1
|
Ajdari B, Madrakian T, Afkhami A. Development of an electrochemical sensor utilizing MWCNs-poly(2-aminothiophenol) @AgNPs nanocomposite for the simultaneous determination of Pb 2+ and Cd 2+ in food samples. Food Chem 2025; 477:143529. [PMID: 40023026 DOI: 10.1016/j.foodchem.2025.143529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/19/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
This study focuses on the synthesis and characterization of the Multiwall Carbon Nanotubes-Poly(2-aminothiophenol) @silver nanoparticles nanocomposite (MWCNTs-PATP@AgNPs) using different analytical methods. The synthesized MWCNTs-PATP@AgNPs served as an electrocatalytic modifier, enabling the highly selective and sensitive detection of Pb2+ and Cd2+ ions at nanomolar levels using square wave anodic stripping voltammetry. The concentration of MWCNTs- PATP @AgNPs, the type and concentration of the electrolyte, the solution's pH, and the preconcentration conditions, were systematically optimized. A linear response was observed for Pb2+ and Cd2+ within the ranges of 0.5-60.0 nmolL-1 and 8.0-50.0 nmol L-1, respectively, with detection limits of 0.125 nmol L-1 for Pb2+ and 1.47 nmol L-1 for Cd2+. Furthermore, the MWCNTs-PATP@AgNPs sensor demonstrated the capability to selectively detect these target metals in the presence of various common interfering species. The sensor was effectively utilized for the detection of Pb2+ and Cd2+ ions across various real samples.
Collapse
Affiliation(s)
- Beheshteh Ajdari
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838695, Iran
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838695, Iran.
| | - Abbas Afkhami
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838695, Iran
| |
Collapse
|
2
|
Vasić K, Knez Ž, Leitgeb M. Multifunctional Iron Oxide Nanoparticles as Promising Magnetic Biomaterials in Drug Delivery: A Review. J Funct Biomater 2024; 15:227. [PMID: 39194665 DOI: 10.3390/jfb15080227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
A wide range of applications using functionalized magnetic nanoparticles (MNPs) in biomedical applications, such as in biomedicine as well as in biotechnology, have been extensively expanding over the last years. Their potential is tremendous in delivery and targeting systems due to their advantages in biosubstance binding. By applying magnetic materials-based biomaterials to different organic polymers, highly advanced multifunctional bio-composites with high specificity, efficiency, and optimal bioavailability are designed and implemented in various bio-applications. In modern drug delivery, the importance of a successful therapy depends on the proper targeting of loaded bioactive components to specific sites in the body. MNPs are nanocarrier-based systems that are magnetically guided to specific regions using an external magnetic field. Therefore, MNPs are an excellent tool for different biomedical applications, in the form of imaging agents, sensors, drug delivery targets/vehicles, and diagnostic tools in managing disease therapy. A great contribution was made to improve engineering skills in surgical diagnosis, therapy, and treatment, while the advantages and applicability of MNPs have opened up a large scope of studies. This review highlights MNPs and their synthesis strategies, followed by surface functionalization techniques, which makes them promising magnetic biomaterials in biomedicine, with special emphasis on drug delivery. Mechanism of the delivery system with key factors affecting the drug delivery efficiency using MNPs are discussed, considering their toxicity and limitations as well.
