1
|
Zandi-Darehgharibi F, Haddadi H, Asfaram A. A new tannin-based adsorbent synthesized for rapid and selective recovery of palladium and gold: Optimization using central composite design. Heliyon 2024; 10:e24639. [PMID: 38314278 PMCID: PMC10837505 DOI: 10.1016/j.heliyon.2024.e24639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/08/2023] [Accepted: 01/11/2024] [Indexed: 02/06/2024] Open
Abstract
A tannin-based adsorbent was synthesized by pomegranate peel tannin powder modified with ethylenediamine (PT-ED) for the rapid and selective recovery of palladium and gold. To characterize PT-ED, field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS-Mapping), and Fourier transform infrared spectroscopy (FT-IR) were used. Central composite design (CCD) was used for optimization. The kinetic, isotherm, interference of coexisting metal ions, and thermodynamics were studied. The optimal conditions, including Au (III) concentration = 30 m g L - 1 , Pd (II) concentration = 30 m g L - 1 , adsorbent mass = 26 mg, pH = 2, and time = 26 min with the sorption percent more than 99 %, were anticipated for both metals using CCD. Freundlich model and pseudo-second-order expressed the isotherm and kinetic adsorption of the both metals. The inhomogeneity of the adsorbent surface and the multi-layer adsorption of gold and palladium ions on the PT-ED surface are depicted by the Freundlich model. The thermodynamic investigation showed that P d 2 + and A u 3 + ions adsorption via PT-ED was an endothermic, spontaneous, and feasible process. The maximum adsorption capacity of P d 2 + and A u 3 + ions on PT-ED was 261.189 m g g - 1 and 220.277 m g g - 1 , respectively. The probable adsorption mechanism of P d 2 + and A u 3 + ions can be ion exchange and chelation. PT-ED (26 mg) recovered gold and palladium rapidly from the co-existing metals in the printed circuit board (PCB) scrap, including Ca, Zn, Si, Cr, Pb, Ni, Cu, Ba, W, Co, Mn, and Mg with supreme selectivity toward gold and palladium. The results of this work suggest the use of PT-ED with high selectivity and efficiency to recover palladium and gold from secondary sources such as PCB scrap.
Collapse
Affiliation(s)
| | - Hedayat Haddadi
- Department of Chemistry, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Arash Asfaram
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
2
|
Amini MH, Beyki MH. Construction of 1, 10-phenanthroline functionalized magnetic starch as a lead (II) tagged surface imprinted biopolymer for highly selective targeting of toxic lead ions. Int J Biol Macromol 2023:124996. [PMID: 37236569 DOI: 10.1016/j.ijbiomac.2023.124996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
In this research 1, 10 - phenanthroline functionalized CaFe2O4 - starch was employed as a magnetic ion-imprinted polymer (IIP) for highly selective targeting toxic Pb2+ ions from aqueous media. VSM analysis revealed that the sorbent has magnetic saturation of 10 emu g-1 which is appropriate for magnetic separation. Moreover, TEM analysis confirmed that the adsorbent is composed of particles with a mean diameter of 10 nm. According to XPS analysis, lead coordination with phenanthroline is the main adsorption mechanism that is along with electrostatic interaction. A maximum adsorption capacity of 120 mg g-1 was obtained within 10 min at a pH of 6 and an adsorbent dosage of 20 mg. Kinetic and isotherm studies showed that lead adsorption followed the pseudo-second-order and Freundlich models, respectively. The selectivity coefficient of Pb (II) relative to Cu(II), Co(II), Ni(II), Zn(II), Mn(II), and Cd(II) was 4.7, 14, 20, 36, 13 and 25, respectively. Moreover, the IIP represents the imprinting factor of 1.32. The sorbent showed good regeneration after five cycles of the sorption/desorption process with an efficiency of >93 %. Finally represented IIP was used for lead preconcentration from various matrices i.e., water, vegetable, and fish samples.
