1
|
Czipa N, Kovács B, Alexa L, Gebreyesus M. Determination of Trace, Micro and Macro Elemental Concentration of Eritrean Honeys. Biol Trace Elem Res 2024; 202:2367-2375. [PMID: 37642810 PMCID: PMC10954917 DOI: 10.1007/s12011-023-03821-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
In this study macro, micro and trace elemental concentrations were measured in Eritrean acacia honey samples by Inductively Coupled Plasma Optical Emission Spectrometry (Al, B, C, K, Mg, Na, P and S) and Inductively Coupled Plasma Mass Spectrometry (As, Ba, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sr and Zn). The concentration of essential elements in the examined Eritrean acacia honeys decreased in the following order: K > P > Ca > Mg > Fe > Zn > Mn > Cu > Sr > Mo. Independent samples T test was used to determine the statistically verified differences between the two regions, but there was none; however there were remarkable differences among the measured element contents of specific honey samples. Elemental concentrations of Eritrean honeys are influenced by the characteristics of the collecting area (e.g. elevation, agricultural activities, water resources).Our samples showed low essential elemental concentration; therefore the consumption of these honeys does not contribute significantly to the nutrition reference value (NRV) (around 1% of NRV). Toxic elemental concentrations were also low; thus the calculated estimated daily intakes were much lower than the tolerable daily intakes. Consumption of these honeys presents no risk for the human body.
Collapse
Affiliation(s)
- Nikolett Czipa
- Insitute of Food Science, University of Debrecen, Debrecen, Hungary.
| | - Béla Kovács
- Insitute of Food Science, University of Debrecen, Debrecen, Hungary
| | - Loránd Alexa
- Insitute of Food Science, University of Debrecen, Debrecen, Hungary
| | - Mehari Gebreyesus
- Department of Agricultural Engineering, Mainefhi, College of Engineering and Technology, May-Nefhi, Eritrea
| |
Collapse
|
2
|
Mara A, Migliorini M, Ciulu M, Chignola R, Egido C, Núñez O, Sentellas S, Saurina J, Caredda M, Deroma MA, Deidda S, Langasco I, Pilo MI, Spano N, Sanna G. Elemental Fingerprinting Combined with Machine Learning Techniques as a Powerful Tool for Geographical Discrimination of Honeys from Nearby Regions. Foods 2024; 13:243. [PMID: 38254544 PMCID: PMC10814624 DOI: 10.3390/foods13020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Discrimination of honey based on geographical origin is a common fraudulent practice and is one of the most investigated topics in honey authentication. This research aims to discriminate honeys according to their geographical origin by combining elemental fingerprinting with machine-learning techniques. In particular, the main objective of this study is to distinguish the origin of unifloral and multifloral honeys produced in neighboring regions, such as Sardinia (Italy) and Spain. The elemental compositions of 247 honeys were determined using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The origins of honey were differentiated using Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Random Forest (RF). Compared to LDA, RF demonstrated greater stability and better classification performance. The best classification was based on geographical origin, achieving 90% accuracy using Na, Mg, Mn, Sr, Zn, Ce, Nd, Eu, and Tb as predictors.
Collapse
Affiliation(s)
- Andrea Mara
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (A.M.); (S.D.); (I.L.); (M.I.P.); (N.S.)
| | - Matteo Migliorini
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (M.M.); (M.C.); (R.C.)
| | - Marco Ciulu
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (M.M.); (M.C.); (R.C.)
| | - Roberto Chignola
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (M.M.); (M.C.); (R.C.)
| | - Carla Egido
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain; (C.E.); (O.N.); (S.S.); (J.S.)
| | - Oscar Núñez
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain; (C.E.); (O.N.); (S.S.); (J.S.)
- Research Institute in Food Nutrition and Food Safety, University of Barcelona, Recinte Torribera, Av. Prat de la Riba 171, Edifici de Recerca (Gaudí), Santa Coloma de Gramenet, 08921 Barcelona, Spain
- Serra Húnter Fellow, Departament de Recerca i Universitats, Generalitat de Catalunya, Via Laietana 2, 08003 Barcelona, Spain
| | - Sònia Sentellas
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain; (C.E.); (O.N.); (S.S.); (J.S.)
- Research Institute in Food Nutrition and Food Safety, University of Barcelona, Recinte Torribera, Av. Prat de la Riba 171, Edifici de Recerca (Gaudí), Santa Coloma de Gramenet, 08921 Barcelona, Spain
- Serra Húnter Fellow, Departament de Recerca i Universitats, Generalitat de Catalunya, Via Laietana 2, 08003 Barcelona, Spain
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain; (C.E.); (O.N.); (S.S.); (J.S.)
- Research Institute in Food Nutrition and Food Safety, University of Barcelona, Recinte Torribera, Av. Prat de la Riba 171, Edifici de Recerca (Gaudí), Santa Coloma de Gramenet, 08921 Barcelona, Spain
| | - Marco Caredda
- Department of Animal Science, AGRIS Sardegna, Loc. Bonassai, 07100 Sassari, Italy;
| | - Mario A. Deroma
- Department of Agriculture, University of Sassari, Viale Italia, 39A, 07100 Sassari, Italy;
| | - Sara Deidda
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (A.M.); (S.D.); (I.L.); (M.I.P.); (N.S.)
| | - Ilaria Langasco
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (A.M.); (S.D.); (I.L.); (M.I.P.); (N.S.)
| | - Maria I. Pilo
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (A.M.); (S.D.); (I.L.); (M.I.P.); (N.S.)
| | - Nadia Spano
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (A.M.); (S.D.); (I.L.); (M.I.P.); (N.S.)
| | - Gavino Sanna
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (A.M.); (S.D.); (I.L.); (M.I.P.); (N.S.)
| |
Collapse
|
3
|
Labsvards KD, Rudovica V, Borisova A, Kokina K, Bertins M, Naumenko J, Viksna A. Multi-Element Profile Characterization of Monofloral and Polyfloral Honey from Latvia. Foods 2023; 12:4091. [PMID: 38002149 PMCID: PMC10670016 DOI: 10.3390/foods12224091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Honey is of scientific interest mainly due to its health-promoting and antibacterial properties, which are also associated with its floral origins. However, the methods for confirming honey floral origins are quite limited and require improvements. One method suggested in the search for a multi-method approach to evaluating the floral origins of Latvian honey is inductively coupled plasma mass spectrometry (ICP-MS). This study investigated the multi-element profile of 83 honey samples of well-specified floral origins. The main findings included using Ba, Ca, Cs, Fe, and Rb as indicator elements for heather honey. The chemometric evaluation supported the use of ICP-MS for distinguishing heather honey from other types of honey. The Latvian polyfloral honey multi-element profile was defined and compared to honey samples with other geographical origins. Additionally, the multi-element profiles of buckwheat, clover, and polyfloral honey proteins were investigated to clarify whether the majority of elements were bound with proteins or not. Preliminary results indicated that Ca, K, Mg, Mn, Na, and Sr were mainly found in non-protein-bound forms, while the majority of Al, Cu, Ni, and Zn were in the form of large chemical structures (>10 kDa).
