1
|
He J, Xi J, Han B, Xiao Q, Guo D, Huang S. Chiral stationary phase based on chitosan Schiff base derivatives for enantioseparation. Carbohydr Polym 2025; 359:123590. [PMID: 40306794 DOI: 10.1016/j.carbpol.2025.123590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/19/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025]
Abstract
Chitosan derivatives play an important role in the field of enantioseparation due to their favorable chiral recognition properties. However, the preparation of chitosan derivatives with good chiral separation properties and organic solvent tolerance still needs further exploration. Herein, we report the synthesis of two types of chitosan Schiff bases via condensation reactions between chitosan and halogenated benzaldehydes, and subsequently modified with methyl-substituted phenylcarbamates, resulting in four chitosan-3,6-bis(phenylcarbamate)-2-Schiff base derivatives with high substitution degree. Thereafter, four chiral stationary phases were prepared by coating the chitosan derivatives onto aminopropyl silica gel and assessed for their enantioseparation performance using 20 chiral compounds via high-performance liquid chromatography. Findings show that the best chiral stationary phase recognizes 19 chiral compounds and provides a baseline separation of 10 chiral compounds, including a pharmaceutical intermediate ethyl mandelate (maximum resolution: 4.18) and aromatic amide-type chiral drugs. Based on the strong interaction of molecular forces in the structure of chitosan-3,6-bis(phenylcarbamate)-2-Schiff base derivatives, the chiral stationary phases based on chitosan Schiff base derivatives are tolerant to ethyl acetate and acetone. Furthermore, electronic circular dichroism analysis revealed that substituents at the C2, C3, and C6 positions significantly influenced the secondary structure of chitosan derivatives, and thus correlating with their enantioselectivity.
Collapse
Affiliation(s)
- Jing He
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jiangbo Xi
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Bowen Han
- Institute of Drug Discovery and Technology, Ningbo University, Ningbo 315211, China
| | - Qi Xiao
- Institute of Drug Discovery and Technology, Ningbo University, Ningbo 315211, China
| | - Dandan Guo
- Institute of Drug Discovery and Technology, Ningbo University, Ningbo 315211, China
| | - Shaohua Huang
- Institute of Drug Discovery and Technology, Ningbo University, Ningbo 315211, China; Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
2
|
Yu LQ, Liang RX, Chen J, Xie SM, Wang BJ, Zhang JH, Yuan LM. Preparation and evaluation of a 1,1'-bi-2-naphthol-based chiral macrocycle bonded silica chiral stationary phase for high performance liquid chromatography. J Chromatogr A 2024; 1732:465231. [PMID: 39133951 DOI: 10.1016/j.chroma.2024.465231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/20/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
Macrocycles play vital roles in supramolecular chemistry and chromatography. 1,1'-Bi-2-naphthol (BINOL)-based chiral polyimine macrocycles are an emerging class of chiral macrocycles that can be constructed by one-step aldehyde-amine condensation of BINOL derivatives with other building blocks. These macrocycles exhibit good characteristics, such as facile preparation, rigid cyclic structures, multiple chiral centers, and defined molecular cavities, that make them good candidates as new chiral recognition materials for chromatographic enantioseparations. In this study, a BINOL-based [2+2] chiral polyimine macrocycle was synthesized by one-step condensation of enantiopure (S)-2,2'-dihydroxy-[1,1'-binaphthalene]-3,3'-dicarboxaldehyde with (1R,2R)-1,2-diaminocyclohexane. The product was modified with 5-bromo-1-pentene and then attached to thiolated silica using click chemistry to construct a new chiral stationary phase (CSP). The enantioselectivity of the new CSP was explored by separating various racemates under normal phase (NP) and reversed phase (RP) high performance liquid chromatography (HPLC). Thirteen racemates and eight racemates were enantioseparated under the two separation modes, respectively, including chiral alcohols, phenols, esters, ketones, amines, and organic acids. Among them, nine racemates achieved baseline separation under NP-HPLC and seven racemates achieved baseline separation under RP-HPLC. High resolution separation was observed with benzoin (Rs = 5.10), epinephrine (Rs = 4.98), 3-benzyloxy-1,2-propanediol (Rs = 4.42), and 4,4'-dimethylbenzoin (Rs = 4.52) in NP-HPLC, and with 4-methylbenzhydrol (Rs = 4.72), benzoin ethyl ether (Rs = 3.79), 1-phenyl-1-pentanol (Rs = 3.68), and 1-(3-bromophenyl)ethanol (Rs = 3.60) in RP-HPLC. Interestingly, the CSP complemented Chiralcel OD-H, Chiralpak AD-H, and CYCLOBOND I 2000 RSP columns for resolution of these test racemates, separating several racemic compounds that could not be well separated by the three commercially available columns. The influences of injected sample amount on separation were also evaluated. It was found that the column exhibited excellent stability and reproducibility after hundreds of injections, and the relative standard deviations (n = 5) of the retention time and resolution were less than 0.49% and 0.69%, respectively. This study indicates that the BINOL-based chiral macrocycle has great potential for HPLC enantioseparation.
