1
|
Leao L, Miri S, Hammami R. Gut feeling: Exploring the intertwined trilateral nexus of gut microbiota, sex hormones, and mental health. Front Neuroendocrinol 2025; 76:101173. [PMID: 39710079 DOI: 10.1016/j.yfrne.2024.101173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/25/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
The complex interplay between the gut microbiota, sex hormones, and mental health is emerging as a pivotal factor in understanding and managing psychiatric disorders. Beyond their traditional roles, sex hormones exert profound effects on various physiological systems including the gut microbiota. Fluctuations in sex hormone levels, notably during the menstrual cycle, influence gut physiology and barrier function, shaping gut microbiota composition and immune responses. Conversely, the gut microbiota actively modulates sex hormone levels via enzymatic processes. This bidirectional relationship underscores the significance of the gut-brain axis in maintaining mental well-being. This review explores the multifaceted interactions between sex hormones, the gut microbiota, and mental health outcomes. We highlight the potential of personalized interventions in treating psychiatric disorders, particularly in vulnerable populations such as premenopausal women and individuals with depressive disorders. By elucidating these complex interactions, we aim to provide insights for future research into targeted interventions, enhancing mental health outcomes.
Collapse
Affiliation(s)
- Luana Leao
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Saba Miri
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Riadh Hammami
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
2
|
Islam P, Hossain MI, Khatun P, Masud RI, Tasnim S, Anjum M, Islam MZ, Nibir SS, Rafiq K, Islam MA. Steroid hormones in fish, caution for present and future: A review. Toxicol Rep 2024; 13:101733. [PMID: 39323426 PMCID: PMC11422134 DOI: 10.1016/j.toxrep.2024.101733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024] Open
Abstract
The misuse and overuse of steroid hormones in fish is an emerging problem worldwide. The data on hormonal residue in fish was less due to a lack of effective monitoring programs on hormonal use in fish production. This review revealed the findings of previously published data on different hormonal use and their residue and impact. Steroid hormones were frequently used in fish production to promote growth and reproduction. It was suggested that hormones should be used carefully to ensure environmental, biological, and food safety. The most commonly used steroid hormones in fish production were testosterone, estrogen, progesterone, and cortisol. However, the indiscriminate use left residue in the fish flesh above the FAO/WHO permissible limits. This residue in fish caused many health hazards in consumers, like early puberty in children, advances in bone age, negative repercussions on growth, modification of sexual characteristics, and cancer development such as breast, ovarian, and prostate cancer. It also harmed fish and the aquatic environment. The most common detection methods for these hormones were GC-MS, LC-MS, and UHPLC-MS. Many countries permitted the use of hormones in fish production upon monitoring, whereas many countries prohibited it. Moreover, many countries did not have any rules and regulations on the use of hormones in fish production. Thus, this review is a wake-up call for researchers, policymakers and consumers on the impacts of hormonal residues in food commodities.
Collapse
Affiliation(s)
- Purba Islam
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Bangladesh
| | - Md Imran Hossain
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Bangladesh
| | - Popy Khatun
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Bangladesh
| | - Rony Ibne Masud
- Department of Microbiology & Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Bangladesh
| | - Shadia Tasnim
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Bangladesh
| | - Mahir Anjum
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Bangladesh
| | - Md Zahorul Islam
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Bangladesh
| | - Salman Shahriar Nibir
- Department of Aquaculture, Faculty of Fisheries, Bangladesh Agricultural University, Bangladesh
| | - Kazi Rafiq
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Bangladesh
| | - Md Anwarul Islam
- Department of Aquaculture, Faculty of Fisheries, Bangladesh Agricultural University, Bangladesh
| |
Collapse
|
3
|
Balakrishna K, Praveenkumarreddy Y, Nishitha D, Gopal CM, Shenoy JK, Bhat K, Khare N, Dhangar K, Kumar M. Occurrences of UV filters, endocrine disruptive chemicals, alkyl phenolic compounds, fragrances, and hormones in the wastewater and coastal waters of the Antarctica. ENVIRONMENTAL RESEARCH 2023; 222:115327. [PMID: 36693462 DOI: 10.1016/j.envres.2023.115327] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/02/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
We present a simplified status description of the prevalence and occurrences of organic micropollutants including endocrine disruptive chemicals (EDCs), therapeutic drugs, hormones, fragrances and ultraviolet (UV) filters in the wastewaters and the adjacent coastal oceans in the Northern and Southern Antarctica. Different treatment technologies adopted in the research stations and their efficacy in removing pharmaceuticals and personal care products (PPCPs) are reviewed. Till date, 56 PPCPs are reported in the wastewaters of Antarctic research stations, and 23 in the adjacent coastal waters and sea ice. The reported concentrations in the wastewaters are at the levels of μg L-1 for UV filters, plasticizer Bisphenol A, metabolites, antibiotics, alkyl phenolic compounds, and stimulants. Concentrations in the coastal waters and sea ice are two orders of magnitude lower than the wastewaters because of dilution and degradation. It is apparent however, that the PPCP-laden effluents discharged from the research stations contaminate them. If left unchecked, pollution of the coastal waters and sea-ice can lead to toxic levels. Through this review, we have established widespread occurrence of PPCPs in the polar coastal oceans; this study will also provide the status quo for the researchers and policymakers to seriously consider the issue and initiate remedial action in the near future. The existing substantial gaps in understanding of the impact of PPCPs on the flora and fauna of Antarctica, and the ineffectiveness of the current treatment technologies adopted by the research stations are highly evident. Future-oriented polar research should focus on protecting the pristine ecosystem by utilizing climate-sensitive, cost-effective treatment technologies.
