1
|
Pizzini S, Giubilato E, Morabito E, Barbaro E, Bonetto A, Calgaro L, Feltracco M, Semenzin E, Vecchiato M, Zangrando R, Gambaro A, Marcomini A. Contaminants of emerging concern in water and sediment of the Venice Lagoon, Italy. ENVIRONMENTAL RESEARCH 2024; 249:118401. [PMID: 38331156 DOI: 10.1016/j.envres.2024.118401] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/10/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
This study investigates for the first time the contamination of water and sediment of the Venice Lagoon by twenty Contaminants of Emerging Concern (CECs): three hormones, six pharmaceutical compounds (diclofenac and five antibiotics, three of which are macrolides), nine pesticides (methiocarb, oxadiazon, metaflumizone, triallate, and five neonicotinoids), one antioxidant (BHT), and one UV filter (EHMC). Water and sediment samples were collected in seven sites in four seasons, with the aim of investigating the occurrence, distribution, and possible emission sources of the selected CECs in the studied transitional environment. The most frequently detected contaminants in water were neonicotinoid insecticides (with a frequency of quantification of single contaminants ranging from 73% to 92%), and EHMC (detected in the 77% of samples), followed by BHT (42%), diclofenac (39%), and clarithromycin (35%). In sediment the highest quantification frequencies were those of BHT (54%), estrogens (ranging from 35% to 65%), and azithromycin (46%). Although this baseline study does not highlight seasonal or spatial trends, results suggested that two of the major emission sources of CECs in the Venice Lagoon could be tributary rivers from its drainage basin and treated wastewater, due to the limited removal rates of some CECs in WWTPs. These preliminary results call for further investigations to better map priority emission sources and improve the understanding of CECs environmental behavior, with the final aim of drawing up a site-specific Watch List of CECs for the Venice Lagoon and support the design of more comprehensive monitoring plans in the future.
Collapse
Affiliation(s)
- Sarah Pizzini
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, 30172, Venice Mestre (VE), Italy; Institute for Marine Biological Resources and Biotechnology, National Research Council (CNR-IRBIM), Largo Fiera della Pesca, 2, 60125, Ancona, Italy.
| | - Elisa Giubilato
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, 30172, Venice Mestre (VE), Italy.
| | - Elisa Morabito
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, 30172, Venice Mestre (VE), Italy.
| | - Elena Barbaro
- Institute of Polar Sciences, National Research Council (CNR-ISP), Via Torino, 155, 30172, Venice Mestre (VE), Italy.
| | - Alessandro Bonetto
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, 30172, Venice Mestre (VE), Italy.
| | - Loris Calgaro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, 30172, Venice Mestre (VE), Italy.
| | - Matteo Feltracco
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, 30172, Venice Mestre (VE), Italy.
| | - Elena Semenzin
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, 30172, Venice Mestre (VE), Italy.
| | - Marco Vecchiato
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, 30172, Venice Mestre (VE), Italy.
| | - Roberta Zangrando
- Institute of Polar Sciences, National Research Council (CNR-ISP), Via Torino, 155, 30172, Venice Mestre (VE), Italy.
| | - Andrea Gambaro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, 30172, Venice Mestre (VE), Italy.
| | - Antonio Marcomini
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, 30172, Venice Mestre (VE), Italy.
| |
Collapse
|
2
|
Loos R, Daouk S, Marinov D, Gómez L, Porcel-Rodríguez E, Sanseverino I, Amalric L, Potalivo M, Calabretta E, Ferenčík M, Colzani L, DellaVedova L, Amendola L, Saurini M, Di Girolamo F, Lardy-Fontan S, Sengl M, Kunkel U, Svahn O, Weiss S, De Martin S, Gelao V, Bazzichetto M, Tarábek P, Stipaničev D, Repec S, Zacs D, Ricci M, Golovko O, Flores C, Ramani S, Rebane R, Rodríguez JA, Lettieri T. Summary recommendations on "Analytical methods for substances in the Watch List under the Water Framework Directive". THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168707. [PMID: 37992820 DOI: 10.1016/j.scitotenv.2023.168707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
The Watch List (WL) is a monitoring program under the European Water Framework Directive (WFD) to obtain high-quality Union-wide monitoring data on potential water pollutants for which scarce monitoring data or data of insufficient quality are available. The main purpose of the WL data collection is to determine if the substances pose a risk to the aquatic environment at EU level and subsequently to decide whether a threshold, the Environmental Quality Standards (EQS) should be set for them and, potentially to be listed as priority substance in the WFD. The first WL was established in 2015 and contained 10 individual or groups of substances while the 4th WL was launched in 2022. The results of monitoring the substances of the first WL showed that some countries had difficulties to reach an analytical Limit of Quantification (LOQ) below or equal to the Predicted No-Effect Concentrations (PNEC) or EQS. The Joint Research Centre (JRC) of the European Commission (EC) organised a series of workshops to support the EU Member States (MS) and their activities under the WFD. Sharing the knowledge among the Member States on the analytical methods is important to deliver good data quality. The outcome and the discussion engaged with the experts are described in this paper, and in addition a literature review of the most important publications on the analysis of 17-alpha-ethinylestradiol (EE2), amoxicillin, ciprofloxacin, metaflumizone, fipronil, metformin, and guanylurea from the last years is presented.
Collapse
Affiliation(s)
- Robert Loos
- European Commission, Joint Research Centre (JRC), Ispra, VA, Italy
| | | | | | - Livia Gómez
- European Commission, Joint Research Centre (JRC), Ispra, VA, Italy
| | | | | | | | | | | | - Martin Ferenčík
- Povodí Labe, státní podnik, Czech Republic; Institute of Environmental and Chemical Engineering, University of Pardubice, Czech Republic
| | - Luisa Colzani
- ARPA Lombardia, the Regional Environmental Protection Agency-Lombardy Region, Italy
| | - Luisa DellaVedova
- ARPA Lombardia, the Regional Environmental Protection Agency-Lombardy Region, Italy
| | - Luca Amendola
- ARPA Lazio, the Regional Environmental Protection Agency-Lazio Region, Italy
| | - Mariateresa Saurini
- ARPA Lazio, the Regional Environmental Protection Agency-Lazio Region, Italy
| | | | - Sophie Lardy-Fontan
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), France
| | | | - Uwe Kunkel
- Bavarian Environment Agency (LfU), Germany
| | - Ola Svahn
- Kristianstad University, MoLab, Sweden
| | - Stefan Weiss
- Federal Environment Agency, Umweltbundesamt (GmbH), Austria
| | - Stefano De Martin
- ARPA FVG, the Regional Environmental Protection Agency-Friuli Venezia Giulia Region, Italy
| | - Vito Gelao
- ARPA FVG, the Regional Environmental Protection Agency-Friuli Venezia Giulia Region, Italy
| | - Michele Bazzichetto
- ARPA FVG, the Regional Environmental Protection Agency-Friuli Venezia Giulia Region, Italy
| | - Peter Tarábek
- Water Research Institute (VÚVH), National Water Reference Laboratory, Slovakia
| | | | - Siniša Repec
- Josip Juraj Strossmayer Water Institute, Central Water Laboratory, Croatia
| | - Dzintars Zacs
- Institute of Food Safety, Animal Health and Environment "BIOR", Latvia
| | - Marina Ricci
- European Commission, Joint Research Centre (JRC), Geel, Belgium
| | - Oksana Golovko
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Sweden
| | - Cintia Flores
- Mass Spectrometry Laboratory/Organic Pollutants, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Spain
| | | | - Riin Rebane
- Estonian Environmental Research Centre, Estonia
| | - Juan Alández Rodríguez
- Área de Vigilancia y Control de Calidad de las Aguas, Ministerio para la Transición Ecológica y el Reto Demográfico, Spain
| | - Teresa Lettieri
- European Commission, Joint Research Centre (JRC), Ispra, VA, Italy.