Collapse
Affiliation(s)
- Li-Qin Yu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, PR China
| | - Rui-Xue Liang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, PR China
| | - Juan Chen
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, PR China
| | - Sheng-Ming Xie
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, PR China
| | - Bang-Jin Wang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, PR China.
| | - Jun-Hui Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, PR China.
| | - Li-Ming Yuan
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, PR China
| |
Collapse
|
3
|
Deng H, Qiao Y, Zheng T, Bai C, Wang G, Zhang L, Shen J. Regioselective modification at the 2,3- and 6-positions of chitosan with phenylcarbamates for chromatographic enantioseparation. J Chromatogr A 2024; 1714:464503. [PMID: 38104505 DOI: 10.1016/j.chroma.2023.464503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/26/2023] [Accepted: 11/10/2023] [Indexed: 12/19/2023]
Abstract
Chitosan derivatives with two different phenylcarbamate pendants at the 6-position and 2,3-positions of the glucosamine unit were synthesized by triphenylmethyl as a protective group. The regioselective chitosan derivatives were prepared corresponding to coated-type chiral packed materials (CPMs), which were evaluated with thirteen chiral compounds by high-performance liquid chromatography (HPLC). The regioselective chitosan derivatives (4aⅠ/4aⅡ, 4bⅠ/4bⅡ) bearing electron-withdrawing 3,5‑chloro or 4‑chloro at the 6-position can recognize 7 or 8 of the 13 enantiomers and achieve baseline separation for enantiomers 5 and 7. They exhibited better chiral recognition abilities than the other derivatives with different substituents at the 6-position and the same 3,5-dimethylphenyl substituent at the 2,3-postion. In comparison to Chit-1 featuring a 3,5-dimethylphenyl substituent at the 2,3- and 6-positions, it was observed that the combination of both an electron-withdrawing and an electron-donating substituent of the regioselective chitosan derivatives (4aⅠ/4aⅡ, 4bⅠ/4bⅡ) showed better or similar enantioseparation abilities for racemic Compounds 7 and 6, respectively. The molecular weight-performance relationship of the regioselective chitosan derivatives was investigated in detail. It was found that with increasing molecular weight, the derivatives 4aⅡ and 4bⅡ all possessed greater enantioseparation power for 4 enantiomers, such as enantiomers 4, 7, 11, and 15, than the corresponding derivatives with low molecular weights. The molecular docking simulation results showed that excellent enantioseparation power significantly depended on the combination and interaction of multiple factors, such as steric hindrance, and polarity of the substituents on the CPMs and enantiomers.