Collapse
Affiliation(s)
- Katja Vasić
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Željko Knez
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Maja Leitgeb
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
3
|
Krause CH, Schneider AB, Kolling L, de Morais PHSR, da Silva MM. How to overcome the difficulty in assaying Ni in biodiesel samples? Extraction induced by microemulsion breaking and square wave adsorptive stripping voltammetry could be the answer. Talanta 2024; 272:125776. [PMID: 38428129 DOI: 10.1016/j.talanta.2024.125776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/11/2023] [Accepted: 02/08/2024] [Indexed: 03/03/2024]
Abstract
Herein, a simple, green, and relatively inexpensive approach to determine nickel (Ni) in biodiesel samples by square wave adsorptive cathodic stripping voltammetry (SWAdCSV) is presented. A method based on the accumulation of Ni as Ni(II)-dimethylglyoxime (Ni(II)(HDMG)2) on the glassy carbon electrode was carried out in a solution containing the aqueous phase extract (APhEx) obtained from an extraction induced by microemulsion breaking (EIMB), which was achieved by adding a few microliters of ultrapure water to a microemulsion composed of biodiesel, n-propanol and a diluted HNO3 solution. The LOD and LOQ were 0.2 μg L-1 and 0.8 μg L-1, respectively, and the accuracy was evaluated by recovery assays of spiked samples and by analyzing a standard reference material. Results obtained from a comparative method (HR-CS GF AAS) were also used for this evaluation. The method was applied to biodiesel samples produced from different feedstocks. To the best of the authors knowledge, it is the first time that: 1) Ni in biodiesel is determined by a voltammetric method; 2) EIMB is applied to extract Ni from this matrix and 3) this type of sample preparation method is used with adsorptive stripping voltammetry.
Collapse
Affiliation(s)
- Cristian H Krause
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, C.P. 15003, 91501-970, Porto Alegre, RS, Brazil
| | - Alexandre B Schneider
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, C.P. 15003, 91501-970, Porto Alegre, RS, Brazil.
| | - Leandro Kolling
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, C.P. 15003, 91501-970, Porto Alegre, RS, Brazil
| | - Pedro H S R de Morais
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, C.P. 15003, 91501-970, Porto Alegre, RS, Brazil
| | - Marcia M da Silva
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, C.P. 15003, 91501-970, Porto Alegre, RS, Brazil
| |
Collapse
|
4
|
Ribeiro MDO, de Abreu CB, Pinho CS, Ribeiro LDO, Neto ADDA, Teixeira LSG, Azcarate SM, Dias FDS. Application of two- and multiway chemometric strategies for describing elementomic changes in pepper plants exposed to cadmium stress by multielement determination. CHEMOSPHERE 2023; 340:139831. [PMID: 37607598 DOI: 10.1016/j.chemosphere.2023.139831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/11/2023] [Accepted: 05/02/2023] [Indexed: 08/24/2023]
Abstract
The objective of this work was to evaluate elemental changes in pepper exposed to Cd stress through different chemometric tools. For this purpose, pepper plants were grown under five different treatments with different Cd concentrations in the nutrient solution. Considering the hypothesis that pepper plants exposed to Cd stress during growth undergo changes in the macro- and microelemental distribution in leaves, stems, and roots, principal component analysis (PCA) and parallel factor (PARAFAC) analysis were applied to compare bidirectional and multivariate chemometric strategies to assess elemental changes in pepper plants. Since the number of variables and the data generated were large and complex, the application of chemometric tools was justified to facilitate the visualization and interpretation of results. The mineral composition, namely the Ca, Cd, Cu, Fe, K, Mg, Mn, N, and P contents, was assessed in 180 samples of leaves, stems, and roots of the cultivated peppers. Then, PCA and PARAFAC analysis were applied to compare bidirectional and multivariate chemometric strategies to assess elemental changes throughout pepper plants. The visualization of the trend on each sample and their intrinsic relationship with the variables were possible with the application of PCA. The use of PARAFAC analysis permitted the simultaneous study of all samples in a straightforward representation of the information that facilitated a quick and comprehensive understanding of the spatial distribution of elements in plants. Thus, macroelements (Ca, K, Mg, N, and P) that were found in higher concentrations in leaves did not present significant differences in the distribution along the plants under different treatment conditions. In contrast, a significant impact on the microelement (Cu, Fe, and Mn) distribution was produced between uncontaminated and contaminated samples. This analysis revealed a significant accumulation of Cd in roots and adverse effects on normal plant growth, demonstrating their level of phytotoxicity to pepper.