Collapse
Affiliation(s)
- Kriss Davids Labsvards
- Department of Chemistry, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia; (V.R.); (M.B.); (J.N.); (A.V.)
- Institute of Food Safety, Animal Health and Environment “BIOR”, Lejupes Street 3, LV-1076 Riga, Latvia; (A.B.); (K.K.)
| | - Vita Rudovica
- Department of Chemistry, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia; (V.R.); (M.B.); (J.N.); (A.V.)
| | - Anastasija Borisova
- Institute of Food Safety, Animal Health and Environment “BIOR”, Lejupes Street 3, LV-1076 Riga, Latvia; (A.B.); (K.K.)
| | - Kristina Kokina
- Institute of Food Safety, Animal Health and Environment “BIOR”, Lejupes Street 3, LV-1076 Riga, Latvia; (A.B.); (K.K.)
| | - Maris Bertins
- Department of Chemistry, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia; (V.R.); (M.B.); (J.N.); (A.V.)
| | - Jevgenija Naumenko
- Department of Chemistry, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia; (V.R.); (M.B.); (J.N.); (A.V.)
| | - Arturs Viksna
- Department of Chemistry, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia; (V.R.); (M.B.); (J.N.); (A.V.)
| |
Collapse
|
4
|
Mititelu M, Udeanu DI, Docea AO, Tsatsakis A, Calina D, Arsene AL, Nedelescu M, Neacsu SM, Bruno Ștefan Velescu, Ghica M. New method for risk assessment in environmental health: The paradigm of heavy metals in honey. ENVIRONMENTAL RESEARCH 2023; 236:115194. [PMID: 36587723 DOI: 10.1016/j.envres.2022.115194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
The release of heavy metals into the natural environment creates problems due to their persistence. They can accumulate in the food chain presenting a dangerous sign for ecosystems and human health. The metals in honey could be of agrochemical or industrial origin. Regular consumption of honey and bee products contaminated with various pollutants in high concentrations can cause serious health problems due accumulation of toxic substances in the body. In the current study, we aimed to determine the concentrations of chromium, cadmium, zinc, copper, lead and nickel in four types of honey (linden, acacia, rapeseed and polyfloral honey) and soil collected from three regions with different degrees of pollution. For the risk characterization, we used a new methodology that calculated the corrected estimated daily intake and the source hazard quotient for each metal and the adversity-specific hazard index. There was a strong influence of the degree of environmental pollution on the level of contaminants in the honey samples. In the case of a single chemical assessment, an HQ above 10 was obtained for Cd in linden, rapeseed and polyfloral honey from area 1 and an HQ above 1 was obtained for Cd in the other honey samples from the 3 areas, for Cu in all honey samples from all the 3 areas, for Pb in linden, rapeseed and polyfloral honey from area 1 and for Cr in linden honey for area 2. HIA calculated as a sum of all HQS of heavy metals in food reveals an increase and moderate risk for nephrotoxicity, bone demineralisation, cardiotoxicity, developmental toxicity, small decrease in body weight or body weight gain after consumption of honey impurified with heavy metals. A strict monitorization of heavy metals in honey samples from farmers should be done in order to protect the consumers.
Collapse
Affiliation(s)
- Magdalena Mititelu
- Department of Clinical Laboratory and Food Hygiene Department, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.
| | - Denisa Ioana Udeanu
- Department of Clinical Laboratory and Food Hygiene Department, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.
| | - Anca Oana Docea
- Department of Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania.
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003, Heraklion, Greece.
| | - Daniela Calina
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania.
| | - Andreea Letitia Arsene
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania.
| | - Mirela Nedelescu
- Department of Hygiene and Environmental Health, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 020956, Bucharest, Romania; Department of Food Hygiene and Nutrition, National Institute of Public Health, National Centre for Envi-ronmental Hazards Monitoring, 1-3 Dr. Leonte Street, 020956, Bucharest, Romania.
| | | | - Bruno Ștefan Velescu
- Department of Pharmacology, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Bu-charest, Romania.
| | - Manuela Ghica
- Department of Mathematics and Biostatistics, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.
| |
Collapse
|
5
|
Zhang XH, Qing XD, Zheng JJ, Yu Y, Huang J, Kang C, Liu Z. Aqueous two-phase systems coupled with chemometrics-enhanced HPLC-DAD for simultaneous extraction and determination of flavonoids in honey. Food Chem X 2023; 19:100766. [PMID: 37780266 PMCID: PMC10534099 DOI: 10.1016/j.fochx.2023.100766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 10/03/2023] Open
Abstract
In this study, an accurate, rapid, green, and environment friendly method for the extraction and quantitative analysis of flavonoids in honey was established by using the aqueous two-phase extraction combined with the chemometrics-assisted HPLC-DAD. The first purpose of this study was to extract seven flavonoids in five different types of honey using alcohol/salt aqueous two-phase system (ATPS). The system with 2.82 mL sodium citrate (30%), 1.58 mL water, and 3.10 mL isopropanol, showed the highest flavonoids extraction yields in the top phase (87.66-101.50%). Additionally, the three-way array of honey samples based on HPLC-DAD was decomposed mathematically by the alternating trilinear decomposition (ATLD) algorithm to obtain reasonable chromatograms, spectra, and concentration profiles for each analyte. Compared with the traditional solid-phase extraction method, the ATPS-ATLD-based method showed satisfactory spiked recoveries, lower limit of detection, and higher sensitivity, further verifying its accuracy and stability.