Collapse
Affiliation(s)
- Hongzhong Deng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Yingjie Qiao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Ting Zheng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Chengying Bai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Guixiang Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Lili Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Jun Shen
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| |
Collapse
|
4
|
Zhang YP, Li K, Xiong LX, Wang BJ, Xie SM, Zhang JH, Yuan LM. “Click” preparation of a chiral macrocycle-based stationary phase for both normal-phase and reversed-phase high performance liquid chromatography enantioseparation. J Chromatogr A 2022; 1683:463551. [DOI: 10.1016/j.chroma.2022.463551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022]
|
5
|
Deng H, Wu X, Zhang L, Shen J, Qiao Y, Wang X, Bai C, Zheng T, Okamoto Y. Synthesis and application of chitosan thiourea derivatives as chiral stationary phases in HPLC. Carbohydr Polym 2022; 296:119888. [DOI: 10.1016/j.carbpol.2022.119888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/27/2022]
|
6
|
Zhang YP, Xiong LX, Wang Y, Li K, Wang BJ, Xie SM, Zhang JH, Yuan LM. Preparation of chiral stationary phase based on a [3+3] chiral polyimine macrocycle by thiol-ene click chemistry for enantioseparation in normal-phase and reversed-phase high performance liquid chromatography. J Chromatogr A 2022; 1676:463253. [PMID: 35732093 DOI: 10.1016/j.chroma.2022.463253] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022]
Abstract
Polyimine macrocycles are a new class of organic macrocycles with cyclic structures, well-defined molecular cavities, and multiple cooperative binding sites, which have recently aroused considerable research interest in molecular recognition and separation. Herein, we report the bonding of a [3+3] chiral polyimine macrocycle (H3L, C78H78N6O3) on thiol-functionalized silica gel using thiol-ene click chemistry to prepare a chiral stationary phase (CSP) for high performance liquid chromatography (HPLC). The fabricated column exhibited excellent chiral separation capability under both normal-phase and reversed-phase conditions. Fourteen and 10 racemates were well resolved on the column in normal-phase mode (using n-hexane/isopropanol as the mobile phase) and reversed-phase mode (using methanol/water as the mobile phase), respectively, including alcohols, esters, ethers, ketones, aldehydes, epoxides and organic acids. Moreover, the column also shows good selectivity toward positional isomers. Six positional isomers (dinitrobenzene, chloroaniline, bromoaniline, iodoaniline, nitrobrobenzene and nitrochlorobenzene) were well separated on the column. In addition, the effects of the injection mass and mobile phase composition on the separation were investigated. The column shows good reproducibility and stability after multiple injections with the relative standard deviation (RSD) (n = 5) of the retention time and resolution being < 0.96 % and 0.65 %, respectively. This study indicates that this type of chiral polyimine macrocycles is a promising chiral selector for HPLC enantioseparation and will push forward the applications of more novel chiral macrocycles for chiral chromatographic separation.
Collapse
Affiliation(s)
- You-Ping Zhang
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China
| | - Ling-Xiao Xiong
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China
| | - Ying Wang
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China
| | - Kuan Li
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China
| | - Bang-Jin Wang
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China
| | - Sheng-Ming Xie
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China.
| | - Jun-Hui Zhang
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China.
| | - Li-Ming Yuan
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China
| |
Collapse
|
7
|
Lima R, Fernandes C, Pinto MMM. Molecular modifications, biological activities, and applications of chitosan and derivatives: A recent update. Chirality 2022; 34:1166-1190. [PMID: 35699356 DOI: 10.1002/chir.23477] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/12/2022]
Abstract
Polysaccharides arouse great interest due to their structure and unique properties, such as biocompatibility, biodegradability, and absence of toxicity. Polysaccharides from marine sources are particularly useful due to the wide variety of applications and biological activities. Chitosan, a deacetylated derivative of chitin, is an example of an interesting bioactive marine-derived polysaccharide. Moreover, a wide variety of chemical modifications and conjugation of chitosan with other bioactive molecules are responsible for improvements in physicochemical properties and biological activities, expanding the range of applications. An overview of the synthetic approaches for preparing chitosan, chitosan derivatives, and conjugates is described and discussed. A recent update of the biological activities and applications in different research fields, mainly focused on the last 5 years, is presented, highlighting current trends.