| |
Collapse
|
3
|
Colzani L, Forni C, Clerici L, Barreca S, Dellavedova P. Determination of pollutants, antibiotics, and drugs in surface water in Italy as required by the third EU Water Framework Directive Watch List: method development, validation, and assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14791-14803. [PMID: 38280169 PMCID: PMC10884086 DOI: 10.1007/s11356-024-32025-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/12/2024] [Indexed: 01/29/2024]
Abstract
In this paper, we report a study concerning the quantification of new emerging pollutants in water as a request from the third European Watch List mechanism. The EU Watch List compound was investigated by an internal method that was validated in terms of detection limits, linearities, accuracy, and precision in accordance with quality assurance criteria, and it was used to monitor several rivers from 11 Italian regions. The methodology developed was satisfactorily validated from 5 to 500 ng L-1 for the emerging pollutants studied, and it was applied to different river waters sampled in Italy, revealing the presence of drugs and antibiotics. Rivers were monitored for 2 years by two different campaigns conducted in 2021 and 2022. A total of 19 emerging pollutants were investigated on 45 samples. The most detected analytes were O-desmethylvenlafaxine and venlafaxine. About azole compounds, sulfamethoxazole, fluconazole, and Miconazole were found. About antibiotics, ciprofloxacin and amoxicillin were found in three and one samples, respectively. Moreover, statistical analyses have found a significant correlation between O-desmethylvenlafaxine with venlafaxine, sulfamethoxazole with venlafaxine, and fluconazole with venlafaxine.
Collapse
Affiliation(s)
- Luisa Colzani
- ARPA Lombardia via Ippolito Rosellini n, 17 20124, Milan, Italy
| | - Carola Forni
- ARPA Lombardia via Ippolito Rosellini n, 17 20124, Milan, Italy
| | - Laura Clerici
- ARPA Lombardia via Ippolito Rosellini n, 17 20124, Milan, Italy
| | - Salvatore Barreca
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95100, Catania, Italy.
| | | |
Collapse
|
4
|
Glineur A, Nott K, Carbonnelle P, Ronkart S, Pollet T, Purcaro G. Occurrence and environmental risk assessment of 4 estrogenic compounds in surface water in Belgium in the frame of the EU Watch List. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6857-6873. [PMID: 38153577 DOI: 10.1007/s11356-023-31698-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
The presence of natural estrogens estrone (E1), 17β-estradiol (E2), estriol (E3) and synthetic estrogen 17α-ethynylestradiol (EE2) in the aquatic environment has raised concerns because of their high potency as endocrine disrupting chemicals. The European Commission (EC) established a Watch List of contaminants of emerging concerns including E1, E2 and EE2. The proposed environmental quality standards (EQSs) are 3.6, 0.4, 0.035 ng/L, for E1, E2, EE2, respectively. A thorough evaluation of analytical procedures developed by several studies aiming to perform sampling campaigns in different European countries highlighted that the required limits of quantification in surface water were not reached, especially for EE2 and to a lesser extent for E2. Moreover, data regarding the occurrence of these contaminants in Belgian surface water are very limited. A sampling campaign was therefore performed on a wide range of rivers in Belgium (accounting for a total of 63 samples). The detection frequencies of E1, E2, E3 and EE2 were 100, 98, 86 and 48%, respectively. E1 showed the highest mean concentration (= 4.433 ng/L). In contrast, the mean concentration of EE2 was 0.042 ng/L. The risk quotients (RQs) were calculated based on the respective EQS of each analyte. The frequency of exceedance of the EQS was 31.7% for E1, EE2, while it increased to 44.4% for E2. The extent of exceedance of the EQS, represented by the 95th percentile of the RQ dataset, was higher than 1 for E1, E2, EE2. The use of a confusion matrix was investigated to try to predict the risk posed by E2, EE2, based on the concentration of E1.
Collapse
Affiliation(s)
- Alex Glineur
- Laboratory of Analytical Chemistry, Gembloux Agro-Bio Tech, University of Liège, Bât. G1 Chimie Des Agro-Biosystèmes, Passage Des Déportés 2, 5030, Gembloux, Belgium.
| | - Katherine Nott
- La Société Wallonne Des Eaux, Rue de La Concorde 41, 4800, Verviers, Belgium
| | | | - Sébastien Ronkart
- La Société Wallonne Des Eaux, Rue de La Concorde 41, 4800, Verviers, Belgium
| | - Thomas Pollet
- Biodiversity and Landscape, Gembloux Agro-Bio Tech, University of Liège, Avenue Maréchal Juin 27, 5030, Gembloux, Belgium
| | - Giorgia Purcaro
- Laboratory of Analytical Chemistry, Gembloux Agro-Bio Tech, University of Liège, Bât. G1 Chimie Des Agro-Biosystèmes, Passage Des Déportés 2, 5030, Gembloux, Belgium
| |
Collapse
|
5
|
Nedylakova M, Medinger J, Mirabello G, Lattuada M. Iron oxide magnetic aggregates: Aspects of synthesis, computational approaches and applications. Adv Colloid Interface Sci 2024; 323:103056. [PMID: 38056225 DOI: 10.1016/j.cis.2023.103056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
Superparamagnetic magnetite nanoparticles have been central to numerous investigations in the past few decades for their use in many applications, such as drug delivery, medical diagnostics, magnetic separation, and material science. However, the properties of single magnetic nanoparticles are sometimes not sufficient to accomplish tasks where a strong magnetic response is required. In light of this, aggregated magnetite nanoparticles have been proposed as an alternative advanced material, which may expand and combine some of the advantages of single magnetic nanoparticles, including superparamagnetism, with an enhanced magnetic moment and increased colloidal stability. This review comprehensively discusses the current literature on aggregates made of magnetic iron oxide nanoparticles. This review is divided into three sections. First, the current synthetic strategies for magnetite nanoparticle aggregates are discussed, together with the influence of different stabilizers on the primary crystals and the final aggregate size and morphology. The second section is dedicated to computational approaches, such as density functional methods (which permit accurate predictions of electronic and magnetic properties and shed light on the behavior of surfactant molecules on iron oxide surfaces) and molecular dynamics simulations (which provide additional insight into the influence of ligands on the surface chemistry of iron oxide nanocrystals). The last section discusses current and possible future applications of iron oxide magnetic aggregates, including wastewater treatment, water purification, medical applications, and magnetic aggregates for materials displaying structural colors.