Collapse
Affiliation(s)
| | - Mostafa Hossein Beyki
- School of Chemistry, University College of Science, university of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Sharef HY, Jalal AF, Ibrahim BM, Fakhre N, Qader IN. New ion-imprinted polymer for selective removal of Cu 2+ ion in aqueous solution using extracted Aloe vera leaves as a monomer. Int J Biol Macromol 2023; 239:124318. [PMID: 37015282 DOI: 10.1016/j.ijbiomac.2023.124318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/14/2023] [Accepted: 03/30/2023] [Indexed: 04/06/2023]
Abstract
The objective of this project is to create a unique type of polymer known as an ion imprinted polymer (IIP) and a non-imprinted polymer (NIP) utilizing natural waste biosorbent materials. One example of this type of waste is Aloe vera, a plant with many medicinal uses that is grown globally. Aloe vera is considered one of the most valuable medicinal plants with a wide range of applications. Extracted Aloe vera was used as functional monomers for the first time to prepare new IIPs, epichlorohydrin, and Cu2+ ion as the cross-linking agent and template, respectively. The NIP was also synthesized for comparison, without the use of the Cu2+ salt. Following polymerization, the IIP particles were cleansed of template ions through a 0.1 M EDTA leaching process, resulting in the formation of cavities within the particles, these cavities in the polymer provide selective linking zones for these specific template ions. The synthesized IIPs were characterized using the most recent identification instruments. The experimental parameters for adsorption, such as pH of a solution, contact time, initial copper concentration, adsorbent dosage, and temperature have been optimized. The most effective conditions for metal adsorption onto the ionic imprinted polymer were found to be a pH of 8.0, a temperature of 30 °C, a concentration of 0.03 g/100 mL, and a contact time of 50 min. Based on the ANOVA statistical value, the adsorption of Cu2+ ion on IIP is significant with very low probability (p) values (<0.001). The Langmuir isotherm model and a second-order reaction were both used in the adsorption process. According to thermodynamic characteristics, Cu2+ adsorption over IIPs and NIP was an endothermic, spontaneous process. Compared to NIP, the imprinted polymer exhibits a significantly better capacity and selectivity for Cu2+ adsorption, the maximum removal percentage of IIPs and NIP was 96.02 % and 74.3 % respectively. Moreover, the research showed that ion imprinting can be a promising technique for preparing selective adsorbents to separate and preconcentrate metal in a medium of multiple competitive metals (Co2+, Cd2+, Ni2+, Zn2+, Fe2+, and Pb2+) The most important point for this new Cu2+-IIPs was shown superior reusability up to 8 cycles with small decrees in uptake capability.
Collapse
Affiliation(s)
- Huda Y Sharef
- Department of Chemistry, College of Education, Salahaddin University-Erbil, Erbil, Iraq
| | - Aveen F Jalal
- Department of Chemistry, College of Education, Salahaddin University-Erbil, Erbil, Iraq
| | - Bnar M Ibrahim
- Department of Chemistry, College of Science, University of Raparin, Sulaymaneyah, Iraq.
| | - Nabil Fakhre
- Department of Chemistry, College of Education, Salahaddin University-Erbil, Erbil, Iraq
| | - Ibrahim N Qader
- Department of Physics, College of Science, University of Raparin, Sulaymaneyah, Iraq
| |
Collapse
|
4
|
Mahar AM, Alveroglu E, Balouch A, Talpur FN, Jagirani MS. Fabrication of Fe/Bi bimetallic magnetic nano-oxides (IBBMNOs) as efficient remediator for hexavalent chromium from aqueous environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:65161-65175. [PMID: 35482238 DOI: 10.1007/s11356-022-20239-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
In this study, highly efficient Fe/Bi bimetallic magnetic nanooxides (IBBMNOs) were used as adsorbent for the removal of Cr(VI) from an aqueous environment. The IBBMNOs were synthesized by a simple and facile chemical reduction method. After that, different analytical techniques were used to characterize the resultant nanomaterial. According to characterization results, the IBBMNOs are highly porous look like cotton beads with an average size of 60-69 nm. BET results show that IBBMNOs are highly porous with a high surface area. After optimizing different parameters such as pH, adsorbent dose, and time study, an excellent adsorption capacity was achieved up to 185 mg/g in 10 min. The calculated data of the adsorption process was well fitted with Langmuir and pseudo-first-order kinetic model. The prepared materials have good usability as compared to reported adsorbent materials can be used for five different cycles with good removal efficiency of chromium ion from aqueous samples. Schematic illustration of adsorption of Cr(VI) from aqueous solution by IBBMNOs.