Collapse
Affiliation(s)
- Rita Lima
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.,Centro interdisciplinar de Investigação marinha e Ambiental (CIIMAR), Universidade do Porto, Matosinhos, Portugal
| | - Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.,Centro interdisciplinar de Investigação marinha e Ambiental (CIIMAR), Universidade do Porto, Matosinhos, Portugal
| | - Madalena M M Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.,Centro interdisciplinar de Investigação marinha e Ambiental (CIIMAR), Universidade do Porto, Matosinhos, Portugal
| |
Collapse
|
8
|
Feng S, Zhang A, Wu F, Luo X, Zhang J. Boronic acid grafted metal-organic framework for selective enrichment of cis-diol-containing compounds. J Chromatogr A 2022; 1677:463281. [DOI: 10.1016/j.chroma.2022.463281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 10/17/2022]
|
9
|
Li D, Luo K, Zhang L, Gao J, Liang J, Li J, Pan H. Research and Application of Highly Selective Molecular Imprinting Technology in Chiral Separation Analysis. Crit Rev Anal Chem 2021; 53:1066-1079. [PMID: 34802340 DOI: 10.1080/10408347.2021.2002680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Since residual chiral pollutants in the environment and toxic or ineffective chiral components in drugs can threat human health, there is an urgent need for methods to separation and analyze chiral molecules. Molecular imprinting technology (MIT) is a biomimetic technique for specific recognition of analytes with high potential for application in the field of chiral separation and analysis. However, since MIT has some disadvantages when used for chiral recognition, such as poor rigidity of imprinted materials, a single type of recognition site, and poor stereoselectivity, reducing the interference of conformationally and structurally similar substances to increase the efficiency of chiral recognition is difficult. Therefore, improving the rigidity of imprinted materials, increasing the types of imprinted cavity recognition sites, and constructing an imprinted microenvironment for highly selective chiral recognition are necessary for the accurate identification of chiral substances. In this article, the principle of chiral imprinting recognition is introduced, and various strategies that improve the selectivity of chiral imprinting, using derivative functional monomers, supramolecular compounds, chiral assembly materials, and biomolecules, are reviewed in the past 10 years.
Collapse
Affiliation(s)
- Dan Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Kui Luo
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Lianming Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Jingxia Gao
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Jinlu Liang
- School of Petroleum and Chemical Engineering, BeiBu Gulf University, Qinzhou, China
| | - Jianping Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Hongcheng Pan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| |
Collapse
|
10
|
Zhang JH, Xie SM, Yuan LM. Recent progress in the development of chiral stationary phases for high-performance liquid chromatography. J Sep Sci 2021; 45:51-77. [PMID: 34729907 DOI: 10.1002/jssc.202100593] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022]
Abstract
Separations and analyses of chiral compounds are important in many fields, including pharmaceutical production, preparation of chemical intermediates, and biochemistry. High-performance liquid chromatography using a chiral stationary phase is regarded as one of the most valuable methods for enantiomeric separation and analysis because it is highly efficient, is broadly applicable, and has powerful separation capability. The focus for development of this method is the identification of novel chiral stationary phases with superior recognition performance and good stability. The present article reviews recent progress in the development of new chiral stationary phases for high-performance liquid chromatography between January 2018 and June 2021. These newly reported chiral stationary phases are divided into three categories: small organic molecule-based (cyclodextrin and its derivatives, macrocyclic antibiotics, cinchona alkaloids, and other low molecular weight chiral molecules), macromolecule-based (cellulose and amylose derivatives, chitin and chitosan derivatives, and synthetic helical polymers) and chiral porous material-based (chiral metal-organic frameworks, chiral covalent organic frameworks, and chiral inorganic mesoporous silicas). Each type of chiral stationary phase is discussed in detail.