Collapse
Affiliation(s)
- Keshava Balakrishna
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576 104, India.
| | - Yerabham Praveenkumarreddy
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576 104, India; Aapaavani Environmental Solutions Pvt. Ltd., Baikampady, Mangalore, 575011, India
| | - D'Souza Nishitha
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576 104, India
| | - Chikmagalur Mallappa Gopal
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576 104, India
| | - Jayakrishna Kanhangad Shenoy
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576 104, India
| | - Krishnamurthy Bhat
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Neloy Khare
- Ministry of Earth Sciences. Prithvi Bhawan, Near India Habitat Centre, Lodhi Road, New Delhi, 110003, India
| | - Kiran Dhangar
- Discipline of Earth Sciences, Indian Institute of Technology Gandhinagar, Gandhinagar, 382355, India
| | - Manish Kumar
- Sustainability Cluster, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey, 64849, Nuevo Leon, Mexico.
| |
Collapse
|
4
|
Jauković Z, Grujić S, Bujagić IM, Petković A, Laušević M. Steroid-based tracing of sewage-sourced pollution of river water and wastewater treatment efficiency: Dissolved and suspended water phase distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157510. [PMID: 35870600 DOI: 10.1016/j.scitotenv.2022.157510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
In this work, the environmental distribution of steroid compounds and the level of sewage-derived contamination were assessed using sterol ratios in the confluence area of two major rivers in the Serbian capital, where raw sewage is discharged without any treatment. Special attention was paid to steroids partitioning between the dissolved and suspended phases of river and wastewater samples, since steroids tend to easily bind to particulate matter. The efficiency of sterol removal in two wastewater treatment plants in Serbia was also evaluated. Human/animal sterols coprostanol and cholesterol, and phytosterol β-sitosterol were the dominant compounds in all water samples. The sterol abundance pattern in river water was different from that in raw sewage, indicating a more pronounced biogenic input, as well as greater impact of wastewater discharges on the composition of the suspended phase. Severe contamination of the investigated area was determined, with the Danube being more contaminated than the Sava River due to different hydrodynamic conditions leading to significantly higher sterol levels in the suspended particulate matter. It was also shown that the greater part of human/animal sterols and phytosterols present in river water samples (83.0 ± 11.9 % and 87.1 ± 15.2 %) and wastewater samples (92.1 ± 6.8 % and 95.0 ± 5.7 %) was bound to suspended material compared to the dissolved phase, emphasizing the need to consider and analyze both water phases in the tracing of steroid-based environmental pollution in order to obtain a realistic picture of steroid contamination and their fate in the aquatic environment. A high removal rate (>98 %) of coprostanol and cholesterol during wastewater treatment was determined and only the coprostanol/(coprostanol + cholestanol) ratio was found to be sensitive enough to be affected by an improvement in the quality of treated wastewater.