Collapse
Affiliation(s)
- Marcos de O Ribeiro
- Universidade Federal do Recôncavo da Bahia, Centro de Ciências Agrárias, Ambientais e Biológicas, Campus Universitário de Cruz Das Almas, 44380-000, Cruz Das Almas, Bahia, Brazil
| | - Claudia B de Abreu
- Universidade Federal do Recôncavo da Bahia, Centro de Ciências Agrárias, Ambientais e Biológicas, Campus Universitário de Cruz Das Almas, 44380-000, Cruz Das Almas, Bahia, Brazil
| | - Cindy S Pinho
- Universidade Federal do Recôncavo da Bahia, Centro de Ciências Agrárias, Ambientais e Biológicas, Campus Universitário de Cruz Das Almas, 44380-000, Cruz Das Almas, Bahia, Brazil
| | - Lucas de O Ribeiro
- Universidade Federal do Recôncavo da Bahia, Centro de Ciências Agrárias, Ambientais e Biológicas, Campus Universitário de Cruz Das Almas, 44380-000, Cruz Das Almas, Bahia, Brazil
| | - André D de A Neto
- Universidade Federal do Recôncavo da Bahia, Centro de Ciências Agrárias, Ambientais e Biológicas, Campus Universitário de Cruz Das Almas, 44380-000, Cruz Das Almas, Bahia, Brazil
| | - Leonardo S G Teixeira
- Universidade Federal da Bahia, Instituto de Química, Departamento de Química Analítica, Campus Universitário de Ondina, 40170-280, Salvador, Bahia, Brazil; INCT de Energia e Ambiente - Universidade Federal da Bahia, Campus Universitário de Ondina, 40170-280, Salvador, Bahia, Brazil
| | - Silvana M Azcarate
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, And Instituto de Ciencias de La Tierra y ambientales de La Pampa (INCITAP), Av. Uruguay 151, Santa Rosa, L6300CLB, La Pampa, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy, Cruz 2290, CABA C1425FQB, Argentina.
| | - Fabio de S Dias
- Universidade Federal da Bahia, Instituto de Química, Departamento de Química Analítica, Campus Universitário de Ondina, 40170-280, Salvador, Bahia, Brazil.
| |
Collapse
|
5
|
Carneiro CN, Gomez FJV, Spisso A, Silva MF, Santos JLO, Dias FDS. Exploratory Analysis of South American Wines Using Artificial Intelligence. Biol Trace Elem Res 2022:10.1007/s12011-022-03529-4. [PMID: 36550265 DOI: 10.1007/s12011-022-03529-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
In this work, microwave-induced plasma optical emission spectrometry was applied for multielement determination in South American wine samples. The analytes were determined after acid digestion of 47 samples of Brazilian and Argentinian wines. Then, logistic regression, support vector machine, and decision tree for exploratory analysis and comparison of these algorithms in differentiating red wine samples by region of origin were carried out. All wine samples were classified according to their geographical origin. The quantification limits (mg L-1) were P: 0.06, B: 0.08, K: 0.17, Mn: 0.002, Cr: 0.002, and Al: 0.02. The accuracy of the method was evaluated by analyzing the wine samples by ICP OES for results' comparison. The concentrations in mg L-1 found for each element in wine samples were as follows: Al (< 0.02-1.82), Cr (0.15-0.50), Mn (< 0.002-0.8), P (97-277), B (1.7-11.6), Pb (< 0.06-0.3), Na (8.84-41.57), and K (604-1701), in mg L-1.
