagannath University Dhaka 1100 Bangladesh +880 2 7113713 +880 2 9583794
| | - Noyon Odhikari
- Department of Chemistry, Jagannath University Dhaka 1100 Bangladesh +880 2 7113713 +880 2 9583794
| | - Syed Shaheen Shah
- Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia +966-13-860-7264 +966-13-860-3744
| | - Md Mahedi Hasan
- Department of Chemistry, Jagannath University Dhaka 1100 Bangladesh +880 2 7113713 +880 2 9583794
| | - Tamanna Islam
- Department of Chemistry, Jagannath University Dhaka 1100 Bangladesh +880 2 7113713 +880 2 9583794
| | - Poly Rani Pal
- Department of Chemistry, Jagannath University Dhaka 1100 Bangladesh +880 2 7113713 +880 2 9583794
| | - Mohammed Ameen Ahmed Qasem
- Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia +966-13-860-7264 +966-13-860-3744
| | - Md Abdul Aziz
- Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia +966-13-860-7264 +966-13-860-3744
| |
Collapse
|
45
|
Hong JH, Jung Y, Kim S. Preparation of reduced graphene oxide electrodes treated by electron beam irradiation and their electrochemical behaviors. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03759-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
46
|
Metallo-phthalocyanines containing thiazole moieties: Synthesis, characterization, electrochemical and spectroelectrochemical properties and sensor applications. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Gold nanorods decorated with graphene oxide and multi-walled carbon nanotubes for trace level voltammetric determination of ascorbic acid. Mikrochim Acta 2018; 186:17. [PMID: 30542802 DOI: 10.1007/s00604-018-3138-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/01/2018] [Indexed: 10/27/2022]
Abstract
An ultra-sensitive sensor is described for the voltammetric determination of ascorbic acid (AA). A glassy carbon electrode (GCE) was modified with graphene oxide (GO), multi-walled carbon nanotubes (MWCNTs) and gold nanorods (AuNRs). GO was used to prevent the aggregation of MWCNTs. The integration of positively charged AuNRs reduces the overpotential and increases the peak current of AA oxidation. Figures of merit of this sensor, typically operated at a low working potential of 0.036 V (vs. Ag/AgCl), include a low detection limit (0.85 nM), high sensitivity (7.61 μA·μM-1·cm-2) and two wide linear ranges (from 1 nM to 0.5 μM and from 1 μM to 8 mM). The use of GO simplifies the manufacture and results in a highly reproducible and stable sensor. It was applied to the quantification of AA in spiked serum. Graphical abstract Graphical abstract contains poor quality and small text inside the artwork. Please do not re-use the file that we have rejected or attempt to increase its resolution and re-save. It is originally poor, therefore, increasing the resolution will not solve the quality problem. We suggest that you provide us the original format. We prefer replacement figures containing vector/editable objects rather than embedded images. Preferred file formats are eps, ai, tiff and pdf.We have provided the original format with the attachments named g.tif. Graphene oxide (GO) in combination with multiwalled carbon nanotubes (MWCNTs) and gold nanorods (AuNRs) were used to construct a sensing interface with outstanding electrocatalytic performance for ascorbic acid detection.
Collapse
|
48
|
Xu G, Jarjes ZA, Wang HW, Phillips ARJ, Kilmartin PA, Travas-Sejdic J. Detection of Neurotransmitters by Three-Dimensional Laser-Scribed Graphene Grass Electrodes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:42136-42145. [PMID: 30444110 DOI: 10.1021/acsami.8b16692] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Carbon nanomaterials possess superb properties and have contributed considerably to the advancement of integrated point-of-care chemical and biological sensing devices. Graphene has been widely researched as a signal transducing and sensing material. Here, a grass-like laser-scribed graphene (LSG) was synthesized by direct laser induction on common polyimide plastics. The resulting LSG grass was employed as a disposable electrochemical sensor for the detection of three neurotransmitters, dopamine (DA), epinephrine (EP), and norepinephrine (NE), and in the presence of uric acid and ascorbic acid as potential interferants, using differential pulse voltammetry and cyclic voltammetry. The LSG grass sensor achieved sensitivities of 0.243, 0.067, and 0.110 μA μM-1 for DA, EP, and NE, respectively, whereas the limits of detection were 0.43, 1.1, and 1.3 μM, respectively. The selectivity of LSG grass was excellent for competing biomarkers with high structural similarity (EP vs NE and EP vs DA). The exceptional performance of LSG grass for DA, EP, and NE detection holds a promising future for carbon nanomaterial sensors with unique surface morphologies.
Collapse
Affiliation(s)
- Guangyuan Xu
- MacDiarmid Institute for Advanced Materials and Nanotechnology , Wellington 6140 , New Zealand
| | | | | | | | | | - Jadranka Travas-Sejdic
- MacDiarmid Institute for Advanced Materials and Nanotechnology , Wellington 6140 , New Zealand
| |
Collapse
|
49
|
NiMnO 3 nanoparticles anchored on graphene quantum dot: Application in sensitive electroanalysis of dobutamine. Microchem J 2018. [DOI: 10.1016/j.microc.2018.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Aziz A, Asif M, Azeem M, Ashraf G, Wang Z, Xiao F, Liu H. Self-stacking of exfoliated charged nanosheets of LDHs and graphene as biosensor with real-time tracking of dopamine from live cells. Anal Chim Acta 2018; 1047:197-207. [PMID: 30567650 DOI: 10.1016/j.aca.2018.10.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 09/13/2018] [Accepted: 10/08/2018] [Indexed: 12/31/2022]
Abstract
This study introduces a new strategy for periodic stacking of positively charged NiAl layered double hydroxides (LDHs) nanosheets with negatively charged monolayers of graphene (G) by systematically optimizing several parameters in a controlled co-feeding fashion and resultant heterostacked NiAl LDH/G LBL nanocomposites have been practically applied in sensitive detection of dopamine released from live cells as early Parkinson's disease (PD) diagnostic tool. PD is the second most chronic neurodegenerative disorder with gradual progressive loss of movement and muscle control causing substantial disability and threatening the life seriously. Unfortunately majority of dopaminergic neurons present in substantia nigra of PD patients are destroyed before it is being clinically diagnosed, so early stages PD diagnosis is essential. Because of direct neighboring of extremely conductive graphene to semiconductive LDHs layers, enhanced intercalation capability of LDHs, and huge surface area with numerous active sites, good synergy effect is harvested in heteroassembled NiAl LDH/G LBL material, which in turn shows admirable electrocatalytic ability in DA detection. The interference induced by UA and AA is effectively eliminated especially after the modifying the electrode with Nafion. The outstanding electrochemical sensing performance of NiAl LDH/G LBL modified electrode has been achieved in terms of broad linear range and lowest real detection limit of 2 nM (S/N = 3) towards DA oxidation. Benefitting from superior efficiency, biosensor has been successfully used for real-time in-vitro tracking of DA efflux from live human nerve cell after being stimulated. We believe that our biosensing platform of structurally integrated well-ordered LBL heteroassembly by inserting graphene directly to the interlayer galleries of LDHs material will open up new avenue in diseases determination window.
Collapse
Affiliation(s)
- Ayesha Aziz
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Muhammad Asif
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Muhammad Azeem
- School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ghazala Ashraf
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhengyun Wang
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Fei Xiao
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hongfang Liu
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|