Collapse
Affiliation(s)
- Ali Muhammad Mahar
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro,, 76080, Sindh, Pakistan
| | - Esra Alveroglu
- Department of Physics Engineering, Faculty of Science and Letters, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Aamna Balouch
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro,, 76080, Sindh, Pakistan.
| | - Farah Naz Talpur
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro,, 76080, Sindh, Pakistan
| | - Muhammad Saqaf Jagirani
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro,, 76080, Sindh, Pakistan
| |
Collapse
|
5
|
Fabrication of Cobalt tagged smart ion-imprinted polymeric material applied for the elimination of Co2+ ions from real environmental samples. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-04025-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Lateral flow analysis of Pb (II) in green tea integrated with ionic imprinted paper-based chip. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
7
|
Zare EN, Fallah Z, Le VT, Doan VD, Mudhoo A, Joo SW, Vasseghian Y, Tajbakhsh M, Moradi O, Sillanpää M, Varma RS. Remediation of pharmaceuticals from contaminated water by molecularly imprinted polymers: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:2629-2664. [PMID: 35431714 PMCID: PMC8999999 DOI: 10.1007/s10311-022-01439-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/15/2022] [Indexed: 05/03/2023]
Abstract
The release of pharmaceuticals into the environment induces adverse effects on the metabolism of humans and other living species, calling for advanced remediation methods. Conventional removal methods are often non-selective and cause secondary contamination. These issues may be partly solved by the use of recently-developped adsorbents such as molecularly imprinted polymers. Here we review the synthesis and application of molecularly imprinted polymers for removing pharmaceuticals in water. Molecularly imprinted polymers are synthesized via several multiple-step polymerization methods. Molecularly imprinted polymers are potent adsorbents at the laboratory scale, yet their efficiency is limited by template leakage and polymer quality. Adsorption performance of multi-templated molecularly imprinted polymers depends on the design of wastewater treatment plants, pharmaceutical consumption patterns and the population serviced by these wastewater treatment plants.
Collapse
Affiliation(s)
| | - Zari Fallah
- Faculty of Chemistry, University of Mazandaran, 47416-95447 Babolsar, Iran
| | - Van Thuan Le
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, 55000 Vietnam
- The Faculty of Natural Sciences, Duy Tan University, 03 Quang Trung, Da Nang, 55000 Vietnam
| | - Van-Dat Doan
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Ho Chi Minh, 70000 Vietnam
| | - Ackmez Mudhoo
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit, 80837 Mauritius
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul, 06978 South Korea
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978 South Korea
| | - Mahmood Tajbakhsh
- Faculty of Chemistry, University of Mazandaran, 47416-95447 Babolsar, Iran
| | - Omid Moradi
- Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028 South Africa
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
8
|
Jakavula S, Biata NR, Dimpe KM, Pakade VE, Nomngongo PN. Magnetic Ion Imprinted Polymers (MIIPs) for Selective Extraction and Preconcentration of Sb(III) from Environmental Matrices. Polymers (Basel) 2021; 14:21. [PMID: 35012044 PMCID: PMC8747241 DOI: 10.3390/polym14010021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022] Open
Abstract
Antimony(III) is a rare element whose chemical and toxicological properties bear a resemblance to those of arsenic. As a result, the presence of Sb(III) in water might have adverse effects on human health and aquatic life. However, Sb(III) exists at very ultra-trace levels which may be difficult for direct quantification. Therefore, there is a need to develop efficient and reliable selective extraction and preconcentration of Sb(III) in water systems. Herein, a selective extraction and preconcentration of trace Sb(III) from environmental samples was achieved using ultrasound assisted magnetic solid-phase extraction (UA-MSPE) based on magnetic Sb(III) ion imprinted polymer-Fe3O4@SiO2@CNFs nanocomposite as an adsorbent. The amount of antimony in samples was determined using inductively coupled plasma optical emission spectrometry (ICP-OES). The UA-MSPE conditions were investigated using fractional factorial design and response surface methodology based on central composite design. The Sb(III)-IIP sorbent displayed excellent selectivity towards Sb(III) as compared to NIIP adsorbent. Under optimised conditions, the enrichment factor, limit of detection (LOD) and limit of quantification (LOQ) of UA-MSPE/ICP-OES for Sb(III) were 71.3, 0.13 µg L-1 and 0.44 µg L-1, respectively. The intra-day and inter-day precision expressed as relative standard deviations (%RSDs, n = 10 and n = 5) were 2.4 and 4.7, respectively. The proposed analytical method was applied in the determination of trace Sb(III) in environmental samples. Furthermore, the accuracy of the method was evaluated using spiked recovery experiments and the percentage recoveries ranged from 95-98.3%.