Collapse
Affiliation(s)
- Zorica Jauković
- Innovation Centre of the Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Svetlana Grujić
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia.
| | - Ivana Matić Bujagić
- Academy of Applied Technical Studies Belgrade, Belgrade Polytechnic College, Katarine Ambrozić 3, 11000 Belgrade, Serbia
| | - Anđelka Petković
- Jaroslav Černi Water Institute, Jaroslava Černog 80, 11000 Belgrade, Serbia
| | - Mila Laušević
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
| |
Collapse
|
5
|
Goeury K, Vo Duy S, Munoz G, Prévost M, Sauvé S. Assessment of automated off-line solid-phase extraction LC-MS/MS to monitor EPA priority endocrine disruptors in tap water, surface water, and wastewater. Talanta 2022; 241:123216. [PMID: 35042051 DOI: 10.1016/j.talanta.2022.123216] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 10/19/2022]
Abstract
EPA method 539.1 recently introduced an expanded list of priority endocrine-disrupting compounds (EDCs), some of which were also included in the Unregulated Contaminant Monitoring Rule 3 (UCMR3). Though standardized methods are available for drinking water, analysis of steroid hormones and bisphenol A (BPA) at the ultra-trace level remains challenging. This study set out to evaluate the suitability of automated off-line solid-phase extraction (SPE) liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) for the determination of EPA-priority EDCs in environmental water matrixes (tap water, surface water, and wastewater influents and effluents). The target molecules included 14 steroid hormones (altrenogest, androstenedione, equilenin, equilin, α-estradiol, β-estradiol, estriol, estrone, ethinylestradiol, levonorgestrel, medroxyprogesterone, norethindrone, progesterone, testosterone) and BPA. Factors that may influence the analytical performance were assessed. This involved, for instance, testing combinations of SPE materials from different brands and protocol variations. Several materials presented absolute extraction efficiencies in acceptable ranges. Initial sample pH, nature of reconstitution medium, and mobile phase salt concentration were among the potential factors affecting analyte signal. Storage conditions (different preservative agents) possibly exerted the strongest influence, in agreement with the literature. Limits of detection were in the range of 0.03-0.5 ng/L in drinking water, 0.1-0.5 ng/L in surface water, and 0.16-1 ng/L in wastewater. Method validation also involved testing linearity, accuracy, and precision in reagent water and matrix-matched extracted calibrants. The method was applied to field-collected water samples in Eastern Canada. Summed EDC concentrations remained low in tap water (<LOQ-0.92 ng/L), while higher detection frequencies and contamination levels were reported in riverine surface waters (2.6-37 ng/L) and municipal wastewaters (10-424 ng/L).
Collapse
Affiliation(s)
- Ken Goeury
- Department of Chemistry, Université de Montréal, Montreal, QC, Canada; Department of Civil, Geological and Mining Engineering, École Polytechnique de Montréal, Montreal, QC, Canada
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, Montreal, QC, Canada
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, Montreal, QC, Canada
| | - Michèle Prévost
- Department of Civil, Geological and Mining Engineering, École Polytechnique de Montréal, Montreal, QC, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
6
|
Mpupa A, Nqombolo A, Mizaikoff B, Nomngongo PN. Beta-Cyclodextrin-Decorated Magnetic Activated Carbon as a Sorbent for Extraction and Enrichment of Steroid Hormones (Estrone, β-Estradiol, Hydrocortisone and Progesterone) for Liquid Chromatographic Analysis. Molecules 2021; 27:molecules27010248. [PMID: 35011480 PMCID: PMC8747044 DOI: 10.3390/molecules27010248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
A β-cyclodextrin-decorated magnetic activated carbon adsorbent was prepared and characterized using various analytical techniques (X-ray diffraction (XRD), scanning electron microscopy–electron diffraction spectroscopy (SEM-EDS) and transmission electron microscopy (TEM)), and the adsorbent was used in the development of a magnetic solid-phase microextraction (MSPE) method for the preconcentration of estrone, β-estradiol, hydrocortisone and progesterone in wastewater and river water samples. This method was optimized using the central composite design in order to determine the experimental parameters affecting the extraction procedure. The quantification of hormones was achieved using high-performance liquid chromatography equipped with a photodiode array detector (HPLC-DAD). Under optimum conditions, the linearity ranged from 0.04 to 300 µg L−1 with a correlation of determinations of 0.9969–0.9991. The limits of detection and quantification were between 0.01–0.03 and 0.033–0.1 µg L−1, with intraday and interday precisions at 1.1–3.4 and 3.2–4.2. The equilibrium data were best described by the Langmuir isotherm model, and high adsorption capacities (217–294 mg g−1) were obtained. The developed procedure demonstrated high potential as an effective technique for use in wastewater samples without significant interferences, and the adsorbent could be reused up to eight times.