Collapse
Affiliation(s)
- Xiao-Hua Zhang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang, China
| | - Xiang-Dong Qing
- Hunan Provincial Key Laboratory of Dark Tea and Jin-hua, College of Materials and Chemical Engineering, Hunan City University, Yiyang, China
| | - Jing-Jing Zheng
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang, China
| | - Yan Yu
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang, China
| | - Jiaojiao Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Chao Kang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, China
| | - Zhi Liu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, China
| |
Collapse
|
6
|
Živkov Baloš M, Popov N, Jakšić S, Mihaljev Ž, Pelić M, Ratajac R, Ljubojević Pelić D. Sunflower Honey-Evaluation of Quality and Stability during Storage. Foods 2023; 12:2585. [PMID: 37444323 DOI: 10.3390/foods12132585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Honey's unique qualities should last for several years when properly stored. Therefore, it is up to manufacturers to choose the right shelf life for their product while also considering the product's nature. Physicochemical parameters (water content, electrical conductivity, free acidity, pH, ash, water-insoluble matter, hydroxymethylfurfural (HMF), sugar content and composition, and diastase activity) were analyzed in 24 samples of sunflower honey collected from several localities in Vojvodina, Serbia. Crystallization indices were also calculated. Furthermore, the impact of eighteen months of room temperature storage (22 ± 2 °C) in a dark place on selected physicochemical parameters (water, HMF, diastase activity, pH value, and free acidity) was investigated. The results of the initial test indicated that the tested samples of sunflower honey from Vojvodina is of good quality because the parameters under examination revealed results that were within the legal bounds of both national and European legislations. Eighteen months of storage at room temperature reduced diastase activity by 2 times, increased HMF content by about 17 times, and decreased the pH value of honey from a mean value of 3.66 to 3.56. The water content was relatively stable at 17.01% before storage and 16.29% after storage. The storage of sunflower honey did not have an impact on the free acidity.
Collapse
Affiliation(s)
| | - Nenad Popov
- Scientific Veterinary Institute "Novi Sad", 21000 Novi Sad, Serbia
| | - Sandra Jakšić
- Scientific Veterinary Institute "Novi Sad", 21000 Novi Sad, Serbia
| | - Željko Mihaljev
- Scientific Veterinary Institute "Novi Sad", 21000 Novi Sad, Serbia
| | - Miloš Pelić
- Scientific Veterinary Institute "Novi Sad", 21000 Novi Sad, Serbia
| | - Radomir Ratajac
- Scientific Veterinary Institute "Novi Sad", 21000 Novi Sad, Serbia
| | | |
Collapse
|
7
|
Synergic Effect of Honey with Other Natural Agents in Developing Efficient Wound Dressings. Antioxidants (Basel) 2022; 12:antiox12010034. [PMID: 36670896 PMCID: PMC9854511 DOI: 10.3390/antiox12010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Honey has been used for therapeutic and nutritional purposes since ancient times. It was considered one of the essential medical assets in wound healing. According to research, honeybees have significant antibacterial, antioxidant, anti-inflammatory, antitumor, and wound-healing properties. Lately, scientific researchers have focused on apitherapy, using bee products to protect and strengthen the immune system. Since honey is the most important natural product rich in minerals, proteins, and vitamins, it has been intensively used in such therapies. Honey has gained significant consideration because of the beneficial role of its antioxidant compounds, such as enzymes, proteins, amino and organic acids, polyphenols, and carotenoids, but mainly due to flavonoids and phenolic acids. It has been proven that phenolic compounds are responsible for honey's biological activity and that its physicochemical properties, antioxidants, and antimicrobial potential are significant for human health. The review also presents some mechanisms of action and the medical applications of honey, such as wound healing dressings, skin grafts, honey-based nanofibers, and cochlear implants, as the most promising wound healing tools. This extensive review has been written to highlight honey's applications in medicine; its composition with the most important bioactive compounds also illustrates its synergistic effect with other natural products having remarkable therapeutic properties in wound healing.
Collapse
|
8
|
Yayinie M, Atlabachew M. Multi-element Analysis of Honey from Amhara Region-Ethiopia for Quality, Bioindicator of Environmental Pollution, and Geographical Origin Discrimination. Biol Trace Elem Res 2022; 200:5283-5297. [PMID: 34997922 DOI: 10.1007/s12011-021-03088-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/26/2021] [Indexed: 12/07/2022]
Abstract
Honey is a widely utilized sweetener containing mainly sugars with many other minor ingredients such as metallic elements. The analysis aimed to develop a chemometric model for tracing the geographical origin, evaluating nutritional quality, assessing pollution effect, and searching for marker metals for the region's honey. Forty-seven honey samples were collected directly from the apiarists at seven administrative zones. The contents of 14 metals were analyzed using inductively coupled plasma optical emission spectrometry after standard sample digestion. The findings showed us the major elements ranged from 24.8 to 1996 mg/kg of the honey sample with K > Ca > Na > Mg. The minimum and maximum values for the trace metals were 2.35 mg/kg and 163 mg/kg, respectively, in the order of Fe > Cr > Zn > Ni > Mn > Cu > Co. From this data, the region's honey has its own contribution as a source of major and trace elements. Furthermore, mean values for the toxic heavy metals were 0.57 to 1.85 for Pb, 1.03 to 1.21 for Cd, and 2.85 to 6.21 for As in mg/kg. Thus, the pollution level in the environment seems to be at an alarming rate. Using principal components analysis (PCA), the first four principal components explained 80.16% of the total variation. The region's honey was best classified into five major clusters using linear discriminant analysis (LDA) with an average discrimination power of 89.91%. The LDA sorting model was verified by the cross-validation method. The verification revealed that the model has 92.11% recognition power and 93.33% prediction ability.
Collapse
Affiliation(s)
- Marie Yayinie
- Department of Chemistry, College of Science, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia.