Collapse
Affiliation(s)
- Silindokuhle Jakavula
- Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, Doornfontein 2028, South Africa; (S.J.); (N.R.B.); (K.M.D.)
- Department of Science and Innovation-National Research Foundation South African Research Chair Initiative (DSI-NRF SARChI), Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
| | - Nkositetile Raphael Biata
- Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, Doornfontein 2028, South Africa; (S.J.); (N.R.B.); (K.M.D.)
- Department of Science and Innovation-National Research Foundation South African Research Chair Initiative (DSI-NRF SARChI), Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
| | - Kgogobi M. Dimpe
- Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, Doornfontein 2028, South Africa; (S.J.); (N.R.B.); (K.M.D.)
| | - Vusumzi Emmanuel Pakade
- Department of Chemistry, Vaal University of Technology, Private Bag X 021, Vanderbijlpark 1911, South Africa;
| | - Philiswa Nosizo Nomngongo
- Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, Doornfontein 2028, South Africa; (S.J.); (N.R.B.); (K.M.D.)
- Department of Science and Innovation-National Research Foundation South African Research Chair Initiative (DSI-NRF SARChI), Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
| |
Collapse
|
9
|
Behisht Ara, Muhammad M, Amir S, Zia TUH, Minhas Z. Preconcentration of Nickel from Aqueous Environment Using Microspheric Nickel(II) Ion Imprinted Polymer. J WATER CHEM TECHNO+ 2021. [DOI: 10.3103/s1063455x21050039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Kumar S, Balouch A, Alveroğlu E, Jagirani MS, Mughal MA, Mal D. Fabrication of nickel-tagged magnetic imprinted polymeric network for the selective extraction of Ni(II) from the real aqueous samples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40022-40034. [PMID: 33770354 DOI: 10.1007/s11356-021-13375-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
A new nickel ion, magnetic imprinted polymer was fabricated through the precipitation polymerization process, using amine-functionalized silica-capped iron oxide particles as a core material, and 4-vinyl pyridine as complexing agent methacrylic acid as functional monomer. The resulted magnetic adsorbent was employed to eliminate toxic Ni2+ ions from industrial wastewater. The different parameters were optimized, such as pH, shaking speed, and adsorbent dose, to obtain the maximum adsorption capacity. The synthesized material showed high selectivity coefficient for Ni+2 ions in the presence of other competitive ions and followed pseudo-second-order kinetics and Langmuir isotherm. A good adsorption capacity of 158.73 mg g-1 was obtained at optimized pH 6 in the concentration of 5 mg L-1 nickel ions aqueous solution. The limit of detection, quantification, and the percent relative standard deviation was found to be 0.58, 1.93, and 3.4%. This proves the excellent performance of prepared magnetic Ni(II) ion-imprinted polymer for selective detoxification of Ni2+ ions from real aqueous samples. Due to tunable magnetic properties, the prepared MMIPs are highly selective and sensitive and highly porous in nature; due to excellent magnetic properties, there is no need for centrifugation. Just use external magnetic field, it has good reusability. Showing preparation of Ni (II) imprinted magnetic polymer.
Collapse
Affiliation(s)
- Sagar Kumar
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Sindh, 76080, Pakistan
| | - Aamna Balouch
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Sindh, 76080, Pakistan.