Collapse
Affiliation(s)
- Miroslava Nedylakova
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg 1700, Switzerland
| | - Joelle Medinger
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg 1700, Switzerland
| | - Giulia Mirabello
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg 1700, Switzerland
| | - Marco Lattuada
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg 1700, Switzerland.
| |
Collapse
|
6
|
Liang Y, Gong Y, Jiang Q, Yu Y, Zhang J. Environmental endocrine disruptors and pregnane X receptor action: A review. Food Chem Toxicol 2023; 179:113976. [PMID: 37532173 DOI: 10.1016/j.fct.2023.113976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
The pregnane X receptor (PXR) is a kind of orphan nuclear receptor activated by a series of ligands. Environmental endocrine disruptors (EEDs) are a wide class of molecules present in the environment that are suspected to have adverse effects on the endocrine system by interfering with the synthesis, transport, degradation, or action of endogenous hormones. Since EEDs may modulate human/rodent PXR, this review aims to summarize EEDs as PXR modulators, including agonists and antagonists. The modular structure of PXR is also described, interestingly, the pharmacology of PXR have been confirmed to vary among different species. Furthermore, PXR play a key role in the regulation of endocrine function. Endocrine disruption of EEDs via PXR and its related pathways are systematically summarized. In brief, this review may provide a way to understand the roles of EEDs in interaction with the nuclear receptors (such as PXR) and the related pathways.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yiyao Gong
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Qiuyan Jiang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yifan Yu
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
7
|
Bayode AA, Olisah C, Emmanuel SS, Adesina MO, Koko DT. Sequestration of steroidal estrogen in aqueous samples using an adsorption mechanism: a systemic scientometric review. RSC Adv 2023; 13:22675-22697. [PMID: 37502828 PMCID: PMC10369132 DOI: 10.1039/d3ra02296j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
Steroidal estrogens (SEs) remain one of the notable endocrine disrupting chemicals (EDCs) that pose a significant threat to the aquatic environment in this era owing to their interference with the normal metabolic functions of the human body systems. They are currently identified as emerging contaminants of water sources. The sources of SEs are either natural or synthetic active ingredients in oral contraceptive and hormonal replacement therapy drugs and enter the environment primarily from excretes in the form of active free conjugate radicals, resulting in numerous effects on organisms in aquatic habitats and humans. The removal of SEs from water sources is of great importance because of their potential adverse effects on aquatic ecosystems and human health. Adsorption techniques have gained considerable attention as effective methods for the removal of these contaminants. A systemic review and bibliometric analysis of the application of adsorption for sequestration were carried out. Metadata for publications on SE removal utilizing adsorbents were obtained from the Web of Science (WoS) from January 1, 1990, to November 5, 2022 (107 documents) and Scopus databases from January 1, 1949, to November 5, 2022 (77 documents). In total, 137 documents (134 research and 4 review articles) were used to systematically map bibliometric indicators, such as the number of articles, most prolific countries, most productive scholars, and most cited articles, confirming this to be a growing research area. The use of different adsorbents, include activated carbon graphene-based materials, single and multi-walled carbon nanotubes, biochar, zeolite, and nanocomposites. The adsorption mechanism and factors affecting the removal efficiency, such as pH, temperature, initial concentration, contact time and adsorbent properties, were investigated in this review. This review discusses the advantages and limitations of different adsorbents, including their adsorption capacities, regenerative potential, and cost-effectiveness. Recent advances and innovations in adsorption technology, such as functionalized materials and hybrid systems, have also been highlighted. Overall, the bibliographic analysis provides a comprehensive overview of the adsorption technique for the removal of SEs from other sources, serving as a valuable resource for researchers and policymakers involved in the development of efficient and sustainable strategies to mitigate the effects of these emerging contaminants.
Collapse
Affiliation(s)
- Ajibola A Bayode
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University P.M.B. 230 232101 Ede Nigeria
| | - Chijioke Olisah
- Institute for Coastal and Marine Research, Nelson Mandela University P. O Box 77000 Gqeberha 6031 South Africa
| | - Stephen Sunday Emmanuel
- Department of Industrial Chemistry, Faculty of Physical Sciences, University of Ilorin P.M.B. 1515 Ilorin Nigeria
| | | | - Daniel Terlanga Koko
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University P.M.B. 230 232101 Ede Nigeria
| |
Collapse
|
8
|
Grobin A, Roškar R, Trontelj J. A robust multi-residue method for the monitoring of 25 endocrine disruptors at ultra-trace levels in surface waters by SPE-LC-MS/MS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 37194301 DOI: 10.1039/d3ay00602f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Estrogenic endocrine disruptors are one of the biggest ecotoxicological threats in water that pose a significant ecological burden and health-risk for humans due to their high biological activity and proven additive effects. Therefore, we have developed and validated the most comprehensive and ultra-sensitive analytical method published to date, for reliable quantification of 25 high-risk endocrine disruptors at their ecologically relevant concentrations: naturally excreted hormones (estradiol, estrone, estriol, testosterone, corticosterone, and progesterone), synthetic hormones used for contraception and menopausal symptoms (ethinylestradiol, drospirenone, chlormadinone acetate, norgestrel, gestodene, tibolone, norethindrone, dienogest, and cyproterone) and bisphenols (BPS, BPA, BPF, BPE, BPAF, BPB, BPC, and BPZ). It is based on a solid-phase extraction of water samples, followed by a robust dansyl chloride derivatization with detection by liquid chromatography-tandem mass spectrometry with a single sample preparation and two analytical methods using the same analytical column and mobile phases. The achieved limits of quantitation are in the sub-ng L-1 range, and detection limits as low as 0.02 ng L-1, meeting the newest proposal for environmental quality standards (EQS) by the EU water framework directive for estradiol and ethinylestradiol. The method was extensively validated and applied to seven representative Slovenian water samples, where we detected 21 out of 25 analytes; 13 were quantified in at least one sample. Estrone and progesterone were quantified in all samples, reaching levels up to 50 ng L-1; ethinylestradiol was higher than the current EQS (0.035 ng L-1) in three samples, and estradiol was above its EQS (0.4 ng L-1) in one sample, proving the method's applicability and the necessity for monitoring these pollutants.
Collapse
Affiliation(s)
- Andrej Grobin
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Robert Roškar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Jurij Trontelj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
9
|
Musa AM, Kiely J, Luxton R, Honeychurch KC. An Electrochemical Screen-Printed Sensor Based on Gold-Nanoparticle-Decorated Reduced Graphene Oxide-Carbon Nanotubes Composites for the Determination of 17-β Estradiol. BIOSENSORS 2023; 13:bios13040491. [PMID: 37185565 PMCID: PMC10136424 DOI: 10.3390/bios13040491] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023]
Abstract
In this study, a screen-printed electrode (SPE) modified with gold-nanoparticle-decorated reduced graphene oxide-carbon nanotubes (rGO-AuNPs/CNT/SPE) was used for the determination of estradiol (E2). The AuNPs were produced through an eco-friendly method utilising plant extract, eliminating the need for severe chemicals, and remove the requirements of sophisticated fabrication methods and tedious procedures. In addition, rGO-AuNP serves as a dispersant for the CNT to improve the dispersion stability of CNTs. The composite material, rGO-AuNPs/CNT, underwent characterisation through scanning electron microscopy (SEM), ultraviolet-visible absorption spectroscopy (UV-vis), Fourier-transform infrared (FTIR) spectroscopy, and atomic force microscopy (AFM). The electrochemical performance of the modified SPE for estradiol oxidation was characterised using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The rGO-AuNPs/CNT/SPE exhibited a notable improvement compared to bare/SPE and GO-CNT/SPE, as evidenced by the relative peak currents. Additionally, we employed a baseline correction algorithm to accurately adjust the sensor response while eliminating extraneous background components that are typically present in voltammetric experiments. The optimised estradiol sensor offers linear sensitivity from 0.05-1.00 µM, with a detection limit of 3 nM based on three times the standard deviation (3δ). Notably, this sensing approach yields stable, repeatable, and reproducible outcomes. Assessment of drinking water samples indicated an average recovery rate of 97.5% for samples enriched with E2 at concentrations as low as 0.5 µM%, accompanied by only a modest coefficient of variation (%CV) value of 2.7%.