Collapse
Affiliation(s)
- Jun-Hui Zhang
- Department of Chemistry, Yunnan Normal University, Kunming, P. R. China
| | - Sheng-Ming Xie
- Department of Chemistry, Yunnan Normal University, Kunming, P. R. China
| | - Li-Ming Yuan
- Department of Chemistry, Yunnan Normal University, Kunming, P. R. China
| |
Collapse
|
11
|
|
12
|
Bui CV, Rosenau T, Hettegger H. Polysaccharide- and β-Cyclodextrin-Based Chiral Selectors for Enantiomer Resolution: Recent Developments and Applications. Molecules 2021; 26:molecules26144322. [PMID: 34299597 PMCID: PMC8307936 DOI: 10.3390/molecules26144322] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 01/08/2023] Open
Abstract
Polysaccharides, oligosaccharides, and their derivatives, particularly of amylose, cellulose, chitosan, and β-cyclodextrin, are well-known chiral selectors (CSs) of chiral stationary phases (CSPs) in chromatography, because they can separate a wide range of enantiomers. Typically, such CSPs are prepared by physically coating, or chemically immobilizing the polysaccharide and β-cyclodextrin derivatives onto inert silica gel carriers as chromatographic support. Over the past few years, new chiral selectors have been introduced, and progressive methods to prepare CSPs have been exploited. Also, chiral recognition mechanisms, which play a crucial role in the investigation of chiral separations, have been better elucidated. Further insights into the broad functional performance of commercially available chiral column materials and/or the respective newly developed chiral phase materials on enantiomeric separation (ES) have been gained. This review summarizes the recent developments in CSs, CSP preparation, chiral recognition mechanisms, and enantiomeric separation methods, based on polysaccharides and β-cyclodextrins as CSs, with a focus on the years 2019-2020 of this rapidly developing field.
Collapse
Affiliation(s)
- Cuong Viet Bui
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 24, Tulln, A-3430 Vienna, Austria; (C.V.B.); (T.R.)
- Department of Food Technology, Faculty of Chemical Engineering, University of Science and Technology—The University of Danang, Danang City 550000, Vietnam
| | - Thomas Rosenau
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 24, Tulln, A-3430 Vienna, Austria; (C.V.B.); (T.R.)
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Porthansgatan 3, FI-20500 Åbo, Finland
| | - Hubert Hettegger
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 24, Tulln, A-3430 Vienna, Austria; (C.V.B.); (T.R.)
- Correspondence:
| |
Collapse
|
13
|
Zhang J, Yu C, Chen Z, Luo X, Zhao H, Wu F. Zeolitic imidazolate framework-8/ fluorinated graphene coated SiO 2 composites for pipette tip solid-phase extraction of chlorophenols in environmental and food samples. Talanta 2021; 228:122229. [PMID: 33773733 DOI: 10.1016/j.talanta.2021.122229] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/08/2021] [Accepted: 02/13/2021] [Indexed: 01/12/2023]
Abstract
In this work, a novel composite adsorbent was successfully prepared by zeolite imidazolate framework-8/fluorinated graphene layer-by-layer covalently bonded on SiO2 microspheres, and followed to be packed into micro pipette tip for extraction of trace chlorophenols prior to their detection by high performance liquid chromatography (HPLC). The morphology and structure of adsorbent material was characterized by field emission scanning electron microscopy with energy dispersive spectrometer, X-ray diffraction, and N2 adsorption. The parameters including the amount of adsorbent, sampling volume, sampling rate, sample pH, and desorption solvent affected the extraction performance was systematically investigated by pipette tip solid-phase extraction (PT-SPE) coupled with HPLC analysis. Under the optimized condition, the linearity of this method ranged from 20 to 2000 ng mL-1 for chlorophenols (CPs) with determination coefficient higher than 0.99. The limit of detection (at a signal-to-noise ratio of 3) were in the range 2-20 ng mL-1 for tap water and black tea drinks, 0.2-2 μg g-1 for honey. The relative recoveries of the CPs from spiked samples ranged from 71.8% to 104.7%, with relative standard deviations less than 6.2%. The filled extraction tube exhibited good stability and reproducibility. The proposed method has been successfully used to detect CPs in water and drinks with satisfactory recoveries.