- Department of Chemistry, College of Natural Science, Debre Tabor University, P.O. Box 272, Debre Tabor, Ethiopia.
| | - Minaleshewa Atlabachew
- Department of Chemistry, College of Science, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia
| |
Collapse
|
9
|
Physicochemical Profile, Antioxidant and Antimicrobial Activities of Honeys Produced in Minas Gerais (Brazil). Antibiotics (Basel) 2022; 11:antibiotics11101429. [PMID: 36290087 PMCID: PMC9598309 DOI: 10.3390/antibiotics11101429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/29/2022] Open
Abstract
Honeys can be classified as polyfloral or monofloral and have been extensively studied due to an increased interest in their consumption. There is concern with the correct identification of their flowering, the use of analyses that guarantee their physicochemical quality and the quantification of some compounds such as phenolics, to determine their antioxidant and antimicrobial action. This study aims at botanical identification, physicochemical analyses, and the determination of total polyphenols, chromatographic profile and antiradical and antimicrobial activity of honey from different regions of Minas Gerais. Seven different samples were analyzed for the presence of pollen, and color determination. The physicochemical analyses performed were total acidity, moisture, HMF, reducing sugar, and apparent sucrose. The compound profile was determined by UHPLC/MS, the determination of total phenolics and antiradical activity (DPPH method) were performed by spectrophotometry, and minimum inhibitory and bacterial concentrations were determined for cariogenic bacteria. All honey samples met the quality standards required by international legislation, twenty compounds were detected as the main ones, the polyfloral honey was the only honey that inhibited all of the bacteria tested. Sample M6 (Coffee) was the one with the highest amount of total polyphenols, while the lowest was M4 (Cipó-uva). Regarding the antioxidant activity, M5 (Velame) had the best result and M4 (Cipó-uva) was the one that least inhibited oxidation. Of the polyfloral honeys, there was not as high a concentration of phenolic compounds as in the others. Coffee, Aroeira, Velame and Polyfloral have the best anti-radical actions. Betônica, Aroeira, Cipó-uva and Pequi inhibited only some bacteria. The best bacterial inhibition results are from Polyfloral.
Collapse
|
10
|
Gaine T, Tudu P, Ghosh S, Mahanty S, Bakshi M, Naskar N, Chakrabarty S, Bhattacharya S, Bhattacharya SG, Bhattacharya K, Chaudhuri P. Differentiating Wild and Apiary Honey by Elemental Profiling: a Case Study from Mangroves of Indian Sundarban. Biol Trace Elem Res 2022; 200:4550-4569. [PMID: 34860329 DOI: 10.1007/s12011-021-03043-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 11/22/2021] [Indexed: 12/07/2022]
Abstract
Honey is a natural substance produced by honeybees from the nectar or secretion of flowering plants. Along with the botanical and geographical origin, several environmental factors also play a major role in determining the characteristics of honey. The aim of this study is to determine and compare the elemental concentration of various macro and trace elements in apiary and wild honeys collected from different parts of Indian Sundarbans. The elemental analysis was performed in inductively coupled plasma optical emission spectroscopy preceded by microwave digestion method. The concentrations of 19 elements (Ag, Al, As, B, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, Se and Zn) were investigated from thirteen locations of Indian Sundarbans. This comparative study shows in wild honey samples, the concentration of K was highest followed by Ca, Mg and Na and Zn was lowest among all. In contrast, in apiary honey samples, Ca had maximum concentration followed by K, Mg and Na and Ag had minimum among all. The elemental concentration in honey from apiary was either equal or higher than their wild counterpart. The results of the factor analysis of PCA algorithm for wild and apiary honey samples were highly variable which implies that the elements are not coming from the same origin. The concentration of element was found to be highly variable across sites and across sources of honey samples.
Collapse
Affiliation(s)
- Tanushree Gaine
- Department of Environmental Science, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
- Department of Environmental Studies, New Alipore College, Kolkata, West Bengal, 700053, India.
| | - Praveen Tudu
- Department of Environmental Science, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Somdeep Ghosh
- Department of Environmental Science, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Shouvik Mahanty
- Department of Environmental Science, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Madhurima Bakshi
- Department of Environmental Science, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
- School of Environmental Studies, Seth Soorajmull Jalan Girls' College, Kolkata, West Bengal, 700073, India
| | - Nabanita Naskar
- Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata, West Bengal, 700064, India
| | - Souparna Chakrabarty
- Department of Biological Sciences, Indian Institute of Science Education and Research, Pune, Maharashtra, 411008, India
| | - Subarna Bhattacharya
- School of Environmental Studies, Jadavpur University, 188, Raja S.C. Mullick Road, Kolkata, West Bengal, 700032, India
| | - Swati Gupta Bhattacharya
- Division of Plant Biology, Bose Institute, 93/1 Acharya P. C. Road, Kolkata, West Bengal, 700009, India
| | | | - Punarbasu Chaudhuri
- Department of Environmental Science, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| |
Collapse
|
11
|
Chemical Composition and the Anticancer, Antimicrobial, and Antioxidant Properties of Acacia Honey from the Hail Region: The in vitro and in silico Investigation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1518511. [PMID: 35966725 PMCID: PMC9371847 DOI: 10.1155/2022/1518511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/27/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022]
Abstract
In consideration of the emergence of novel drug-resistant microbial strains and the increase in the incidences of various cancers throughout the world, honey could be utilized as a great alternative source of potent bioactive compounds. In this context, this study pioneers in reporting the phytochemical profiling and the antimicrobial, antioxidant, and anticancer properties of Acacia honey (AH) from the Hail region of Saudi Arabia, assessed using in vitro and molecular docking approaches. The phytochemical profiling based on high-resolution liquid chromatography-mass spectrometry (HR-LCMS) revealed eight compounds and three small peptide-like proteins as the constituents. The honey samples exhibited promising antioxidant activities (DPPH-IC50 = 0.670 mg/mL; ABTS-IC50 = 1.056 mg/mL; β-carotene-IC50 > 5 mg/mL). In the well-diffusion assay, a high mean growth inhibition zone (mGIZ) was observed against Staphylococcus aureus (48.33 ± 1.53 mm), Escherichia coli ATCC 10536 (38.33 ± 1.53 mm), and Staphylococcus epidermidis ATCC 12228 (39.33 ± 1.15 mm). The microdilution assay revealed that low concentrations of AH could inhibit the growth of almost all the evaluated bacterial and fungal strains, with the minimal bactericidal concentration values (MBCs) ranging from 75 mg/mL to 300 mg/mL. On the contrary, high AH concentrations were required to kill the tested microorganisms, with the minimal bactericidal concentration values (MBCs) ranging from approximately 300 mg/mL to over 600 mg/mL and the minimal fungicidal concentration values (MFCs) of approximately 600 mg/mL. The AH exhibited effective anticancer activity in a dose-dependent manner against breast (MCF-7), colon (HCT-116), and lung (A549) cancer cell lines, with the corresponding IC50 values of 5.053 μg/mL, 5.382 μg/mL, and 6.728 μg/mL, respectively. The in silico investigation revealed that the observed antimicrobial, antioxidant, and anticancer activities of the constituent compounds of AH are thermodynamically feasible, particularly those of the tripeptides (Asp-Trp-His and Trp-Arg-Ala) and aminocyclitol glycoside. The overall results highlighted the potential of AH as a source of bioactive compounds with significant antimicrobial, antioxidant, and anticancer activities, which could imply further pharmacological applications of AH.