Collapse
Affiliation(s)
- Candice N Carneiro
- Centro de Ciências Exatas E Tecnológicas, Universidade Federal Do Recôncavo da Bahia, Campus Universitário de Cruz das Almas, Cruz das Almas, Bahia, 44380-000, Brazil
| | - Federico J V Gomez
- Instituto de Biología Agrícola de Mendoza (IBAM-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Adrian Spisso
- Instituto de Biología Agrícola de Mendoza (IBAM-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Maria Fernanda Silva
- Instituto de Biología Agrícola de Mendoza (IBAM-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Jorge L O Santos
- Centro Multidisciplinar de Bom Jesus da Lapa, Universidade Federal Do Oeste da Bahia, Bom Jesus da Lapa, Bahia, 47600-000, Brazil
| | - Fabio de S Dias
- Instituto de Química, Universidade Federal da Bahia, Campus Universitário de Ondina, Salvador, Bahia, Brazil.
| |
Collapse
|
6
|
Lignocellulosic materials as adsorbents in solid phase extraction for trace elements preconcentration. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Deep eutectic solvent-based air-assisted liquid–liquid microextraction of lead in gasoline samples followed by graphite furnace atomic absorption spectrometry. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-021-02481-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Elik A, Demirbaş A, Altunay N. Experimental design of ligandless sonication-assisted liquid- phases microextraction based on hydrophobic deep eutectic solvents for accurate determination of Pb(II) and Cd(II) from waters and food samples at trace levels. Food Chem 2022; 371:131138. [PMID: 34555705 DOI: 10.1016/j.foodchem.2021.131138] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/12/2021] [Accepted: 09/12/2021] [Indexed: 12/14/2022]
Abstract
A straightforward, accurate and efficient analytical procedure was developed by ligandless sonication-assisted liquid- phases microextraction based on hydrophobic deep eutectic solvents (SA-LPME-HDES) to trace toxic Pb(II) and Cd(II) in waters and foods. Optimization of the SA-LPME-HDES procedure was carried out by Box-Behnken design. Under optimum conditions, linear ranges for Pb(II) and Cd(II) were 0.8-350 (r2:0.9962) and 1.5-500 µg L-1 (r2: 0.9937), respectively. Relative standard deviations (N = 5, 10 µg L-1) were 1.4% for Pb(II) and 1.6% for Cd(II), respectively. Limits of detection were 0.24, and 0.46 µg L-1, respectively. The accuracy was evaluated by the analysis of two certified reference materials and the results were to be in agreement with the certified values. The SA-LPME-HDES method was successfully applied to tap water, mineral water, river water, well-water, sesame, peanut, eggplant, corn, wheat, soy and cucumber. The SA-LPME-HDES method allows operational simplicity, green, and low cost when compared with some microextraction procedure.
Collapse
Affiliation(s)
- Adil Elik
- Sivas Cumhuriyet University, Chemistry Department, Sivas, Turkey
| | - Ahmet Demirbaş
- Sivas Cumhuriyet University, Department of Plant and Animal Production, Sivas, Turkey
| | - Nail Altunay
- Sivas Cumhuriyet University, Chemistry Department, Sivas, Turkey.
| |
Collapse
|
9
|
Development of the method for determination and preconcentration of uranium in water samples using XAD-4 resin loaded with Br-PADAP. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2021.100256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Adolfo FR, Nascimento PCD. Extraction Induced by Emulsion and Microemulsion Breaking for Metal Determination by Spectrometric Methods - A Review. Crit Rev Anal Chem 2022; 53:1374-1392. [PMID: 34991390 DOI: 10.1080/10408347.2021.2023352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
This review focuses on extraction induced by the destabilization of emulsified systems combined with spectrometric techniques for metal analysis in oily samples. This approach is based on the formation and breaking of an emulsion (extraction induced by emulsion breaking - EIEB) or microemulsion (extraction induced by microemulsion breaking - EIMB) to transfer the analytes from the oil sample to the aqueous phase, which is separated in the process. Its simplicity, speed, and low cost have contributed to its growing popularity among researchers. However, the potential of EIEB and EIMB is far from being fully exploited. Therefore, this paper aims to provide relevant information to expand the applicability of these methods. The principle of the methods is discussed, and a brief description of emulsified systems is presented. The parameters affecting the extraction efficiency and calibration strategy are also critically discussed. Furthermore, the analytical applications of the methods are reviewed. Trends and opportunities in this field are also considered.