Collapse
Affiliation(s)
- Auwal M Musa
- Institute of Bio-Sensing Technology (IBST), University of the West of England, Bristol BS16 1QY, UK
| | - Janice Kiely
- Centre for Research in Biosciences (CRIB), School of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK
| | - Richard Luxton
- Centre for Research in Biosciences (CRIB), School of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK
| | - Kevin C Honeychurch
- Institute of Bio-Sensing Technology (IBST), University of the West of England, Bristol BS16 1QY, UK
- Centre for Research in Biosciences (CRIB), School of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK
| |
Collapse
|
10
|
Pan L, Huang JJ, Chen J, He X, Wang Y, Wang J, Wang B. Trace determination of multiple hydrophilic cyanotoxins in freshwater by off- and on-line solid phase extraction coupled to liquid chromatography-tandem mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158545. [PMID: 36075415 DOI: 10.1016/j.scitotenv.2022.158545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/06/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Hydrophilic cyanotoxins (HCTs), such as paralytic shellfish toxins (PSTs), anatoxin-a (ATX-a), and cylindrospermopsin (CYN) are highly toxic and toxin-producing algae are widely distributed worldwide. However, HCTs, especially PSTs, are rarely reported in freshwater due to analytical limitations. This may result in an underestimation of the ecological risks and health risks. This study developed a new method to detect ATX-a, CYN, and thirteen common PSTs in freshwater simultaneously by using off-line solid phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The limits of detection (LODs) of all targets were lower than 0.05 μg/L, which could meet the regulatory requirements for monitoring of HCTs in drinking water in different countries and regions. To improve the detection sensitivities for trace PSTs, a method based on off-line SPE and on-line SPE-LC-MS/MS was established with LOD around 0.001 μg/L. GTX1&4, GTX2&3, and GTX5 were detected in freshwater in China for the first time, highlighting that overall communities are facing potential risks of exposure to various PSTs in China. High concentrations of ATX-a and CYN were also detected in freshwater from Northern China. The proposed method helps to understand the pollution status of HCT in water bodies, especially during the non-algal bloom period.
Collapse
Affiliation(s)
- Lei Pan
- College of Environmental Science and Engineering, Sino-Canada Joint R&D Centre for Water and Environmental Safety, Nankai University, Tianjin 300071, China; Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Jinhui Jeanne Huang
- College of Environmental Science and Engineering, Sino-Canada Joint R&D Centre for Water and Environmental Safety, Nankai University, Tianjin 300071, China.
| | - Junhui Chen
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China.
| | - Xiuping He
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Yuning Wang
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Jiuming Wang
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Baodong Wang
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| |
Collapse
|
11
|
Steinhaeuser L, Westphalen T, Kaminski K, Piechotta C. Evaluation, comparison and combination of molecularly imprinted polymer solid phase extraction and classical solid phase extraction for the preconcentration of endocrine disrupting chemicals from representative whole water samples. TALANTA OPEN 2022. [DOI: 10.1016/j.talo.2022.100163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
12
|
Ultrasound assisted dispersive solid-phase extraction coupled with high-performance liquid chromatography-diode array detector for determination of caffeine and carbamazepine in environmental samples using exfoliated graphite/chitosan hydrogel. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02328-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
A Multi-Label Classifier for Predicting the Most Appropriate Instrumental Method for the Analysis of Contaminants of Emerging Concern. Metabolites 2022; 12:metabo12030199. [PMID: 35323641 PMCID: PMC8949148 DOI: 10.3390/metabo12030199] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
Liquid chromatography-high resolution mass spectrometry (LC-HRMS) and gas chromatography-high resolution mass spectrometry (GC-HRMS) have revolutionized analytical chemistry among many other disciplines. These advanced instrumentations allow to theoretically capture the whole chemical universe that is contained in samples, giving unimaginable opportunities to the scientific community. Laboratories equipped with these instruments produce a lot of data daily that can be digitally archived. Digital storage of data opens up the opportunity for retrospective suspect screening investigations for the occurrence of chemicals in the stored chromatograms. The first step of this approach involves the prediction of which data is more appropriate to be searched. In this study, we built an optimized multi-label classifier for predicting the most appropriate instrumental method (LC-HRMS or GC-HRMS or both) for the analysis of chemicals in digital specimens. The approach involved the generation of a baseline model based on the knowledge that an expert would use and the generation of an optimized machine learning model. A multi-step feature selection approach, a model selection strategy, and optimization of the classifier’s hyperparameters led to a model with accuracy that outperformed the baseline implementation. The models were used to predict the most appropriate instrumental technique for new substances. The scripts are available at GitHub and the dataset at Zenodo.
Collapse
|
14
|
Liu XR, Huang YF, Huang JJ. Identification of Benzophenone Analogs in Rice Cereal through Fast Pesticide Extraction and Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry. Foods 2022; 11:572. [PMID: 35206047 PMCID: PMC8871057 DOI: 10.3390/foods11040572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/01/2022] Open
Abstract
A fast, robust, and sensitive analytical method was developed and validated for the simultaneous identification of benzophenone (BP) and nine BP analogs (BP-1, BP-2, BP-3, BP-8, 2-hydroxybenzophenone, 4-hydroxybenzophenone, 4-methylbenzophenone [4-MBP], methyl-2-benzoylbenzoate, and 4-benzoylbiphenyl) in 25 samples of rice cereal. Fast pesticide extraction (FaPEx) coupled with ultrahigh-performance liquid chromatography-tandem mass spectrometry was applied. The developed method exhibited satisfactory linearity (r > 0.997), favorable recoveries between 71% and 119%, and a limit of detection ranging from 0.001 to 0.5 ng/g. The detection frequencies of BP, 4-MBP, and BP-3 were 100%, 88%, and 52%, respectively. BP had higher geometric levels, with a mean of 39.8 (19.1-108.9) ng/g, and 4-MBP had low levels, with a mean of 1.9 (1.3-3.3) ng/g. The method can be applied to routine rice cereal analysis at the nanogram-per-gram level. For infants aged 0-3 years, the hazard quotients of BP and 4-MBP were lower than one, and the margin of exposure for BP was higher than 10,000, suggesting that rice cereal consumption poses no health concern for Taiwanese infants.
Collapse
Affiliation(s)
- Xuan-Rui Liu
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli 36063, Taiwan; (X.-R.L.); (J.-J.H.)
| | - Yu-Fang Huang
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli 36063, Taiwan; (X.-R.L.); (J.-J.H.)