Collapse
|
12
|
Dranca F, Ropciuc S, Pauliuc D, Oroian M. Honey adulteration detection based on composition and differential scanning calorimetry (DSC) parameters. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
13
|
Calluna vulgaris as a Valuable Source of Bioactive Compounds: Exploring Its Phytochemical Profile, Biological Activities and Apitherapeutic Potential. PLANTS 2022; 11:plants11151993. [PMID: 35956470 PMCID: PMC9370339 DOI: 10.3390/plants11151993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 01/23/2023]
Abstract
Calluna vulgaris, belonging to the Ericaceae family, is an invasive plant that has widely spread from Europe all across Asia, North America, Australia and New Zealand. Being able to survive in rigid soil and environmental conditions, it is nowadays considered to be of high nature-conservation value. Known for its nutritional and medicinal properties, C. vulgaris stands out for its varied physiochemical composition, spotlighting a wide range of biological activity. Among the most important bioactive compounds identified in C. vulgaris, the phenolic components found in different parts of this herbaceous plant are the main source of its diverse pro-health properties (antioxidant, anti-inflammatory, antimicrobial, chemoprotective, etc.). Nonetheless, this plant exhibits an excellent nectariferous potential for social insects such as honeybees; therefore, comparing the bioactive compounds observed in the plant and in the final product of the beehive, namely honey, will help us understand and find new insights into the health benefits provided by the consumption of C. vulgaris-related products. Thus, the main interest of this work is to review the nutritional profile, chemical composition and biological activities of the C. vulgaris plant and its related honey in order to encourage the future exploration and use of this health-promoting plant in novel foods, pharmacological products and apitherapy.
Collapse
|
14
|
Chemical Composition, Antioxidant and Antimicrobial Activity of Some Types of Honey from Banat Region, Romania. Molecules 2022; 27:molecules27134179. [PMID: 35807424 PMCID: PMC9268046 DOI: 10.3390/molecules27134179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 01/27/2023] Open
Abstract
Honey is a natural product with multiple health benefits. The paper presents the chemical characterization and the antioxidant and antimicrobial potential of ten types of honey (knotweed, linden, wild cherry, acacia, honeydew, oilseed rape, sunflower, phacelia, plain polyflora and hill polyflora) from the Banat region, Romania. We studied the water content, dry matter, impurities, acidity and pH of honey. We also determined the content of reducing sugar, minerals and flavonoids and the total phenolic content. All honey samples analysed showed good nutritional characteristics according to the standard codex for honey. From the analysis of the mineral content of the honey samples, we observed a variability in the macro and microminerals, influenced by the botanical origin, ranging between 0.25% (wild cherry honey) and 0.54% (honeydew). The toxic metals’ (Cd and Pb) levels met the standard for almost all samples analysed except for knotweed. The flavonoid content of the samples ranged from 9.29 mg QE/100 g for wild cherry honey to 263.86 mg QE/100 g for linden honey, and for polyphenols between 177.6 mgGAE/100 g for acacia honey and 1159.3 mgGAE/100 g for honeydew. The best antioxidant capacity was registered in the case of linden honey (79.89%) and honeydew (79.20%) and the weakest in acacia (41.88%) and wild cherries (50.4%). All studied honey samples showed antimicrobial activity, depending on the type of honey, concentration and strain analysed. The novelty of this study is given by the complex approach of the study of honey quality, both from the perspective of chemical attributes and the evaluation of the antimicrobial potential on specific strains in correlation with the botanical and geographical origin of the analyzed area.
Collapse
|
15
|
Sakač M, Jovanov P, Marić A, Četojević-Simin D, Novaković A, Plavšić D, Škrobot D, Kovač R. Antioxidative, Antibacterial and Antiproliferative Properties of Honey Types from the Western Balkans. Antioxidants (Basel) 2022; 11:antiox11061120. [PMID: 35740017 PMCID: PMC9219755 DOI: 10.3390/antiox11061120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
This paper presents the physicochemical characteristics and antioxidative, antibacterial and antiproliferative effects of nineteen samples of different honey types (acacia, linden, heather, sunflower, phacelia, basil, anise, sage, chestnut, hawthorn, lavender and meadow) collected from different locations in the Western Balkans (Republic of Serbia, Kosovo, Bosnia and Herzegovina, and Northern Macedonia). Physicochemical parameters (moisture, pH, electrical conductivity, free acidity, and hydroxymethylfurfural [HMF]) were analysed. Based on the obtained results, all tested honey samples were in agreement with EU regulation. The antioxidant potential of honey samples was assessed by determination of total phenolic content (TPC) and evaluation of scavenging activity towards diphenilpicrylhydrazyl radicals (DPPH·). The highest phenolic content was found in basil honey (101 ± 2.72 mg GAE/100 g), while the lowest was registered in rapeseed honey (11.5 ± 0.70 mg GAE/100 g). Heather, anise, phacelia, sage, chestnut and lavender honey samples were also rich in TP, containing 80−100 mg GAE/100 g. DPPH scavenging activity varied among the samples being the highest for lavender honey (IC50 = 88.2 ± 2.11 mg/mL) and the lowest for rapeseed honey (IC50 = 646 ± 8.72 mg/mL). Antibacterial activity was estimated in vitro using agar diffusion tests and measuring minimal inhibitory concentration (MIC). Among investigated bacterial strains following resistant potencies were determined: Escherichia coli > Escherichia coli ATCC 8739 > Enterococcus faecalis > Proteus mirabilis > Staphylococcus aureus > Staphylococcus epidermidis. The linden honey from Fruška Gora (MIC values of 3.12% and 6.25% against Staphylococcus aureus and Staphylococcus epidermidis, respectively) and phacelia honey (MIC values of 6.25% and 3.12% against S.Staphylococcus aureus and Staphylococcus epidermidis, respectively) showed the strongest antibacterial activity. Antiproliferative activity was evaluated using the colorimetric sulforhodamine B (SRB) assay. The highest antiproliferative activity was obtained from linden honey sample 1 (IC50MCF7 = 7.46 ± 1.18 mg/mL and IC50HeLa =12.4 ± 2.00 mg/mL) and meadow sample 2 (IC50MCF7 = 12.0 ± 0.57 mg/mL, IC50HeLa = 16.9 ± 1.54 mg/mL and IC50HT−29 = 23.7 ± 1.33 mg/mL) towards breast (MCF7), cervix (HeLa) and colon (HT-29) cancer cells. Active components other than sugars contributed to cell growth activity.