Collapse
Affiliation(s)
- Juan Zhang
- Schoolof Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Chen Yu
- Schoolof Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Zhipeng Chen
- Schoolof Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Xiaogang Luo
- School of Chemical Engineering and Pharmacy, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China; School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Haiyan Zhao
- School of Pharmaceutical Sciences, South-central University for Nationalities, Wuhan, 430074, China
| | - Fengshou Wu
- School of Chemical Engineering and Pharmacy, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
14
|
Zhou Y, Zhu R, Zhang C, Liu X, Wang Z, Zhou Z, Liu L, Dong H, Satoh T, Okamoto Y. Synthesis of poly(phenylacetylene)s containing chiral phenylethyl carbamate residues as coated-type CSPs with high solvent tolerability. Chirality 2020; 32:547-555. [PMID: 32105371 DOI: 10.1002/chir.23199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 01/06/2023]
Abstract
Two novel helical poly(phenylacetylene) derivatives containing chiral phenylethyl carbamate residues in the end of each side chain (PPA-S and PPA-R) were synthesized by polymerization of the corresponding phenylacetylene monomers using Rh(nbd)BPh4 as a catalyst in DMF. The enantioseparation properties of the polymers were evaluated as coated-type chiral stationary phases (CSPs) for high-performance liquid chromatography (HPLC). Under the same chromatographic conditions, PPA-S and PPA-R showed different enantioseparation properties, indicating that the different interactions between the analytes and the polymers, which result from the different chiral phenylethyl carbamate groups in the end of each side chains. Racemates 1, 7, and 8 could be better resolved on PPA-S, while racemate 6 was separated on PPA-R more efficiently. In addition, the coated-type CSPs showed good solvent tolerability and could work without any damage by introducing the polar solvents, such as CHCl3 and THF, in eluent. Moreover, some racemates could be better resolved on these coated-type CSPs with the addition of THF to the eluent.
Collapse
Affiliation(s)
- Yanli Zhou
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China
| | - Ruiqi Zhu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China
| | - Chunhong Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China
| | - Xudong Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China
| | - Zhongpeng Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China
| | - Zhengjin Zhou
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China
| | - Lijia Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China
| | - Hongxing Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China
| | | | - Yoshio Okamoto
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China.,Graduate School of Engineering, Nagoya University, Nagoya, Japan
| |
Collapse
|
15
|
Song J, Feng H, Wu M, Chen L, Xia W, Zhang W. Preparation and characterization of arginine-modified chitosan/hydroxypropyl methylcellose antibacterial film. Int J Biol Macromol 2019; 145:750-758. [PMID: 31857168 DOI: 10.1016/j.ijbiomac.2019.12.141] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/03/2019] [Accepted: 12/15/2019] [Indexed: 12/17/2022]
Abstract
Chitosan and its derivatives are widely used in medical, cosmetic and food fields. In this study, chitosan-N-arginine (CSA) was synthesized and characterized by Fourier-transform infrared (FT-IR), 1H NMR, gel permeation chromatography (GPC), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). A novel antibacterial composite film consisting of CSA, hydroxypropyl methylcellose (HPMC) and glycerol was then prepared. The transparent and homogeneous film presented good compatibility between CSA and HPMC, confirmed by SEM. The thickness of the film was about 44.8 μm and its moisture content was 23.0%. Antimicrobial evaluation of CSA/HPMC film showed 9.0 mm bacteriostatic diameter zone against E. coli and 10.5 mm one against S. aureus. The film exhibited cell biocompatibility and promoted proliferation with L929 cell cytotoxicity test. Both antibacterial and cytotoxic results showed that the CSA/HPMC film was a promising material for medication, cosmetics and food preservation applications.
Collapse
Affiliation(s)
- Jinxing Song
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Huafeng Feng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Mengqi Wu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Linxiao Chen
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Wei Xia
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Wenqing Zhang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|