- Faculty of Science and Letters, Department of Physics Engineering, Istanbul Technical University, Maslak, 34467 Sariyer, Istanbul, Turkey.
| | - Esra Alveroğlu
- Faculty of Science and Letters, Department of Physics Engineering, Istanbul Technical University, Maslak, 34467 Sariyer, Istanbul, Turkey
| | - Muhammad Saqaf Jagirani
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Sindh, 76080, Pakistan
| | - Moina Akhtar Mughal
- Dr. M.A. Kazi Institute of Chemistry University of Sindh, Jamshoro, Sindh, 76080, Pakistan
| | - Dadu Mal
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Sindh, 76080, Pakistan
| |
Collapse
|
11
|
Structure, adsorption and separation comparison between the thermosensitive block segment polymer modified ReO4− ion imprinted polymer and traditional ReO4− ion imprinted polymer. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Xing J, Li N, Liang Y, Zhu F. Microwave-assisted synthesis of magnetic Pb(II)-imprinted-poly(schiff base-co-MAA) for selective recognition and extraction of Pb(II) from industrial wastewater. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1930033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Junde Xing
- School of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, P. R. China
| | - Na Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, P. R. China
| | - Yukun Liang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, P. R. China
| | - Fang Zhu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, P. R. China
| |
Collapse
|
13
|
Kong Z, Du Y, Wei J, Zhang H, Fan L. Synthesis of a new ion-imprinted polymer for selective Cr(VI) adsorption from aqueous solutions effectively and rapidly. J Colloid Interface Sci 2021; 588:749-760. [DOI: 10.1016/j.jcis.2020.11.107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 01/19/2023]
|
14
|
Jagirani MS, Balouch A, Mahesar SA, Alveroğlu E, Kumar A, Tunio A, Abdullah. Selective and sensitive detoxification of toxic lead ions from drinking water using lead (II) ion-imprinted interpenetrating polymer linkage. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03546-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
15
|
Evaluation of the performance of a selective magnetite molecularly imprinted polymer for extraction of quercetin from onion samples. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105849] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Bagheri AR, Aramesh N, Khan AA, Gul I, Ghotekar S, Bilal M. Molecularly imprinted polymers-based adsorption and photocatalytic approaches for mitigation of environmentally-hazardous pollutants ─ A review. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2021; 9:104879. [DOI: 10.1016/j.jece.2020.104879] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
|
17
|
Salman MS, Znad H, Hasan MN, Hasan MM. Optimization of innovative composite sensor for Pb(II) detection and capturing from water samples. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105765] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
Imran M, Islam A, Farooq MU, Ye J, Zhang P. Characterization and adsorption capacity of modified 3D porous aerogel from grapefruit peels for removal of oils and organic solvents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43493-43504. [PMID: 32468363 DOI: 10.1007/s11356-020-09085-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
With the rapid industrialization, especially offshore oil exploitation, frequent leakage incidents of oils/organic solvents have adversely affected ecological systems and environmental resources. Therefore, great interest has been shown in developing new materials to eliminate these organic pollutants, which have become worldwide problems. In this study, a cost-effective, environmentally friendly porous aerogel with three-dimensional (3D) structure was prepared from grapefruit peel by a facile hydrothermal method as the adsorbent of oils/organic solvents. The as-prepared modified grapefruit peel aerogel (M-GPA) showed mesoporous structure with high specific surface area of 36.42 m2/g and large pore volume of 0.0371 cm3/g. The excellent hydrophobicity of M-GPA with a water contact angle of 141.2° indicated a strong potential for adsorption of oils and organic solvents. The high adsorption capacity of M-GPA for a series of oils and organic solvents was 8 to 52 times as much as its own weight. Moreover, the M-GPA was easily regenerated and a high adsorption capacity recovery above 97% was maintained after five adsorption-regeneration cycles. Therefore, the M-GPA is a promising recyclable adsorbent for the removal of oils/organic solvents from polluted water.
Collapse
Affiliation(s)
- Muhammad Imran
- College of Environmental Sciences and Engineering, Beijing Forestry University, Qinghua East Road 35, Haidian District, Beijing, 100083, People's Republic of China
| | - Ashraful Islam
- State Key Laboratory of Environmental Aquatic Chemistry, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Muhammad Umair Farooq
- State Key Laboratory of Super Lattices and Microstructures, Institute of Semiconductor, Chinese Academy of Sciences, Beijing, 100083, China
| | - Junpei Ye
- College of Environmental Sciences and Engineering, Beijing Forestry University, Qinghua East Road 35, Haidian District, Beijing, 100083, People's Republic of China
| | - Panyue Zhang
- College of Environmental Sciences and Engineering, Beijing Forestry University, Qinghua East Road 35, Haidian District, Beijing, 100083, People's Republic of China.