Collapse
Affiliation(s)
- Marijana Sakač
- Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (M.S.); (P.J.); (A.N.); (D.P.); (D.Š.); (R.K.)
| | - Pavle Jovanov
- Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (M.S.); (P.J.); (A.N.); (D.P.); (D.Š.); (R.K.)
| | - Aleksandar Marić
- Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (M.S.); (P.J.); (A.N.); (D.P.); (D.Š.); (R.K.)
- Correspondence: ; Tel.: +381-21-485-3754
| | - Dragana Četojević-Simin
- Oncology Institute of Vojvodina, Put doktora Goldmana 4, 21204 Sremska Kamenica, Serbia;
- Department of Pharmacy, Singidunum University, Danijelova 32, 11000 Belgrade, Serbia
| | - Aleksandra Novaković
- Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (M.S.); (P.J.); (A.N.); (D.P.); (D.Š.); (R.K.)
| | - Dragana Plavšić
- Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (M.S.); (P.J.); (A.N.); (D.P.); (D.Š.); (R.K.)
| | - Dubravka Škrobot
- Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (M.S.); (P.J.); (A.N.); (D.P.); (D.Š.); (R.K.)
| | - Renata Kovač
- Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (M.S.); (P.J.); (A.N.); (D.P.); (D.Š.); (R.K.)
| |
Collapse
|
16
|
Hulea A, Obiștioiu D, Cocan I, Alexa E, Negrea M, Neacșu AG, Hulea C, Pascu C, Costinar L, Iancu I, Tîrziu E, Herman V. Diversity of Monofloral Honey Based on the Antimicrobial and Antioxidant Potential. Antibiotics (Basel) 2022; 11:antibiotics11050595. [PMID: 35625239 PMCID: PMC9137981 DOI: 10.3390/antibiotics11050595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023] Open
Abstract
This study aimed to investigate the antioxidant profile and the antimicrobial activity of four different types of monofloral honey (manuka (MH), brassica rapeseed (BH), acacia (AH), and linden honey (LH)) against some bacterial/fungal ATCC strains and some multidrug-resistant strains isolated from chronic otitis in dogs. For the characterisation of the antioxidant profile of each honey, we extracted the honey samples by hydroalcoholic extraction and analysed them in terms of total polyphenols (TPC), total flavonoids (TFC), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) using the spectrophotometric method. The antimicrobial activity was determined using the microdilution method at concentrations of 10%, 15%, and 20%, with the results expressed in OD (optical density) calculated as BIR% (bacterial inhibition rate)/MIR% (mycelial inhibition rate). The antioxidant characterisation of the analysed honey samples showed the highest antioxidant activity and concentrations of TPC and TFC in MH, followed by LH. MH was proven to be the most effective on most clinical isolates concerning the antimicrobial activity in comparison with BH, AH, and LH. Except for B. cepacia and P. vulgaris, all the clinical isolates were sensitive to the antibacterial activity of honey. Regarding the ATCC strains, MH 10% was the most effective in inhibiting all the strains tested except for P. aeruginosa. In conclusion, the efficacy classification in our study was MH > BH > AH > LH.
Collapse
Affiliation(s)
- Anca Hulea
- Faculty of Veterinary Medicine, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (A.H.); (C.H.); (C.P.); (L.C.); (I.I.); (E.T.); (V.H.)
| | - Diana Obiștioiu
- Faculty of Veterinary Medicine, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (A.H.); (C.H.); (C.P.); (L.C.); (I.I.); (E.T.); (V.H.)
- Correspondence: (D.O.); (I.C.)
| | - Ileana Cocan
- Faculty of Food Engineering, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (E.A.); (M.N.)
- Correspondence: (D.O.); (I.C.)
| | - Ersilia Alexa
- Faculty of Food Engineering, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (E.A.); (M.N.)
| | - Monica Negrea
- Faculty of Food Engineering, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (E.A.); (M.N.)
| | - Alina-Georgeta Neacșu
- Faculty of Agriculture, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300641 Timisoara, Romania;
| | - Călin Hulea
- Faculty of Veterinary Medicine, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (A.H.); (C.H.); (C.P.); (L.C.); (I.I.); (E.T.); (V.H.)
| | - Corina Pascu
- Faculty of Veterinary Medicine, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (A.H.); (C.H.); (C.P.); (L.C.); (I.I.); (E.T.); (V.H.)
| | - Luminita Costinar
- Faculty of Veterinary Medicine, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (A.H.); (C.H.); (C.P.); (L.C.); (I.I.); (E.T.); (V.H.)
| | - Ionica Iancu
- Faculty of Veterinary Medicine, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (A.H.); (C.H.); (C.P.); (L.C.); (I.I.); (E.T.); (V.H.)
| | - Emil Tîrziu
- Faculty of Veterinary Medicine, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (A.H.); (C.H.); (C.P.); (L.C.); (I.I.); (E.T.); (V.H.)
| | - Viorel Herman
- Faculty of Veterinary Medicine, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (A.H.); (C.H.); (C.P.); (L.C.); (I.I.); (E.T.); (V.H.)
| |
Collapse
|
17
|
Zaldarriaga Heredia J, Wagner M, Jofré FC, Savio M, Azcarate SM, Camiña JM. An overview on multi-elemental profile integrated with chemometrics for food quality assessment: toward new challenges. Crit Rev Food Sci Nutr 2022; 63:8173-8193. [PMID: 35319312 DOI: 10.1080/10408398.2022.2055527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Food products, especially those with high value-added, are commonly subjected to strict quality controls, which are of paramount importance, especially for attesting to some peculiar features related, for instance, to their geographical origin and/or the know-how of their producers. However, the sophistication of fraudulent practices requires a continuous update of analytical platforms. Different analytical techniques have become extremely appealing since the instrumental analysis tools evolution has substantially improved the capability to reveal and understand the complexity of food. In light of this, multi-elemental composition has been successful implemented solving a plethora of food authentication and traceability issues. In the last decades, it has existed an ever-increasing trend in analysis based on spectrometry analytical platforms in order to obtain a multi-elemental profile that combined with chemometrics have been noteworthy analytical methodologies able to solve these problems. This review provides an overview of published reports in the last decade (from 2011 to 2021) on food authentication and quality control from their multi-element composition in order to evaluate the state-of-the-art of this field and to identify the main characteristics of applied analytical techniques and chemometric data treatments that have permit achieve accurate discrimination/classification models, highlighting the strengths and the weaknesses of these methodologies.