Collapse
Affiliation(s)
- Anele Mpupa
- Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa; (A.M.); (A.N.); (B.M.)
- Department of Science and Innovation-National Research Foundation South African Research Chair Initiative (DSI-NRF SARChI), Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
| | - Azile Nqombolo
- Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa; (A.M.); (A.N.); (B.M.)
- Department of Science and Innovation-National Research Foundation South African Research Chair Initiative (DSI-NRF SARChI), Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
| | - Boris Mizaikoff
- Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa; (A.M.); (A.N.); (B.M.)
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Philiswa Nosizo Nomngongo
- Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa; (A.M.); (A.N.); (B.M.)
- Department of Science and Innovation-National Research Foundation South African Research Chair Initiative (DSI-NRF SARChI), Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
- Correspondence: ; Tel.: +27-11-559-6571
| |
Collapse
|
7
|
Recent Advances in Solid-Phase Extraction (SPE) Based on Molecularly Imprinted Polymers (MIPs) for Analysis of Hormones. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9070151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Steroid hormones are active substances that are necessary in the normal functioning of all physiological activities in the body, such as sexual characteristics, metabolism, and mood control. They are also widely used as exogenous chemicals in medical and pharmaceutical applications as treatments and at times growth promoters in animal farming. The vast application of steroid hormones has resulted in them being found in different matrices, such as food, environmental, and biological samples. The presence of hormones in such matrices means that they can easily come into contact with humans and animals as exogenous compounds, resulting in abnormal concentrations that can lead to endocrine disruption. This makes their determination in different matrices a vital part of pollutant management and control. Although advances in analytical instruments are constant, it has been determined that these instruments still require some sample preparation steps to be able to determine the occurrence of pollutants in the complex matrices in which they occur. Advances are still being made in sample preparation to ensure easier, selective, and sensitive analysis of complex matrices. Molecularly imprinted polymers (MIPs) have been termed as advanced solid-phase (SPE) materials for the selective extraction and preconcentration of hormones in complex matrices. This review explores the preparation and application of MIPs for the determination of steroid hormones in different sample types.
Collapse
|
8
|
Song Y, Feng XS. Sample Preparation and Analytical Methods for Steroid Hormones in Environmental and Food Samples: An Update Since 2012. Crit Rev Anal Chem 2021; 53:69-87. [PMID: 34152888 DOI: 10.1080/10408347.2021.1936446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Steroid hormones (SHs) have been widely used over the past few decades as both human and veterinary drugs to prevent or treat infectious diseases and anti-inflammatory benefits in clinical. Unfortunately, their residues in foodstuffs and environmental samples can produce adverse effects on human and animal life such as disrupting the endocrine system. For these reasons, sensitive, simple and efficient methods have been developed for the determination of these compounds in various matrices. This critical review summarized the articles published in the period from 2012 to 2019 and can be used to help researchers to understand development of the sample pretreatment protocols and analytical methods used to detect SHs. The developed extraction and purification techniques used for steroids in different samples, such as cloud point extraction, solid phase extraction based on different novel materials, microextraction methods, QuEChERS and other methods are summarized and discussed. Analytical methods used to quantify these compounds, such as different chromatography methods, electrochemical methods, as well as other methods, are illustrated and compared. We focused on the latest advances in SHs pretreatment, and the application of new technologies in SHs analysis.