- Center for Chemical Hazards and Environmental Health Risk Research, National United University, Miaoli 36063, Taiwan
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Jun-Jie Huang
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli 36063, Taiwan; (X.-R.L.); (J.-J.H.)
| |
Collapse
|
15
|
Monteiro M, Sant'Anna M, dos Santos Júnior JC, Alves A, Macedo JF, Silva J, Gimenez IDF, Sussuchi EM. Reduced graphene oxide‐based sensor for 17α–ethinylestradiol voltammetric determination in wastewater, tablets and synthetic urine samples. ELECTROANAL 2022. [DOI: 10.1002/elan.202100500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Goeury K, Vo Duy S, Munoz G, Prévost M, Sauvé S. Assessment of automated off-line solid-phase extraction LC-MS/MS to monitor EPA priority endocrine disruptors in tap water, surface water, and wastewater. Talanta 2022; 241:123216. [PMID: 35042051 DOI: 10.1016/j.talanta.2022.123216] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 10/19/2022]
Abstract
EPA method 539.1 recently introduced an expanded list of priority endocrine-disrupting compounds (EDCs), some of which were also included in the Unregulated Contaminant Monitoring Rule 3 (UCMR3). Though standardized methods are available for drinking water, analysis of steroid hormones and bisphenol A (BPA) at the ultra-trace level remains challenging. This study set out to evaluate the suitability of automated off-line solid-phase extraction (SPE) liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) for the determination of EPA-priority EDCs in environmental water matrixes (tap water, surface water, and wastewater influents and effluents). The target molecules included 14 steroid hormones (altrenogest, androstenedione, equilenin, equilin, α-estradiol, β-estradiol, estriol, estrone, ethinylestradiol, levonorgestrel, medroxyprogesterone, norethindrone, progesterone, testosterone) and BPA. Factors that may influence the analytical performance were assessed. This involved, for instance, testing combinations of SPE materials from different brands and protocol variations. Several materials presented absolute extraction efficiencies in acceptable ranges. Initial sample pH, nature of reconstitution medium, and mobile phase salt concentration were among the potential factors affecting analyte signal. Storage conditions (different preservative agents) possibly exerted the strongest influence, in agreement with the literature. Limits of detection were in the range of 0.03-0.5 ng/L in drinking water, 0.1-0.5 ng/L in surface water, and 0.16-1 ng/L in wastewater. Method validation also involved testing linearity, accuracy, and precision in reagent water and matrix-matched extracted calibrants. The method was applied to field-collected water samples in Eastern Canada. Summed EDC concentrations remained low in tap water (<LOQ-0.92 ng/L), while higher detection frequencies and contamination levels were reported in riverine surface waters (2.6-37 ng/L) and municipal wastewaters (10-424 ng/L).
Collapse
Affiliation(s)
- Ken Goeury
- Department of Chemistry, Université de Montréal, Montreal, QC, Canada; Department of Civil, Geological and Mining Engineering, École Polytechnique de Montréal, Montreal, QC, Canada
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, Montreal, QC, Canada
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, Montreal, QC, Canada
| | - Michèle Prévost
- Department of Civil, Geological and Mining Engineering, École Polytechnique de Montréal, Montreal, QC, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
17
|
Gaballah MS, Li X, Zhang Z, Al-Anazi A, Sun H, Sobhi M, Philbert M, Ghorab MA, Guo J, Dong R. Determination of Tetracycline, Oxytetracycline, Sulfadiazine, Norfloxacin, and Enrofloxacin in Swine Manure Using a Coupled Method of On-Line Solid-Phase Extraction with the UHPLC-DAD. Antibiotics (Basel) 2021; 10:1397. [PMID: 34827335 PMCID: PMC8615208 DOI: 10.3390/antibiotics10111397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 11/30/2022] Open
Abstract
The use of various veterinary antibiotics (VAs) in animal husbandry raises serious concerns about the development of antibiotic resistance. Antibiotics such as tetracycline, oxytetracycline, sulfadiazine, norfloxacin, and enrofloxacin are the most frequently used antimicrobial compounds in animal husbandry and generate large eco-toxicological effects; however, they are still difficult to determine in a complex matrix such as swine manure. This study has developed an effective method for detecting five VAs in swine manure using Ultra-High-Performance Liquid Chromatography-Diode Array Detector (UHPLC-DAD) coupled with on-line solid-phase extraction (SPE). The results show that the mobile phase of ACN/0.01 M oxalic acid was the optimum at pH 3.0. VAs in a swine manure matrix were extracted using solid extraction buffer solution (T3) with 97.36% recovery. Sensitivity, accuracy, and precision were also evaluated. The validity study showed good linearity (R2 > 0.99). Limit of detection (LOD) was found to be from 0.1 to 0.42 µg mL-1 in the liquid fraction and from 0.032 to 0.58 µg g-1 dw in the solid fraction. The corresponding values of the limit of quantification (LOQ) ranged from 0.32 to 1.27 µg mL-1 for the liquid fraction and from 0.096 to 1.77 µg g-1 dw for the solid fraction. Therefore, the proposed method showed the potential applicability for detecting different antibiotic compounds from swine manure samples.
Collapse
Affiliation(s)
- Mohamed S. Gaballah
- Bioenergy and Environment Science & Technology Laboratory, College of Engineering, China Agricultural University, Beijing 100083, China; (M.S.G.); (X.L.); (Z.Z.); (H.S.); (M.P.); (R.D.)
- Department of Marine Environment, National Institute of Oceanography and Fisheries, NIOF, Alexandria 21556, Egypt
| | - Xin Li
- Bioenergy and Environment Science & Technology Laboratory, College of Engineering, China Agricultural University, Beijing 100083, China; (M.S.G.); (X.L.); (Z.Z.); (H.S.); (M.P.); (R.D.)
| | - Zijia Zhang
- Bioenergy and Environment Science & Technology Laboratory, College of Engineering, China Agricultural University, Beijing 100083, China; (M.S.G.); (X.L.); (Z.Z.); (H.S.); (M.P.); (R.D.)
| | - Abdulaziz Al-Anazi
- Department of Chemical Engineering, College of Engineering, King Saud University (KSU), P.O. Box 800, Riyadh 11421, Saudi Arabia;
| | - Hui Sun
- Bioenergy and Environment Science & Technology Laboratory, College of Engineering, China Agricultural University, Beijing 100083, China; (M.S.G.); (X.L.); (Z.Z.); (H.S.); (M.P.); (R.D.)
| | - Mostafa Sobhi
- Agricultural and Bio-Systems Engineering Department, Faculty of Agriculture, Alexandria University, Alexandria 21511, Egypt;
| | - Mperejekumana Philbert
- Bioenergy and Environment Science & Technology Laboratory, College of Engineering, China Agricultural University, Beijing 100083, China; (M.S.G.); (X.L.); (Z.Z.); (H.S.); (M.P.); (R.D.)
| | - Mohamed A. Ghorab
- Office of Chemical Safety and Pollution Prevention, U.S. Environmental Protection Agency (EPA), Washington, DC 20004, USA;
- Wildlife Toxicology Laboratory, Department of Animal Science, Institute for Integrative Toxicology (IIT), Michigan State University, East Lansing, MI 48824, USA
| | - Jianbin Guo
- Bioenergy and Environment Science & Technology Laboratory, College of Engineering, China Agricultural University, Beijing 100083, China; (M.S.G.); (X.L.); (Z.Z.); (H.S.); (M.P.); (R.D.)
| | - Renjie Dong
- Bioenergy and Environment Science & Technology Laboratory, College of Engineering, China Agricultural University, Beijing 100083, China; (M.S.G.); (X.L.); (Z.Z.); (H.S.); (M.P.); (R.D.)