Collapse
Affiliation(s)
- Jorgelina Zaldarriaga Heredia
- Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP-CONICET), Santa Rosa, La Pampa, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa (UNLPam), Santa Rosa, La Pampa, Argentina
| | - Marcelo Wagner
- Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP-CONICET), Santa Rosa, La Pampa, Argentina
| | - Florencia Cora Jofré
- Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP-CONICET), Santa Rosa, La Pampa, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa (UNLPam), Santa Rosa, La Pampa, Argentina
| | - Marianela Savio
- Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP-CONICET), Santa Rosa, La Pampa, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa (UNLPam), Santa Rosa, La Pampa, Argentina
| | - Silvana Mariela Azcarate
- Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP-CONICET), Santa Rosa, La Pampa, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa (UNLPam), Santa Rosa, La Pampa, Argentina
| | - José Manuel Camiña
- Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP-CONICET), Santa Rosa, La Pampa, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa (UNLPam), Santa Rosa, La Pampa, Argentina
| |
Collapse
|
18
|
Zheplinska M, Mushtruk M, Shablii L, Shynkaruk V, Slobodyanyuk N, Rudyk Y, Chumachenko I, Marchyshyna Y, Omelian A, Kharsika I. Development and shelf-life assessment of soft-drink with honey. POTRAVINARSTVO 2022. [DOI: 10.5219/1738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This scientific work describes research that aims to determine the physicochemical parameters of homogenized honey and its safety indicators based on the determination of toxic metals and radionuclides. A series of experimental studies were conducted to develop and study recipes for honey water based on different types of honey collected in the Lviv region of Ukraine, namely acacia, buckwheat, sunflower, coriander, goldenrod, linden, and weeds. According to the results of experiments, it was found that the studied honey meets all the requirements presented in the standard for natural honey. And the results obtained to determine the dry matter content and pH allowed to blend different types of honey and get honey drinks, which will expand the range of non-carbonated products, which is very popular, especially in summer, and drink this drink during the year. To prolong the shelf life of honey drinks, it is recommended to add citric acid in an amount of 1% by weight of the drink and sodium benzoate as a preservative in an amount of 0.1%. The quality of the obtained honey water samples was assessed using organoleptic evaluation and physicochemical parameters. The resulting beverages have good organoleptic characteristics and can be offered for products in the industry.
Collapse
|
19
|
Nowak A, Nowak I. Review of harmful chemical pollutants of environmental origin in honey and bee products. Crit Rev Food Sci Nutr 2021:1-23. [PMID: 34904474 DOI: 10.1080/10408398.2021.2012752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Honey is a natural food with many pro-health properties, which comprises a wide variety of valuable ingredients. It can also be the source of chemical contaminants of environmental origin, including POPs that can contribute to adverse health effects to human. Monitoring the degree of pollution of honey/bee products with hazardous chemicals is important from a nutraceutical point of view. In the present work, overview of recent literature data on chemical pollutants in honey/bee products originating from the environment was performed. Their MLs, MRLs and EDI were discussed. It can be concluded that huge amount of research concerned on the presence of TMs and pesticides in honey. Most of the studies have shown that honey/bee products sampled from urban and industrialized areas were more contaminated than these sampled from ecological and rural locations. More pollutants were usually detected in propolis and bee pollen than in honey. Based on their research and regulations, authors stated, that most of the toxic pollutants of environmental origin in honey/bee products are at levels that do not pose a threat to the health of the potential consumer. The greatest concern relates to pesticides and TMs, because in some research MLs in individual samples were highly exceeded.
Collapse
Affiliation(s)
- Adriana Nowak
- Department of Environmental Biotechnology, Lodz University of Technology, Lodz, Poland
| | - Ireneusz Nowak
- Faculty of Law and Administration, University of Lodz, Lodz, Poland
| |
Collapse
|
20
|
Pauliuc D, Ciursă P, Ropciuc S, Dranca F, Oroian M. Physicochemical parameters prediction and authentication of different monofloral honeys based on FTIR spectra. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Brugnerotto P, Silva B, Seraglio SKT, Schulz M, Blainski E, Dortzbach D, Gonzaga LV, Fett R, Costa ACO. Physicochemical characterization of honeys from Brazilian monitored beehives. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03805-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
22
|
Authentication of honey of different nectar sources and antioxidant property evaluation by phenolic composition analysis with chemometrics. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107900] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Sıcak Y, Şahin-Yağlıoğlu A, Öztürk M. Bioactivities and phenolic constituents relationship of Muğla thyme and pine honey of Turkey with the chemometric approach. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00940-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
24
|
Rapid identification of adulterated honey according to the targeted analysis of phenolic compounds using chemometrics. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03764-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Viteri R, Zacconi F, Montenegro G, Giordano A. Bioactive compounds in Apis mellifera monofloral honeys. J Food Sci 2021; 86:1552-1582. [PMID: 33864260 DOI: 10.1111/1750-3841.15706] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/12/2021] [Accepted: 02/28/2021] [Indexed: 01/23/2023]
Abstract
Honey is a natural product with a sweet flavor. Honey is made by the honeybee (Apis mellifera L.) from the nectar of flowers or other plant secretions that are collected near the hive. These products are mixed with bee saliva and stored. Several studies have demonstrated that honey exhibits antioxidant, antimicrobial, nematicidal, antifungal, anticancer, and anti-inflammatory activities. These properties are influenced by the plants from which the secretions are harvested, from the naturally occurring compounds present in the nectar. Studies of the properties and applications of honey have distinguished honey from other natural products due to the presence of certain compounds and due its bioactive properties. The focus of this review is to discuss the identified and isolated compounds from monofloral honey produced by A. mellifera, with specific emphasis on antioxidant and antimicrobial properties of honey and its therapeutic health benefits.