Collapse
Affiliation(s)
- Yang Song
- School of Pharmacy, China Medical University, Shenyang, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
9
|
Aborkhees G, Raina-Fulton R, Thirunavokkarasu O. Determination of Endocrine Disrupting Chemicals in Water and Wastewater Samples by Liquid Chromatography-Negative Ion Electrospray Ionization-Tandem Mass Spectrometry. Molecules 2020; 25:molecules25173906. [PMID: 32867135 PMCID: PMC7503312 DOI: 10.3390/molecules25173906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 11/16/2022] Open
Abstract
A liquid chromatography-negative ion electrospray ionization-tandem mass spectrometry method was developed for the simultaneous analysis of bisphenol A, 4-octylphenol, 4-nonylphenol, diethylstilbestrol, 17β-estradiol, estriol, estrone, 17α-ethinylestradiol, prednisone, and prednisolone. This method used solid-phase extraction with an elution solvent of acetonitrile to improve the stability of the analytes. To maintain the stability of analytes analyses were completed within five days. The recoveries ranged from 84 to 112% and the relative standard deviation of analysis of duplicate samples was <10%. The limits of quantitation were 1–10 ng/L. Surface water and wastewater were obtained from five wastewater treatment plants in Saskatchewan. Matrix effects were moderate to severe. Using standard addition calibration, all analytes except diethylstilbestrol and 17α-ethinyl estradiol were detected. There was a low frequency of detection of the target analytes in upstream and downstream water, indicating good removal efficiency during the wastewater treatment process. Bisphenol A and 4-nonylphenol were the only analytes detected downstream. Bisphenol A was the most frequently detected in raw wastewater (133 to 403 ng/L). Estriol was detected more often in raw wastewater than estrone or 17β-estradiol. This is the first Canadian study with the detection of prednisone and prednisolone with concentrations at 198–350 ng/L in raw wastewater at 60% of the wastewater treatment plants.
Collapse
Affiliation(s)
- Ghada Aborkhees
- Department of Chemistry & Biochemistry and Trace Analysis Facility, University of Regina, Regina, SK S4S 0A2, Canada;
| | - Renata Raina-Fulton
- Department of Chemistry & Biochemistry and Trace Analysis Facility, University of Regina, Regina, SK S4S 0A2, Canada;
- Correspondence: ; Tel.: +1-306-585-4012
| | | |
Collapse
|
10
|
Jones NS, Comparin JH. Interpol review of controlled substances 2016-2019. Forensic Sci Int Synerg 2020; 2:608-669. [PMID: 33385148 PMCID: PMC7770462 DOI: 10.1016/j.fsisyn.2020.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 12/14/2022]
Abstract
This review paper covers the forensic-relevant literature in controlled substances from 2016 to 2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/content/download/14458/file/Interpol%20Review%20Papers%202019.pdf.
Collapse
Affiliation(s)
- Nicole S. Jones
- RTI International, Applied Justice Research Division, Center for Forensic Sciences, 3040 E. Cornwallis Road, Research Triangle Park, NC, 22709-2194, USA
| | - Jeffrey H. Comparin
- United States Drug Enforcement Administration, Special Testing and Research Laboratory, USA
| |
Collapse
|
11
|
HPLC-MS/MS multiclass determination of steroid hormones in environmental waters after preconcentration on the carbonaceous sorbent HA-C@silica. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2019.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
12
|
Studies on the Kinetics of Doxazosin Degradation in Simulated Environmental Conditions and Selected Advanced Oxidation Processes. WATER 2019. [DOI: 10.3390/w11051001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The photochemical behavior of doxazosin (DOX) in simulated environmental conditions using natural waters taken from local rivers as a solvent was studied. The chemical characteristics of applied waters was done and a correlation analysis was used to explain the impact of individual parameters of matrix on the rate of the DOX degradation. It was stated that DOX is a photoliable compound in an aqueous environment. Its degradation is promoted by basic medium, presence of environmentally important ions such as Cl−, NO3−, SO42− and organic matter. The kinetics of DOX reactions with OH− and SO4− radicals were examined individually. The UV/H2O2, classical Fenton and photo-Fenton processes, were applied for the generation of hydroxyl radicals while the UV/VIS:Fe2(SO4)3:Na2SO2 system was employed for production of SO4− radicals. The obtained results pointed that photo-Fenton, as well as UV/VIS:Fe2(SO4)3:Na2SO2, are very reactive in ratio to DOX, leading to its complete degradation in a short time. A quantitative density functional theory (DFT) mechanistic study was carried out in order to explain the molecular mechanism of DOX degradation using the GAUSSIAN 09 program.