- Yantai Institute, China Agricultural University, Yantai 264032, China
| |
Collapse
|
18
|
Study on the Stability of Antibiotics, Pesticides and Drugs in Water by Using a Straightforward Procedure Applying HPLC-Mass Spectrometric Determination for Analytical Purposes. SEPARATIONS 2021. [DOI: 10.3390/separations8100179] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The stability of analytes is a critical point in chemical analysis, especially in the field of trace levels residue analysis. Nowadays, due to advances in analytical technology and in separation sciences, the analyses of water have been improved. Unfortunately, in this context, one of the most critical issues in water analysis include compound stability from sampling station to laboratory procedures. This study was carried out to explore the stability of several compounds in water from sampling to analysis concerning analytes reported in implementing decision 2018/840—Watch List. During method development and validation, the stability of compounds was investigated to detect the best operating conditions concerning sampling, extraction and analysis. In this paper, we report a study on the stability of antibiotics, pesticides and drugs in water determined using a straight-forward procedure applying mass spectrometric detection for analytical purposes. The laboratory tests were performed in Milli-Q water and surface water by analyzing samples through direct injection, solvent mixture (Water/ACN) and solid phase extraction system from time 0 to 168 h. All the analytes of the WL are stable in aqueous solutions with the addition of at least 25% ACN even after 168 h, and the analytes have shown a matrix effect on recovery of some analytes such as Famoxadone from sampling results (recovery in surface water 72%). For all the analytes investigated, recoveries were between 70 and 130% by using SPE procedures before UHPLC-MS/MS analysis, which is in good agreement with method validation procedures.
Collapse
|
19
|
Kim SW, Lim DJ, Kim IS. Simultaneous Analysis of Fenpropimorph and Fenpropimorph Acid in Six Different Livestock Products Using a Single-Sample Preparation Method Followed by Liquid Chromatography-Tandem Mass Spectrometry. Molecules 2021; 26:5791. [PMID: 34641333 PMCID: PMC8510198 DOI: 10.3390/molecules26195791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 11/24/2022] Open
Abstract
Pesticides in livestock products must be measured to ensure food safety. We developed a single-sample preparation method followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) for simultaneous determination of fenpropimorph and fenpropimorph acid in six different livestock products. The extraction method was a modification of the quick, easy, cheap, effective, rugged, and safe (QuEChERS) method and was validated according to the CODEX guidelines. The matrix-matched calibration curves for fenpropimorph and fenpropimorph acid exhibited good linearity, with coefficients of determination (R2 values) higher than 0.998. The limit of detection (LOD) and the limit of quantitation (LOQ) were 1.25 and 5.0 µg kg-1, respectively. The average recovery values ranged from 61.5% to 97.1% for samples fortified to the LOQ, 2 × LOQ, and 10 × LOQ. The method fully complied with the CODEX guidelines and was successfully applied to real samples obtained from domestic markets.
Collapse
Affiliation(s)
| | | | - In Seon Kim
- Department of Agricultural Chemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (S.W.K.); (D.J.L.)
| |
Collapse
|
20
|
Domingues JT, Orlando RM, Almeida MR, de Lemos LR, Mageste AB, Rodrigues GD. Extraction of estrogen hormones from water samples using an aqueous two-phase system: A new approach for sample preparation in the analysis of emerging contaminants. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Musa AM, Kiely J, Luxton R, Honeychurch KC. Recent progress in screen-printed electrochemical sensors and biosensors for the detection of estrogens. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Guerra-Rodríguez S, Ribeiro ARL, Ribeiro RS, Rodríguez E, Silva AMT, Rodríguez-Chueca J. UV-A activation of peroxymonosulfate for the removal of micropollutants from secondary treated wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145299. [PMID: 33736410 DOI: 10.1016/j.scitotenv.2021.145299] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 05/28/2023]
Abstract
The occurrence of micropollutants (MPs) in the aquatic environment poses a threat to the environment and to the human health. The application of sulfate radical-based advanced oxidation processes (SR-AOPs) to eliminate these contaminants has attracted attention in recent years. In this work, the simultaneous degradation of 20 multi-class MPs (classified into 5 main categories, namely antibiotics, beta-blockers, other pharmaceuticals, pesticides, and herbicides) was evaluated for the first time in secondary treated wastewater, by activating peroxymonosulfate (PMS) with UV-A radiation, without any pH adjustment or iron addition. The optimal PMS concentration to remove the spiked target MPs (100 μg L-1) from wastewater was 0.1 mM, leading to an average degradation of 80% after 60 min, with most of the elimination occurring during the first 5 min. Synergies between radiation and the oxidant were demonstrated and quantified, with an average extent of synergy of 69.1%. The optimized treatment was then tested using non-spiked wastewater, in which 12 out of the 20 target contaminants were detected. Among these, 7 were degraded at some extent, varying from 10.7% (acetamiprid) to 94.4% (ofloxacin), the lower removals being attributed to the quite inferior ratio of MPs to natural organic matter. Phytotoxicity tests carried out with the wastewater before and after photo-activated PMS oxidation revealed a decrease in the toxicity and that the plants were able to grow in the presence of the treated water. Therefore, despite the low degradation rates obtained for some MPs, the treatment effectively reduces the toxicity of the matrix, making the water safer for reuse.
Collapse
Affiliation(s)
- Sonia Guerra-Rodríguez
- Department of Industrial Chemical & Environmental Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, Madrid, Spain
| | - Ana Rita Lado Ribeiro
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal.
| | - Rui S Ribeiro
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Encarnación Rodríguez
- Department of Industrial Chemical & Environmental Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, Madrid, Spain
| | - Adrián M T Silva
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Jorge Rodríguez-Chueca
- Department of Industrial Chemical & Environmental Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
23
|
Quality by design optimization of a liquid chromatographic-tandem mass spectrometric method for the simultaneous analysis of structurally heterogeneous pharmaceutical compounds and its application to the rapid screening in wastewater and surface water samples by large volume direct injection. J Chromatogr A 2021; 1649:462225. [PMID: 34038785 DOI: 10.1016/j.chroma.2021.462225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 11/20/2022]
Abstract
This study focused on the Analytical Quality by Design (AQbD) optimization of the chromatographic separation and mass spectrometric detection of a wide group of structurally heterogeneous model pharmaceutical compounds (PhCs) and transformation products (TPs), chosen to cover the challenging issues of the co-presence of compounds characterized by (i) a wide range of physicochemical properties, (ii) the same mass transitions, and (iii) different ionisation modes. Italian consumption of PhCs were also considered as election criteria of target analytes. Octadecyl and pentafluorophenyl stationary phases, acetonitrile/methanol ratios and acidity of the eluents, column temperature, initial organic phase percentage, and elution gradient were investigated by AQbD, aiming at optimizing critical resolutions, sensitivities, and analysis time. Statistically significant models were obtained in most cases with fitting and cross-validation coefficients in the ranges of 0.681-0.998 and 0.514-0.967, respectively. After optimization, the analysis of target analytes was performed in a single chromatographic run, adopting a mixed acquisition mode based on scheduled acquisition windows comprising both single polarity and continuous polarity switching. For most investigated analytes the method provided detection limits in the sub-ng/L to low ng/L range, meeting for macrolides the sensitivity requested by the "Watch List" 2018/840/EU. The optimized method was applied to the direct injection analysis of PhCs and TPs in four wastewater treatment plant (WWTP) effluents and surface water (SW) samples collected in the receiving water bodies. Absolute values of matrix effect were found to be far higher than 20% for most target analytes in most samples. Seventeen PhCs and two TPs were quantified in at least one sample, at the wide concentration range of about 1-3200 ng/L. The most occurring PhCs in both WWTP effluents and SWs were levofloxacin (202-1239 and 100-830 ng/L), furosemide (865-3234 and 230-880 ng/L), ketoprofen (295-1104 and 270-490 ng/L), and ibuprofen (886-3232 and 690-1440 ng/L).