Collapse
Affiliation(s)
- Rafael Viteri
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Santiago, Chile
| | - Flavia Zacconi
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Santiago, Chile.,Instituto de Ingeniería Biológica y Médica, Escuelas de Ingeniería, Medicina y Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Santiago, Chile
| | - Gloria Montenegro
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Santiago, Chile
| | - Ady Giordano
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Santiago, Chile
| |
Collapse
|
26
|
Tsagkaris AS, Koulis GA, Danezis GP, Martakos I, Dasenaki M, Georgiou CA, Thomaidis NS. Honey authenticity: analytical techniques, state of the art and challenges. RSC Adv 2021; 11:11273-11294. [PMID: 35423655 PMCID: PMC8695996 DOI: 10.1039/d1ra00069a] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Honey is a high-value, globally consumed, food product featuring a high market price strictly related to its origin. Moreover, honey origin has to be clearly stated on the label, and quality schemes are prescribed based on its geographical and botanical origin. Therefore, to enhance food quality, it is of utmost importance to develop analytical methods able to accurately and precisely discriminate honey origin. In this study, an all-time scientometric evaluation of the field is provided for the first time using a structured keyword on the Scopus database. The bibliometric analysis pinpoints that the botanical origin discrimination was the most studied authenticity issue, and chromatographic methods were the most frequently used for its assessment. Based on these results, we comprehensively reviewed analytical techniques that have been used in honey authenticity studies. Analytical breakthroughs and bottlenecks on methodologies to assess honey quality parameters using separation, bioanalytical, spectroscopic, elemental and isotopic techniques are presented. Emphasis is given to authenticity markers, and the necessity to apply chemometric tools to reveal them. Altogether, honey authenticity is an ever-growing field, and more advances are expected that will further secure honey quality.
Collapse
Affiliation(s)
- Aristeidis S Tsagkaris
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimiopolis Zographou 15771 Athens Greece http://trams.chem.uoa.gr/ +30 210 7274750 +30 210 7274317
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague Technická 5, 166 28 Prague 6 - Dejvice Prague Czech Republic
| | - Georgios A Koulis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimiopolis Zographou 15771 Athens Greece http://trams.chem.uoa.gr/ +30 210 7274750 +30 210 7274317
| | - Georgios P Danezis
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens 75 Iera Odos 118 55 Athens Greece
| | - Ioannis Martakos
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimiopolis Zographou 15771 Athens Greece http://trams.chem.uoa.gr/ +30 210 7274750 +30 210 7274317
| | - Marilena Dasenaki
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimiopolis Zographou 15771 Athens Greece http://trams.chem.uoa.gr/ +30 210 7274750 +30 210 7274317
| | - Constantinos A Georgiou
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens 75 Iera Odos 118 55 Athens Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimiopolis Zographou 15771 Athens Greece http://trams.chem.uoa.gr/ +30 210 7274750 +30 210 7274317
| |
Collapse
|
27
|
Martinello M, Mutinelli F. Antioxidant Activity in Bee Products: A Review. Antioxidants (Basel) 2021; 10:antiox10010071. [PMID: 33430511 PMCID: PMC7827872 DOI: 10.3390/antiox10010071] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
Bee products have been used since ancient times both for their nutritional value and for a broad spectrum of therapeutic purposes. They are deemed to be a potential source of natural antioxidants that can counteract the effects of oxidative stress underlying the pathogenesis of many diseases. In view of the growing interest in using bioactive substances from natural sources to promote health and reduce the risk of developing certain illnesses, this review aims to update the current state of knowledge on the antioxidant capacity of bee products such as honey, pollen, propolis, beeswax, royal jelly and bee venom, and on the analytical methods used. The complex, variable composition of these products and the multitude of analytical methods used to study their antioxidant activities are responsible for the wide range of results reported by a plethora of available studies. This suggests the need to establish standardized methods to more efficiently evaluate the intrinsic antioxidant characteristics of these products and make the data obtained more comparable.
Collapse
|
28
|
Živkov-Baloš M, Jakšić S, Popov N, Polaček V. Characterization of Serbian sunflower honeys by their physicochemical characteristics. FOOD AND FEED RESEARCH 2021. [DOI: 10.5937/ffr48-29655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Five physicochemical parameters (water content, electrical conductivity, total acidity (pH), ash mass fraction and concentration of free acids) were analyzed in 15 sunflower honeys collected from several localities in Vojvodina, Serbia. The mean values of analyzed honeys were: water content 16.87%; concentration of free acids 27.43 mEq/kg; electrical conductivity 0.34 mS/cm; pH 3.64 and ash mass fraction 0.13%. The selected physicochemical characteristics of all honey samples from Serbia analyzed in this research can be considered to be within the parameters expected for sunflower honey in general. The values for ash mass fraction, electrical conductivity and concentration of free acids in all sunflower honey samples showed similar trends. High correlation was established between electrical conductivity and ash mass fraction. Statistically significant difference (p≤0.05) was established only for average values of free acids concentration between honey samples originating from the localities Kanjiža and Čelarevo. All of the analyzed honey samples were found to meet national and European legislation for investigated parameters
Collapse
|
29
|
Mineral composition of artisanal and commercial honeys from Venezuela: a comparison of sample pre-treatment strategies. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03917-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
30
|
Effectiveness of Different Sample Treatments for the Elemental Characterization of Bees and Beehive Products. Molecules 2020; 25:molecules25184263. [PMID: 32957599 PMCID: PMC7570605 DOI: 10.3390/molecules25184263] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 12/24/2022] Open
Abstract
Bee health and beehive products’ quality are compromised by complex interactions between multiple stressors, among which toxic elements play an important role. The aim of this study is to optimize and validate sensible and reliable analytical methods for biomonitoring studies and the quality control of beehive products. Four digestion procedures, including two systems (microwave oven and water bath) and different mixture reagents, were evaluated for the determination of the total content of 40 elements in bees and five beehive products (beeswax, honey, pollen, propolis and royal jelly) by using inductively coupled plasma mass and optical emission spectrometry. Method validation was performed by measuring a standard reference material and the recoveries for each selected matrix. The water bath-assisted digestion of bees and beehive products is proposed as a fast alternative to microwave-assisted digestion for all elements in biomonitoring studies. The present study highlights the possible drawbacks that may be encountered during the elemental analysis of these biological matrices and aims to be a valuable aid for the analytical chemist. Total elemental concentrations, determined in commercially available beehive products, are presented.
Collapse
|