Collapse
|
13
|
Matić Bujagić I, Grujić S, Laušević M, Hofmann T, Micić V. Emerging contaminants in sediment core from the Iron Gate I Reservoir on the Danube River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:77-87. [PMID: 30690381 DOI: 10.1016/j.scitotenv.2019.01.205] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/12/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
The Iron Gate I Reservoir is the largest impoundment on the Danube River. It retains >50% of the incoming total suspended solids load and the associated organic contaminants. In the sediment core of the Iron Gate I Reservoir we report the presence and fate of four classes of emerging contaminants (pharmaceuticals, pesticides, steroids and perfluorinated compounds), predominantly not covered by the EU monitoring programs, but considered as future candidates. Based on contaminant's partitioning behavior in the water/sediment system and the suspected ecotoxicological potential asserted from the literature data, the risk of recorded concentrations for sediment-dwelling organisms was discussed. The high anticipated risk was associated with antibiotics sulfamethoxazole and erythromycin, and pesticides linuron and carbendazim (banned in the EU, but still approved for use in the investigated area) and malathion. This indicated the need for better control of release of these compounds into the river, and implied their inclusion in future regular monitoring. Higher concentrations of pharmaceuticals and most pesticides and sterols were recorded in the fragment of allochthonous coarser sediment, assumed to have entered the reservoir during a high discharge event. Only one perfluorinated compound was recorded in the upper part of the sediment core. The vertical concentration profiles of pesticides propazine and malathion indicated their uniform source, most likely atmospheric transport and deposition of particles deriving from agricultural land.
Collapse
Affiliation(s)
- Ivana Matić Bujagić
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia.
| | - Svetlana Grujić
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Mila Laušević
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Thilo Hofmann
- University of Vienna, Department of Environmental Geosciences and Environmental Science Research Network, Althanstrasse 14, 1090 Vienna, Austria
| | - Vesna Micić
- University of Vienna, Department of Environmental Geosciences and Environmental Science Research Network, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
14
|
Santos FR, Martins DA, Morais PCV, Oliveira AHB, Gama AF, Nascimento RF, Choi-Lima KF, Moreira LB, Abessa DMS, Nelson RK, Reddy CM, Swarthout RF, Cavalcante RM. Influence of anthropogenic activities and risk assessment on protected mangrove forest using traditional and emerging molecular markers (Ceará coast, northeastern Brazil). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:877-888. [PMID: 30625674 DOI: 10.1016/j.scitotenv.2018.11.380] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/17/2018] [Accepted: 11/25/2018] [Indexed: 06/09/2023]
Abstract
Anthropogenic molecular markers were used to assess chemicals inputs and ecological risks associated from multiple sources to sediments in one of the largest tropical mangrove forests of South America, with a particular focus on lesser studied compounds resulting from rural activities. Total concentrations ranged from 23.4 to 228.2 ng g-1 for polycyclic aromatic hydrocarbons (∑PAHs), 750.4 to 5912.5 ng g-1 for aliphatic hydrocarbons (∑AHs), 32.4 to 696.6 ng g-1 for pesticides (∑pesticides), 23.1 to 2109.7 ng g-1 for coprostanol and sterols (∑sterols), 139.3 to 580.2 ng g-1 for naturals hormones (∑natural hormones) and 334.1 to 823.4 ng g-1 for synthetics hormones (∑synthetic hormones). The PAHs and AHs used as traditional anthropogenic markers showed a mixture between natural and anthropogenic sources, related mainly to inputs from higher plants, phytoplankton and both, biomass and petroleum combustion. Rural activities linked to agricultural pest control are the predominant source of pesticides, although minor inputs from pesticides used in urban public health campaigns and household activities were also detected. Synthetic hormones levels are two to three orders of magnitude greater than natural hormones levels and no correlations were observed between the main sewage markers and synthetic hormone concentrations, rural activities such as animal husbandry, which use drugs in management, may be the predominant anthropogenic sources of these compounds in the region. Traditional markers failed to detect ecological risks in rural areas, where synthetic substances (e.g. pesticides and hormones) are widely used and introduced in the environment.
Collapse
Affiliation(s)
- Felipe R Santos
- Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico, 191, 05508-120 São Paulo, SP, Brazil.