Collapse
Affiliation(s)
- Franciele Rovasi Adolfo
- Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brasil
| | | |
Collapse
|
11
|
Magnetic Fe 3O 4@Mg/Al-layered double hydroxide adsorbent for preconcentration of trace metals in water matrices. Sci Rep 2021; 11:2302. [PMID: 33504835 PMCID: PMC7840964 DOI: 10.1038/s41598-021-81839-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
A magnetic Fe3O4@MgAl-layered double hydroxide (MLDH) nanocomposite was successfully synthesized and applied as an effective adsorbent for preconcentration of trace As(III), Cd(II), Cr(III), Co(II), Ni(II), and Pb(II) ions from complex matrices. The quantification of the analytes was achieved using the inductively coupled plasma optical emission spectrometry (ICP-OES) technique. The nanocomposite was then characterized using BET, FTIR, SEM, and EDS. Due to its high adsorption surface area, compared to traditional metal oxide-based adsorbents, MLDH nanocomposite exhibited high extraction efficiency. Several experimental parameters controlling the preconcentration of the trace metals were optimized using response surface methodology based on central composite design. Under optimum conditions, the linearity ranged from 0.1 to 500 µg L−1 and the correlation of coefficients (R2) were higher than 0.999. The limits of detection (LODs) and quantification (LOQs) were 0.11–0.22 µg L−1 and 0.35–0.73 µg L−1, respectively. The intra-day (n = 10) and inter-day precisions (n = 5 working days) expressed in the form of percent relative standard deviations (%RSDs) were below 5%. The proposed method was successfully applied for the analysis of the As(III), Cd(II), Cr(III), Co(II), Ni(II), and Pb(II) ions in different environmental water samples.
Collapse
|
12
|
Wu J, Lu G, Huang X. Fabrication of monolith-based solid-phase microextraction for effective extraction of total chromium in milk and tea samples prior to HPLC/DAD analysis. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105549] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Anjos SL, Almeida JS, Teixeira LSG, da Silva ACM, Santos AP, Queiroz AFS, Ferreira SLC, Mattedi S. Determination of Cu, Ni, Mn and Zn in diesel oil samples using energy dispersive X-ray fluorescence spectrometry after solid phase extraction using sisal fiber. Talanta 2020; 225:121910. [PMID: 33592695 DOI: 10.1016/j.talanta.2020.121910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 01/21/2023]
Abstract
As a natural adsorbent, sisal (agave sisalana) fibers were used to extract Cu, Ni, Mn, and Zn from diesel oil samples for posterior determination (i.e., direct analytical measurements on the solid support) of the analytes by energy dispersive X-ray fluorescence spectrometry (EDXRF). In the proposed procedure, 0.2 g of sisal fiber was directly added to 5.0 mL of diesel oil contained in a glass tube. After 5 min of contact time, the mixture was filtered, and the collected fibers were oven-dried for 30 min at 70 °C. After drying, the analytes were quantified directly by EDXRF using the sisal fibers as a solid support. The calibration curves showed linear concentration ranges of 0.09-1.00, 0.12-1.00, 0.09-1.00, 0.06-1.0 μg g-1 for Cu, Ni, Mn, and Zn, respectively. The limits of detection (LOD) for Cu, Ni, Mn, and Zn were 0.03, 0.04, 0.03, and 0.02 μg g-1, respectively. The repeatability, evaluated by performing ten measurements at a concentration of 0.50 μg g-1 for each metal, with the results expressed in terms of the relative standard deviation (RSD), was 3.2, 6.5, 6.8, and 6.1% for Cu, Ni, Mn, and Zn, respectively. The results obtained by the proposed method were compared with the results obtained by a comparative method using inductively coupled plasma optical emission spectrometry, and both results showed good agreement. The proposed method was applied for Ni, Cu, Mn, and Zn determination in diesel oil samples collected from different gas stations.