| |
Collapse
|
19
|
Jagirani MS, Soylak M. A review: Recent advances in solid phase microextraction of toxic pollutants using nanotechnology scenario. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105436] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
20
|
Jagirani MS, Balouch A, Mahesar SA, Kumar A, Baloch AR, Abdullah., Bhanger MI. Fabrication of cadmium tagged novel ion imprinted polymer for detoxification of the toxic Cd2+ion from aqueous environment. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105247] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Hua Y, Li JY, Min H, Wu XH, Cui XB, Chen YJ, Lian HZ, Sheng D. Hybrid monolith assisted magnetic ion-imprinted polymer extraction coupled with ICP-MS for determination of trace Au(III) in environmental and mineral samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
A selective and sensitive procedure for magnetic solid-phase microextraction of lead(II) on magnetic cellulose nanoparticles from environmental samples prior to its flame atomic absorption spectrometric detection. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-02085-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Ultrasonic mediated synthesis of arsenic imprinted polymer and their analytical practicality as a selective sorbent for removal of toxic As3+ ion from real samples. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02196-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Jakavula S, Biata NR, Dimpe KM, Pakade VE, Nomngongo PN. A Critical Review on the Synthesis and Application of Ion-Imprinted Polymers for Selective Preconcentration, Speciation, Removal and Determination of Trace and Essential Metals from Different Matrices. Crit Rev Anal Chem 2020; 52:314-326. [PMID: 32723191 DOI: 10.1080/10408347.2020.1798210] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The presence of toxic trace metals and high concentrations of essential elements in the environment presents a serious threat to living organism. Various methods have been used for the detection, preconcentration and remediation of these metals from biological, environmental and food matrices. Owing to the complexicity of samples, methods with high selectivity have been used for detection, preconcentration and remediation of these trace metals. These methods are achieved by the use of ion-imprinted polymers (IIPs) due to their impressive properties such as selectivity, high extraction efficiency, speciation capability and reusability. Because of the increase of toxic trace and essential metals in the environment, IIPs have attracted great use in analytical chemistry. This review, provide a brief background on IIPs and polymerization method that are used for their preparation. Recent applications of IIPs as adsorbents for preconcentration, removal, speciation and electrochemical detection of trace and essential metal is also discussed.
Collapse
Affiliation(s)
- Silindokuhle Jakavula
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa.,DSI/NRF SARChI Chair, Nanotechnology for Water, University of Johannesburg, Doornfontein, South Africa
| | - N Raphael Biata
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa.,DSI/NRF SARChI Chair, Nanotechnology for Water, University of Johannesburg, Doornfontein, South Africa.,DSI/Mintek Nanotechnology Innovation Centre, University of Johannesburg, Doornfontein, South Africa
| | - K Mogolodi Dimpe
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Vusumzi E Pakade
- Department of Chemistry, Vaal University of Technology, Vanderbijlpark, South Africa
| | - Philiswa N Nomngongo
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa.,DSI/NRF SARChI Chair, Nanotechnology for Water, University of Johannesburg, Doornfontein, South Africa.,DSI/Mintek Nanotechnology Innovation Centre, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
25
|
Elsayed NH, Alatawi A, Monier M. Diacetylmonoxine modified chitosan derived ion-imprinted polymer for selective solid-phase extraction of nickel (II) ions. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104570] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Naked-eye lead(II) capturing from contaminated water using innovative large-pore facial composite materials. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104585] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Okhravi T, Sorouraddin SM, Farajzadeh MA, Mohebbi A. Development of a liquid-nitrogen-induced homogeneous liquid–liquid microextraction of Co(II) and Ni(II) from water and fruit juice samples followed by atomic absorption spectrometry detection. Anal Bioanal Chem 2020; 412:1675-1684. [DOI: 10.1007/s00216-020-02406-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/14/2019] [Accepted: 01/10/2020] [Indexed: 01/19/2023]
|
28
|
Kumar S, Alveroğlu E, Balouch A, Talpur FN, Jagirani MS, Abdullah, Mahar AM, Pato AH, Mal D, Lal S. Fabrication of chromium-imprinted polymer: a real magneto-selective sorbent for the removal of Cr(vi) ions in real water samples. NEW J CHEM 2020. [DOI: 10.1039/d0nj04054a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Graphical representation (a and b) show the procedure for the synthesis of Cr(vi) ion-imprinted magnetic polymer.