| | - Davi A Martins
- Instituto de Ciências do Mar, Universidade Federal do Ceará, Av. Abolição, 3207, 60165-081 Fortaleza, CE, Brazil
| | - Pollyana C V Morais
- Instituto de Ciências do Mar, Universidade Federal do Ceará, Av. Abolição, 3207, 60165-081 Fortaleza, CE, Brazil
| | - André H B Oliveira
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, 60455-760 Fortaleza, CE, Brazil
| | - Allyne F Gama
- Instituto de Ciências do Mar, Universidade Federal do Ceará, Av. Abolição, 3207, 60165-081 Fortaleza, CE, Brazil
| | - Ronaldo F Nascimento
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, 60455-760 Fortaleza, CE, Brazil
| | - Katherine F Choi-Lima
- Centro de Investigação em Ecotoxicologia Aquática e Poluição (NEPEA), São Paulo State University (UNESP Campus do Litoral Paulista), Praça Infante Dom Henrique, s/n., CEP 11330-900 São Vicente, SP, Brazil
| | - Lucas Buruaem Moreira
- Centro de Investigação em Ecotoxicologia Aquática e Poluição (NEPEA), São Paulo State University (UNESP Campus do Litoral Paulista), Praça Infante Dom Henrique, s/n., CEP 11330-900 São Vicente, SP, Brazil
| | - Denis M S Abessa
- Centro de Investigação em Ecotoxicologia Aquática e Poluição (NEPEA), São Paulo State University (UNESP Campus do Litoral Paulista), Praça Infante Dom Henrique, s/n., CEP 11330-900 São Vicente, SP, Brazil
| | - Robert K Nelson
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole road, MA 02543, United States of America
| | - Christopher M Reddy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole road, MA 02543, United States of America
| | - Robert F Swarthout
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole road, MA 02543, United States of America
| | - Rivelino M Cavalcante
- Instituto de Ciências do Mar, Universidade Federal do Ceará, Av. Abolição, 3207, 60165-081 Fortaleza, CE, Brazil.
| |
Collapse
|
15
|
da Silva AC, Mafra G, Spudeit D, Merib J, Carasek E. Magnetic ionic liquids as an efficient tool for the multiresidue screening of organic contaminants in river water samples. SEPARATION SCIENCE PLUS 2019. [DOI: 10.1002/sscp.201900010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ana Cristine da Silva
- Departamento de Química; Universidade Federal de Santa Catarina; Florianópolis SC Brazil
| | - Gabriela Mafra
- Departamento de Farmacociências; Universidade Federal de Ciências da Saúde de Porto Alegre; Porto Alegre RS Brazil
| | - Daniel Spudeit
- Departamento de Química; Universidade Federal de Santa Catarina; Florianópolis SC Brazil
| | - Josias Merib
- Departamento de Farmacociências; Universidade Federal de Ciências da Saúde de Porto Alegre; Porto Alegre RS Brazil
| | - Eduardo Carasek
- Departamento de Química; Universidade Federal de Santa Catarina; Florianópolis SC Brazil
| |
Collapse
|
16
|
de Melo MG, da Silva BA, Costa GDS, da Silva Neto JCA, Soares PK, Val AL, Chaar JDS, Koolen HHF, Bataglion GA. Sewage contamination of Amazon streams crossing Manaus (Brazil) by sterol biomarkers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:818-826. [PMID: 30390455 DOI: 10.1016/j.envpol.2018.10.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/03/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
Sewage pollution is a principal factor of decreasing water quality, although it has not been considered a real impact in Amazonia that is still considered a pristine environment around the world. Thus, this study aimed to assess the levels of sewage contamination in sediments from three streams crossing Manaus - a Brazilian city of 2,403,796 inhabitants in the heart of the Amazon rain forest. Cholesterol, cholestanol, brassicasterol, ergosterol, stigmasterol, β-sitosterol, campesterol, stigmastanol, coprostanol, and epicoprostanol levels were determined by liquid chromatography tandem mass spectrometry (LC-MS/MS). The fecal indicator, coprostanol, was found in high concentrations (509-12 830 ng g-1) and high relative proportions (21-54%) in all samples collected in the Mindu stream that crosses many heavily populated districts of the city, and in the Quarenta stream that crosses the Industrial District of Manaus. The sediments of the Tarumã-Açu stream also presented coprostanol; however, concentrations (<LOQ-142 ng g-1) and relative proportions (0-7%) were much lower in this stream. Sterol ratios indicate a severe contamination of the urban streams (Mindu and Quarenta) and a low to moderate contamination of the partially urban stream (Tarumã-Açu). This is the first study evaluating the levels of sewage contamination of Amazon streams using sterol biomarkers and the results obtained herein indicate the need of an immediate implementation of effective sewage treatment strategies. Additionally, these findings may be considered as baseline concentrations for future monitoring programs of that globally important environment.