Collapse
Affiliation(s)
- Shirlei L Anjos
- Universidade Federal da Bahia, Escola Politécnica, ZIPCODE 40210-630, Salvador, Bahia, Brazil
| | - Jorge S Almeida
- Universidade Federal da Bahia, Instituto de Química, Departamento de Química Analítica, Campus Universitário de Ondina, ZIPCODE 40170-115, Salvador, Bahia, Brazil; INCT de Energia e Ambiente - Universidade Federal da Bahia, Instituto de Química, Campus Universitário de Ondina, ZIPCODE 40170-115, Salvador, Bahia, Brazil
| | - Leonardo S G Teixeira
- Universidade Federal da Bahia, Instituto de Química, Departamento de Química Analítica, Campus Universitário de Ondina, ZIPCODE 40170-115, Salvador, Bahia, Brazil; INCT de Energia e Ambiente - Universidade Federal da Bahia, Instituto de Química, Campus Universitário de Ondina, ZIPCODE 40170-115, Salvador, Bahia, Brazil
| | - Ana Cristina M da Silva
- Universidade Federal da Bahia, Escola Politécnica, ZIPCODE 40210-630, Salvador, Bahia, Brazil
| | - Alane P Santos
- Universidade Federal da Bahia, Escola Politécnica, ZIPCODE 40210-630, Salvador, Bahia, Brazil
| | - Antônio F S Queiroz
- Universidade Federal da Bahia, Instituto de Geociências, Campus Universitário de Ondina, Núcleo de Estudos Ambientais, ZIPCODE 40170-115, Salvador, Bahia, Brazil
| | - Sérgio L C Ferreira
- Universidade Federal da Bahia, Instituto de Química, Departamento de Química Analítica, Campus Universitário de Ondina, ZIPCODE 40170-115, Salvador, Bahia, Brazil; INCT de Energia e Ambiente - Universidade Federal da Bahia, Instituto de Química, Campus Universitário de Ondina, ZIPCODE 40170-115, Salvador, Bahia, Brazil
| | - Silvana Mattedi
- Universidade Federal da Bahia, Escola Politécnica, ZIPCODE 40210-630, Salvador, Bahia, Brazil.
| |
Collapse
|
14
|
A new electrochemical sensor for simultaneous determination of Cd (II) and Pb (II) using FeNi3/CuS/BiOCl: RSM optimization. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105194] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
kokab T, Shah A, Nisar J, Khan AM, Khan SB, Shah AH. Tripeptide Derivative-Modified Glassy Carbon Electrode: A Novel Electrochemical Sensor for Sensitive and Selective Detection of Cd 2+ Ions. ACS OMEGA 2020; 5:10123-10132. [PMID: 32391500 PMCID: PMC7203962 DOI: 10.1021/acsomega.0c00760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/13/2020] [Indexed: 05/14/2023]
Abstract
A N-[(Benzyloxy)carbonyl]-l-alanyl-l-prolyl-l-leucine-N-cyclohexylcyclohexanamine (Cbz-APL) tripeptide-coated glassy carbon electrode (GCE)-based sensor was used for sensitive and selective recognition of cadmium ions in environmental water. Detailed cyclic voltammetric and electrochemical impedance spectroscopic studies were performed to investigate the charge transfer and sensing activity of the developed electrochemical sensor. Square wave anodic stripping voltammetry (SWASV) was employed to further investigate the sensitivity, selectivity, validity, and applicability of the developed sensor. A sharp electrochemical signal of oxidized Cd at -0.84 V versus Ag/AgCl provides evidence for the higher sensing ability of Cbz-APL/GCE than bare GCE at -0.79 V. Moreover, on Cbz-APL/GCE, extraordinary low detection limits of 4.34 fM and linearity range of 15 nM to 0.1 pM with coefficients of correlation higher than 0.99 for Cd2+ were achieved. Besides, the influence of inorganic and organic interferents on the targeted analyte signals was examined, and high selectivity of Cbz-APL/GCE for Cd2+ ions was observed. Lastly, the validity and applicability of the developed electrochemical sensor for the detection of Cd2+ ions were checked in real water samples, and 100% recovery was obtained.