Collapse
|
24
|
Abstract
Chromatography is a powerful and generally applicable method for the analytical separation and quantification of the chemical constituents in complex mixtures because chromatographic separation can provide high selectivity by isolating all analytes from interferences. Multiway analysis based on the multilinear model is an increasingly widely used method for interference-free and fast determination of the chemical constituents also in complex mixtures because multilinear mathematical separation can provide high selectivity by extracting the pure signal of the analyte from the mixed signal of a real sample. By combining chromatographic separation with mathematical separation, multiway calibration method, multiway standard additions method, and multiway internal standard method can be established. Chromatography assisted by multiway analysis can reduce the requirements for complete chromatographic separation, save elution time, and decrease the consumption of the mobile phase, particularly when the peak coelution problem is difficult to solve. This review presents the fundamentals and analytical applications of multilinear mathematical separation in chromatography.
Collapse
|
25
|
Zamfir LG, Puiu M, Bala C. Advances in Electrochemical Impedance Spectroscopy Detection of Endocrine Disruptors. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6443. [PMID: 33187314 PMCID: PMC7697587 DOI: 10.3390/s20226443] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 01/18/2023]
Abstract
Endocrine disruptors (EDs) are contaminants that may mimic or interfere with the body's hormones, hampering the normal functions of the endocrine system in humans and animals. These substances, either natural or man-made, are involved in development, breeding, and immunity, causing a wide range of diseases and disorders. The traditional detection methods such as enzyme linked immunosorbent assay (ELISA) and chromatography are still the golden techniques for EDs detection due to their high sensitivity, robustness, and accuracy. Nevertheless, they have the disadvantage of being expensive and time-consuming, requiring bulky equipment or skilled personnel. On the other hand, early stage detection of EDs on-the-field requires portable devices fulfilling the Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment free, Deliverable to end users (ASSURED) norms. Electrochemical impedance spectroscopy (EIS)-based sensors can be easily implemented in fully automated, sample-to-answer devices by integrating electrodes in microfluidic chips. The latest achievements on EIS-based sensors are discussed and critically assessed.
Collapse
Affiliation(s)
- Lucian-Gabriel Zamfir
- R&D Center LaborQ, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania; (L.-G.Z.); (M.P.)
| | - Mihaela Puiu
- R&D Center LaborQ, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania; (L.-G.Z.); (M.P.)
| | - Camelia Bala
- R&D Center LaborQ, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania; (L.-G.Z.); (M.P.)
- Department of Analytical Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
| |
Collapse
|
26
|
Li N, Zhao T, Du L, Zhang Z, Nian Q, Wang M. Fast and simple determination of estrogens in milk powders by magnetic solid-phase extraction using carbon nitride composites prior to HPLC. Anal Bioanal Chem 2020; 413:215-223. [PMID: 33068132 DOI: 10.1007/s00216-020-02993-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/25/2020] [Accepted: 10/06/2020] [Indexed: 10/23/2022]
Abstract
A graphitic carbon nitride (g-C3N4/Fe3O4)-based magnetic solid-phase extraction (MSPE) approach was established for fast and simple analysis of estrogens in milk powders. The composites were characterized by X-ray diffractometer, scanning electron microscope, and Brunauer-Emmett-Teller surface area and pore size distribution analyzer. Compared with the bulk g-C3N4, g-C3N4/Fe3O4 gave a narrower distribution of mesopores and provided an enhanced surface area from 77.1 to 113.7 m2/g. Polar analytes of estrogens were selected as model compounds and the extraction of four estrogens was achieved in n-hexane using 15 mg of adsorbent within only 2 min. Possible extraction mechanism of g-C3N4/Fe3O4 for these estrogens was explored in terms of the polarity of the analytes and the adsorption performance of the adsorbent. The hydrophobicity and the hydrogen-bond interaction between the estrogens and g-C3N4 were responsible for the efficient adsorption. Combined with HPLC, MSPE with the prepared adsorbent gave the enhancement factors of 20 to 24 and the linear ranges of 2-200 μg/kg for 17β-estradiol and 17α-ethinylestradiol, 1.5-150 μg/kg for estrone, and 3-300 μg/kg for hexestrol. The detection limits and quantification limits for the estrogens in milk powders were 0.5-0.9 μg/kg and 1.5-3.0 μg/kg, respectively. The recoveries varied from 75.1 to 97.2%, with the intra-day and inter-day precisions ≤ 14.2%. Furthermore, the enrichment of the analytes and the clean-up of fat and protein interferences were achieved simultaneously with one-step g-C3N4-based MSPE. The present method was convenient, fast, and sensitive, and therefore could be successfully applied for the determination of estrogens in milk powders. Graphical abstract.
Collapse
Affiliation(s)
- Na Li
- School of Public Health, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China
| | - Tengwen Zhao
- School of Public Health, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China
| | - Li Du
- School of Public Health, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China
| | - Ziyang Zhang
- School of Public Health, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China
| | - Qixun Nian
- School of Public Health, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China
| | - Manman Wang
- School of Public Health, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China.
| |
Collapse
|
27
|
de Araujo FG, Bauerfeldt GF, Marques M, Martins EM. Development and validation of an analytical method for detection and quantification of benzophenone, bisphenol A, diethyl phthalate and 4-nonylphenol by UPLC-MS/MS in surface water. PEERJ ANALYTICAL CHEMISTRY 2020. [DOI: 10.7717/peerj-achem.7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Guandu River is the main water source for 9 million inhabitants in Rio de Janeiro city and some others included in the metropolitan region of the Rio de Janeiro State, Brazil. Here, the development of a chromatographic method and its application to assess the occurrence of 4-nonylphenol (4NP), benzophenone (BP), bisphenol A (BPA) and diethyl-phthalate (DEP), known as endocrine disruptors (EDs), is reported. Sample were prepared by solid phase extraction (SPE) with C18 cartridge and methanol as elution solvent. Validation of analytical method followed the United States Environmental Protection Agency protocol (USEPA 8000D guide) and selectivity, matrix effect, linearity, precision, accuracy, robustness, limit of detection (LOD) and limit of quantification (LOQ) were evaluated. The recovery was greater than 90%, accuracy was found between 80% and 115% and relative standard deviation (RSD) below 11.03%. LOQ ranged from 10.0 to 50.0 ng L−1, while the LOD ranged from 0.87 to 5.72 ng L−1. The coefficients of determination (R2) were greater than 0.99 for all compounds within a linear ranges of 10.0 to 500 ng L−1 for 4NP and BP and 50.0 to 500 ng L−1 for BPA and DEP. The method was therefore considered selective and robust for all micropollutants. Matrix effect was observed for BP, 4NP and DEP. The developed method was applied to analyze five samples collected monthly during 2018 at a selected sampling point of a river in Rio de Janeiro State. The maximum concentrations found for BPA, BP, DEP and 4NP were 182.04, 286.20, 2.56×103 and 13.48 ng L−1 respectively. These values are high enough to justify an investigation on the presence of these micropollutants in drinking water as well as to extend the monitoring for the search of similar pollutants and their metabolites.