Collapse
Affiliation(s)
- Moacir Guimarães de Melo
- Department of Chemistry, Institute of Exact Sciences, Federal University of Amazonas (UFAM), General Rodrigo Octavio Avenue, 6200 Coroado, Manaus, AM, Brazil
| | - Brina Aguiar da Silva
- Department of Chemistry, Institute of Exact Sciences, Federal University of Amazonas (UFAM), General Rodrigo Octavio Avenue, 6200 Coroado, Manaus, AM, Brazil
| | - Gilcllys de Souza Costa
- Department of Chemistry, Institute of Exact Sciences, Federal University of Amazonas (UFAM), General Rodrigo Octavio Avenue, 6200 Coroado, Manaus, AM, Brazil
| | - João Cândido André da Silva Neto
- Department of Geography, Institute of Philosophy, Human and Social Sciences, Federal University of Amazonas (UFAM), General Rodrigo Octavio Avenue, 6200 Coroado, Manaus, AM, Brazil
| | - Patrícia Kaori Soares
- Science and Technology School, Federal University of Rio Grande do Norte (UFRN), Passeio dos Girassóis Avenue, Natal, RN, Brazil
| | - Adalberto Luis Val
- Brazilian National Institute for Research of the Amazon (INPA), Laboratory of Ecophysiology and Molecular Evolution, André Araújo Avenue, 2936 Aleixo, Manaus, AM, Brazil
| | - Jamal da Silva Chaar
- Department of Chemistry, Institute of Exact Sciences, Federal University of Amazonas (UFAM), General Rodrigo Octavio Avenue, 6200 Coroado, Manaus, AM, Brazil
| | - Hector Henrique Ferreira Koolen
- Metabolomics and Mass Spectrometry Research Group, Amazonas State University (UEA), Carvalho Leal Avenue, 1777 Cachoeirinha, Manaus, AM, Brazil
| | - Giovana Anceski Bataglion
- Department of Chemistry, Institute of Exact Sciences, Federal University of Amazonas (UFAM), General Rodrigo Octavio Avenue, 6200 Coroado, Manaus, AM, Brazil.
| |
Collapse
|
17
|
M F M Sampaio N, D B Castilhos N, C da Silva B, C Riegel-Vidotti I, J G Silva B. Evaluation of Polyvinyl Alcohol/Pectin-Based Hydrogel Disks as Extraction Phase for Determination of Steroidal Hormones in Aqueous Samples by GC-MS/MS. Molecules 2018; 24:E40. [PMID: 30583505 PMCID: PMC6337582 DOI: 10.3390/molecules24010040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/12/2018] [Accepted: 12/21/2018] [Indexed: 01/24/2023] Open
Abstract
A new extraction phase based on hydrogel disks of polyvinyl alcohol (PVOH) and pectin was proposed, characterized and evaluated for the extraction of six steroidal hormones (estriol, estrone, 17β-estradiol, 17α-ethinylestradiol, progesterone, and testosterone) in aqueous samples with subsequent determination by gas chromatography-tandem mass spectrometry (GC-MS/MS) after the derivatization procedure. The developed extraction procedure was based on the solid phase extraction (SPE) technique, but employed hydrogel as the sorbent phase. The effects of several parameters, including the amount and composition of the sorbent phase, pH, sample volume, flow rate, and gel swelling over the extraction efficiency, were evaluated. Gels with lower swelling indexes and larger amounts of sorbent ensured higher extraction yields of analytes. The main benefits of using the PVOH/pectin-based hydrogel as the extraction phase are the ease of synthesis, low-cost preparation, and the possibility of reusing the extraction disks. Limits of quantification of 0.5 μg L-1 for estrone and 17β-estradiol, and 1 μg L-1 for testosterone, 17α-ethinylestradiol, progesterone, and estriol were obtained. Accuracy values ranged from 80% to 110%, while the inter-assay precision ranged from 0.23% to 22.2% and the intra-assay from 0.55% to 12.3%. Since the sorbent phase has an amphiphilic character, the use of hydrogels is promising for the extraction of medium-to-high polarity compounds.
Collapse
Affiliation(s)
- Naiara M F M Sampaio
- Department of Chemistry, Federal University of Paraná, Curitiba/PR 81530-900, Brazil.
| | - Natara D B Castilhos
- Department of Chemistry, Federal University of Paraná, Curitiba/PR 81530-900, Brazil.
| | - Bruno C da Silva
- Department of Chemistry, Federal University of Paraná, Curitiba/PR 81530-900, Brazil.
| | | | - Bruno J G Silva
- Department of Chemistry, Federal University of Paraná, Curitiba/PR 81530-900, Brazil.
| |
Collapse
|