Collapse
Affiliation(s)
- Sagar Kumar
- National Centre of Excellence in Analytical Chemistry
- University of Sindh
- Jamshoro 76080
- Pakistan
| | - Esra Alveroğlu
- Istanbul Technical University
- Faculty of Science and Letters
- Department of Physics Engineering
- 34467 Sariyer/Istanbul
- Turkey
| | - Aamna Balouch
- National Centre of Excellence in Analytical Chemistry
- University of Sindh
- Jamshoro 76080
- Pakistan
- Istanbul Technical University
| | - Farah Naz Talpur
- National Centre of Excellence in Analytical Chemistry
- University of Sindh
- Jamshoro 76080
- Pakistan
| | - Muhammad Saqaf Jagirani
- National Centre of Excellence in Analytical Chemistry
- University of Sindh
- Jamshoro 76080
- Pakistan
| | - Abdullah
- National Centre of Excellence in Analytical Chemistry
- University of Sindh
- Jamshoro 76080
- Pakistan
| | - Ali Muhammad Mahar
- National Centre of Excellence in Analytical Chemistry
- University of Sindh
- Jamshoro 76080
- Pakistan
| | - Abdul Hameed Pato
- National Centre of Excellence in Analytical Chemistry
- University of Sindh
- Jamshoro 76080
- Pakistan
| | - Dadu Mal
- National Centre of Excellence in Analytical Chemistry
- University of Sindh
- Jamshoro 76080
- Pakistan
| | - Shanker Lal
- National Centre of Excellence in Analytical Chemistry
- University of Sindh
- Jamshoro 76080
- Pakistan
| |
Collapse
|
29
|
Wang P, Tang X, Hu L, Yin Y, Chen S, Wang H, Wu J. Synthesis of an Ion‐Imprinted Degreasing Cotton for the Selective Removal of Cu
2+
from Aqueous Solutions. ChemistrySelect 2019. [DOI: 10.1002/slct.201903533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Pei Wang
- Key Laboratory of Textile Fibers and ProductsMinistry of EducationP. R. C, College of Materials Science and EngineeringWuhan Textile University Wuhan 430073 China
| | - Xu Tang
- Third Institute of Oceanography Ministry of Natural Resources, P. R. C Xiamen 361005 China
| | - Lingquan Hu
- Key Laboratory of Textile Fibers and ProductsMinistry of EducationP. R. C, College of Materials Science and EngineeringWuhan Textile University Wuhan 430073 China
| | - Yankun Yin
- Key Laboratory of Textile Fibers and ProductsMinistry of EducationP. R. C, College of Materials Science and EngineeringWuhan Textile University Wuhan 430073 China
| | - Shaohua Chen
- Key Laboratory of Textile Fibers and ProductsMinistry of EducationP. R. C, College of Materials Science and EngineeringWuhan Textile University Wuhan 430073 China
| | - Hua Wang
- High-Tech Organic Fibers Key Laboratory of Sichuan ProvinceSichuan Textile Research Institute Chengdu 610072 China
| | - Jing Wu
- Key Laboratory of Textile Fibers and ProductsMinistry of EducationP. R. C, College of Materials Science and EngineeringWuhan Textile University Wuhan 430073 China
| |
Collapse
|
30
|
Jagirani MS, Balouch A, Mahesar SA, Kumar A, Abdullah, Mustafai FA, Bhanger MI. Preparation of novel arsenic-imprinted polymer for the selective extraction and enhanced adsorption of toxic As3+ ions from the aqueous environment. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-03008-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Liu M, Du X, Gao F, Luo J, Wang Q, Liu F, Chang L, Hao X. A novel potential oscillation in situ removal method: preparation of ion imprinted 8-HQ/PPy film for the selective separation of zinc ions. J Solid State Electrochem 2019. [DOI: 10.1007/s10008-019-04305-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Metal-ion-induced DNAzyme on magnetic beads for detection of lead(II) by using rolling circle amplification, glucose oxidase, and readout of pH changes. Mikrochim Acta 2019; 186:318. [DOI: 10.1007/s00604-019-3454-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 04/15/2019] [Indexed: 01/19/2023]
|