Collapse
Affiliation(s)
- Tayyaba kokab
- Department
of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Afzal Shah
- Department
of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Department
of Chemistry, College of Science, University
of Bahrain, Sakhir 32038, The Kingdom of Bahrain
| | - Jan Nisar
- National
Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| | - Asad Muhammad Khan
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Sher Bahadar Khan
- Department
of Chemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia Kingdom
| | - Aamir Hassan Shah
- Department
of Chemistry and Biochemistry, University
of California Los Angeles, Los
Angeles, California 90095, United States
| |
Collapse
|
16
|
Gan T, Zhao N, Yin G, Chen M, Wang X, Hua H. Preconcentration with Chlorella vulgaris combined with energy dispersive X-ray fluorescence spectrometry for rapid determination of Cd in water. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200182. [PMID: 32537220 PMCID: PMC7277290 DOI: 10.1098/rsos.200182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Freshwater green algae Chlorella vulgaris was selected as an adsorbent, and a simple, rapid, economical and environmentally friendly method for the detection of heavy metal Cd in water samples based on preconcentration with C. vulgaris combined with energy dispersive X-ray fluorescence (EDXRF) spectrometry was proposed. Chlorella vulgaris could directly and rapidly adsorb Cd2+ without any pretreatment, and the maximum adsorption efficiency could be obtained when the contact time was 1 min with an optimal pH of 10. The obtained Cd-enriched thin samples after preconcentration with C. vulgaris by suction filtration of reaction solution had very good uniformity, which could be directly measured by EDXRF spectrometry, and the net integral fluorescence intensity of Cd Kα characteristic peak had a very good linear relationship with the initial concentration of Cd in the range of 0.703-74.957 µg ml-1 with a correlation coefficient of 0.9979. When the Cd thin samples with a Cd-enriched region of 15.1 mm in diameter were formed by the developed preconcentration method with suction filtration of 10 ml reaction solution, the detection limit of this method was 0.0654 µg ml-1, which was lower than the maximum allowable discharge concentration of Cd in various industrial wastewaters. The proposed method was simple to operate, and could effectively remove the influence of matrix effect of water samples and effectively improve the sensitivity and stability of EDXRF spectrometry directly detecting heavy metals in water samples, which was successfully applied to detect Cd in real water samples with satisfactory results, and the recoveries ranged from 94.80% to 116.94%. Moreover, this method can be applied to the rapid detection and early warning of excessive Cd in discharged industrial wastewaters. This work will provide a methodological basis for the development of rapid and online monitoring technology and instrument of heavy metal pollutants in water.
Collapse
Affiliation(s)
- Tingting Gan
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- Key Laboratory of Optical Monitoring Technology for Environment, Anhui Province, Hefei 230031, People's Republic of China
| | - Nanjing Zhao
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- Key Laboratory of Optical Monitoring Technology for Environment, Anhui Province, Hefei 230031, People's Republic of China
| | - Gaofang Yin
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- Key Laboratory of Optical Monitoring Technology for Environment, Anhui Province, Hefei 230031, People's Republic of China
| | - Min Chen
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- Key Laboratory of Optical Monitoring Technology for Environment, Anhui Province, Hefei 230031, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Xiang Wang
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- Key Laboratory of Optical Monitoring Technology for Environment, Anhui Province, Hefei 230031, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Hui Hua
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- Key Laboratory of Optical Monitoring Technology for Environment, Anhui Province, Hefei 230031, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|