Collapse
Affiliation(s)
- Frederico Goytacazes de Araujo
- Post-Graduation Program in Chemistry (PPGQ), Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
- Industrial Chemistry Department, Federal Institute of Espirito Santo (IFES), Aracruz, Espírito Santo, Brazil
| | - Glauco F. Bauerfeldt
- Chemistry Institute, Rural Federal University of Rio de Janeiro (UFRRJ), Seropédica, Rio de Janeiro, Brazil
| | - Marcia Marques
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduardo Monteiro Martins
- Post-Graduation Program in Chemistry (PPGQ), Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
28
|
Wang D, Liu Y, Xu Z, Zhao D, Liu Y, Liu Z. Multitemplate molecularly imprinted polymeric solid-phase microextraction fiber coupled with HPLC for endocrine disruptor analysis in water samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104802] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
UPLC-MS/MS Identification and Quantification of Withanolides from Six Parts of the Medicinal Plant Datura Metel L. Molecules 2020; 25:molecules25061260. [PMID: 32168752 PMCID: PMC7144020 DOI: 10.3390/molecules25061260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 12/02/2022] Open
Abstract
Withanolides from six parts (flower, leaf, stem, root, seed, and peel) of Datura metel L. (D metel L.) obtained from ten production areas in China were identified and quantified by UPLC-MS/MS. A total of 85 withanolides were characterized for the first time using the UPLC-Q-TOF-MS/MS system. Additionally, a simultaneous, rapid and accurate measurement method was developed for the determination of 22 bioactive withanolides from ten production areas with the UPLC-Q-TRAP-MS/MS system. The results show the total withanolide content is highest in the leaves (155640.0 ng/g) and lowest in the roots (14839.8 ng/g). Compared with other production areas, the total content of plants from Dujiangyan was the highest at 82013.9 ng/g (value range of ten areas: 82013.9–42278.5 ng/g). The results also show significant differences in the distribution of withanolides in the different plant parts, as well as across different production areas. This is a breakthrough report providing a simultaneous qualitative and quantitative analysis of 22 withanolides in D. metel L. It could be the basis for the more rational use of various parts of D. metel L., and the expansion of medicinal resources. This work also lays a solid foundation for research on the quality control of D. metel L.
Collapse
|
30
|
Hyphenated High Performance Liquid Chromatography–Tandem Mass Spectrometry Techniques for the Determination of Perfluorinated Alkylated Substances in Lombardia Region in Italy, Profile Levels and Assessment: One Year of Monitoring Activities During 2018. SEPARATIONS 2020. [DOI: 10.3390/separations7010017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In this research paper, we report a hyphenated technique based on ultra-high performance liquid chromatography–tandem mass spectrometry for the determination of twelve Perfluorinated Alkylated Substances in surface and groundwater samples from Lombardia Region during the monitoring activities in 2018 as new emerging and toxic pollutants. A green analytic method, developed by using an online Solid Phase Extraction coupled with UHPLC-MS/MS and previously validated, was applied for 4992 determinations conducted on 416 samples from 109 different sampling stations. Among the results, PFOS, PFOA, PFBA, PFBS, PFPeA and PFHxA were identified as the most abundant analytes detected. PFASs concentrations, in most cases, were below the limits of quantification and, in the cases where the limits of quantification have been exceeded, the values found were lower than Italy directive. PFOS is an exception and in fact this compound was detected in 76% of analyzed samples (surface and ground waters). Solid phase extraction with high performance liquid chromatography–tandem Mass Spectrometry has proved to be a very good Hyphenated techniques able to detect low concentrations of pollutants in surface and groundwater samples.
Collapse
|
31
|
Yotova G, Lazarova S, Kudłak B, Zlateva B, Mihaylova V, Wieczerzak M, Venelinov T, Tsakovski S. Assessment of the Bulgarian Wastewater Treatment Plants' Impact on the Receiving Water Bodies. Molecules 2019; 24:molecules24122274. [PMID: 31216784 PMCID: PMC6630423 DOI: 10.3390/molecules24122274] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/09/2019] [Accepted: 06/17/2019] [Indexed: 11/16/2022] Open
Abstract
Deterioration of water quality is a major problem world widely according to many international non-governmental organizations (NGO). As one of the European Union (EU) countries, Bulgaria is also obliged by EU legislation to maintain best practices in assessing surface water quality and the efficiency of wastewater treatment processes. For these reasons studies were undertaken to utilize ecotoxicological (Microtox®, Phytotoxkit FTM, Daphtoxkit FTM), instrumental (to determine pH, electrical conductivity (EC), chemical oxygen demand, total suspended solids (TSS), total nitrogen (N) and phosphorus (P), chlorides, sulphates, Cr, Co, Cu, Cd, Ba, V, Mn, Fe, Ni, Zn, Se, Pb), as well as advanced chemometric methods (partial least squares-discriminant analysis (PLS-DA)) in data evaluation to comprehensively assess wastewater treatment plants' (WWTPs) effluents and surface waters quality around 21 major Bulgarian cities. The PLS-DA classification model for the physicochemical parameters gave excellent discrimination between WWTP effluents and surface waters with 93.65% correct predictions (with significant contribution of EC, TSS, P, N, Cl, Fe, Zn, and Se). The classification model based on ecotoxicological data identifies the plant test endpoints as having a greater impact on the classification model efficiency than bacterial, or crustaceans' endpoints studied.
Collapse
Affiliation(s)
- Galina Yotova
- Sofia University "St. Kliment Ohridski", Faculty of Chemistry and Pharmacy, Chair of Analytical Chemistry, 1164 Sofia, Bulgaria.
| | - Svetlana Lazarova
- University of Architecture, Civil Engineering and Geodesy, Faculty of Hydraulic Engineering, Chair of Water Supply, Water and Wastewater Treatment, 1046 Sofia, Bulgaria.
| | - Błażej Kudłak
- Gdańsk University of Technology, Faculty of Chemistry, Department of Analytical Chemistry, 11/12 Naturowicza, 80-952 Gdańsk, Poland.
| | - Boika Zlateva
- Sofia University "St. Kliment Ohridski", Faculty of Chemistry and Pharmacy, Chair of Analytical Chemistry, 1164 Sofia, Bulgaria.
| | - Veronika Mihaylova
- Sofia University "St. Kliment Ohridski", Faculty of Chemistry and Pharmacy, Chair of Analytical Chemistry, 1164 Sofia, Bulgaria.
| | - Monika Wieczerzak
- Gdańsk University of Technology, Faculty of Chemistry, Department of Analytical Chemistry, 11/12 Naturowicza, 80-952 Gdańsk, Poland.
| | - Tony Venelinov
- University of Architecture, Civil Engineering and Geodesy, Faculty of Hydraulic Engineering, Chair of Water Supply, Water and Wastewater Treatment, 1046 Sofia, Bulgaria.
| | - Stefan Tsakovski
- Sofia University "St. Kliment Ohridski", Faculty of Chemistry and Pharmacy, Chair of Analytical Chemistry, 1164 Sofia, Bulgaria.
| |
Collapse
|