1
|
Lima TM, Leal DM, Ferreira ZC, Souza FDJ, de Oliveira DB, Rocha-Vieira E, Martins HR, Pereira AC, Ferreira LF. Development and Optimization of a Cost-Effective Electrochemical Immunosensor for Rapid COVID-19 Diagnosis. BIOSENSORS 2025; 15:67. [PMID: 39996968 PMCID: PMC11853419 DOI: 10.3390/bios15020067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 02/26/2025]
Abstract
The coronavirus disease (COVID-19) pandemic has created an urgent need for rapid, accurate, and cost-effective diagnostic tools. In this study, an economical electrochemical immunosensor for the rapid diagnosis of COVID-19 was developed and optimized based on charge transfer resistance (Rct) values obtained by electrochemical impedance spectroscopy (EIS) from the interaction between antibodies (anti-SARS-CoV-2) immobilized as a bioreceptor and the virus (SARS-CoV-2). The sensor uses modified pencil graphite electrodes (PGE) coated with poly(4-hydroxybenzoic acid), anti-SARS-CoV-2, and silver nanoparticles. The immobilization of anti-SARS-CoV-2 antibodies was optimized at a concentration of 1:250 for 30 min, followed by blocking the surface with 0.01% bovine serum albumin for 10 min. The optimal conditions for virus detection in clinical samples were a 1:10 dilution with a response time of 20 min. The immunosensor responded linearly in the range of 0.2-2.5 × 106 particles/μL. From the relationship between the obtained signal and the concentration of the analyzed sample, the limit of detection (LOD) and limit of quantification (LOQ) obtained were 1.21 × 106 and 4.04 × 106 particles/μL, respectively. The device did not cross-react with other viruses, including Influenza A and B, HIV, and Vaccinia virus. The relative standard deviation (RSD) of the six immunosensors prepared using the shared-pool sample was 3.87. Decreases of 22.3% and 12.4% were observed in the response values of the ten immunosensors stored at 25 °C and 4.0 °C, respectively. The sensor provides timely and accurate results with high sensitivity and specificity, offering a cost-effective alternative to the existing diagnostic methods.
Collapse
Affiliation(s)
- Thaís Machado Lima
- Institute of Science and Technology, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39100-000, Minas Gerais, Brazil; (T.M.L.); (D.M.L.); (Z.C.F.)
| | - Daiane Martins Leal
- Institute of Science and Technology, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39100-000, Minas Gerais, Brazil; (T.M.L.); (D.M.L.); (Z.C.F.)
| | - Zirlane Coelho Ferreira
- Institute of Science and Technology, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39100-000, Minas Gerais, Brazil; (T.M.L.); (D.M.L.); (Z.C.F.)
| | - Fernando de Jesus Souza
- Faculty of Medicine, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39100-000, Minas Gerais, Brazil; (F.d.J.S.); (D.B.d.O.); (E.R.-V.)
| | - Danilo Bretas de Oliveira
- Faculty of Medicine, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39100-000, Minas Gerais, Brazil; (F.d.J.S.); (D.B.d.O.); (E.R.-V.)
| | - Etel Rocha-Vieira
- Faculty of Medicine, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39100-000, Minas Gerais, Brazil; (F.d.J.S.); (D.B.d.O.); (E.R.-V.)
| | - Helen Rodrigues Martins
- Pharmacy Department, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39100-000, Minas Gerais, Brazil;
| | - Arnaldo César Pereira
- Department of Natural Sciences, Federal University of São João del-Rei (UFSJ), São João del-Rei 36307-352, Minas Gerais, Brazil;
| | - Lucas Franco Ferreira
- Institute of Science and Technology, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39100-000, Minas Gerais, Brazil; (T.M.L.); (D.M.L.); (Z.C.F.)
| |
Collapse
|
2
|
Hosnedlova B, Werle J, Cepova J, Narayanan VHB, Vyslouzilova L, Fernandez C, Parikesit AA, Kepinska M, Klapkova E, Kotaska K, Stepankova O, Bjorklund G, Prusa R, Kizek R. Electrochemical Sensors and Biosensors for Identification of Viruses: A Critical Review. Crit Rev Anal Chem 2024:1-30. [PMID: 38753964 DOI: 10.1080/10408347.2024.2343853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Due to their life cycle, viruses can disrupt the metabolism of their hosts, causing diseases. If we want to disrupt their life cycle, it is necessary to identify their presence. For this purpose, it is possible to use several molecular-biological and bioanalytical methods. The reference selection was performed based on electronic databases (2020-2023). This review focused on electrochemical methods with high sensitivity and selectivity (53% voltammetry/amperometry, 33% impedance, and 12% other methods) which showed their great potential for detecting various viruses. Moreover, the aforementioned electrochemical methods have considerable potential to be applicable for care-point use as they are portable due to their miniaturizability and fast speed analysis (minutes to hours), and are relatively easy to interpret. A total of 2011 articles were found, of which 86 original papers were subsequently evaluated (the majority of which are focused on human pathogens, whereas articles dealing with plant pathogens are in the minority). Thirty-two species of viruses were included in the evaluation. It was found that most of the examined research studies (77%) used nanotechnological modifications. Other ones performed immunological (52%) or genetic analyses (43%) for virus detection. 5% of the reports used peptides to increase the method's sensitivity. When evaluable, 65% of the research studies had LOD values in the order of ng or nM. The vast majority (79%) of the studies represent proof of concept and possibilities with low application potential and a high need of further research experimental work.
Collapse
Affiliation(s)
- Bozena Hosnedlova
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Julia Werle
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Jana Cepova
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Vedha Hari B Narayanan
- Pharmaceutical Technology Lab, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Lenka Vyslouzilova
- Czech Institute of Informatics, Robotics and Cybernetics, Department of Biomedical Engineering & Assistive Technologies, Czech Technical University in Prague, Prague, Czech Republic
| | - Carlos Fernandez
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Arli Aditya Parikesit
- Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta, Timur, Indonesia
| | - Marta Kepinska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Eva Klapkova
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Karel Kotaska
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Olga Stepankova
- Czech Institute of Informatics, Robotics and Cybernetics, Department of Biomedical Engineering & Assistive Technologies, Czech Technical University in Prague, Prague, Czech Republic
| | - Geir Bjorklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Richard Prusa
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Rene Kizek
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
3
|
A systematic review and meta-analysis on the accuracy of rapid immunochromatographic tests for dengue diagnosis. Eur J Clin Microbiol Infect Dis 2022; 41:1191-1201. [PMID: 35988010 DOI: 10.1007/s10096-022-04485-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/12/2022] [Indexed: 11/03/2022]
Abstract
Rapid immunochromatographic tests are frequently used to diagnose dengue due to their easy use, low cost, and fast response. A high level of accuracy is essential for rapid diagnostic tests to support their large-scale use. Thus, this systematic review aims to evaluate the accuracy of rapid dengue diagnostic tests. The investigation was run through the following databases: LILACS, Medline (Pubmed), CRD, The Cochrane Library, Trip Medical Database, and Google Scholar. To solve difficulties, two independent reviewers performed document screening and selection. ELISA assay was adopted as a reference test because of several methodologic advantages. Seventeen articles were included accordingly, reckoning 6837 participating individuals. The receiver operating characteristic (ROC) and Forest Plot were conducted to evaluate the sensitivity and specificity for each analyzed parameter (anti-dengue IgM, IgG, and NS1 antigen). The risk of bias and quality of evidence were assessed as moderate using QUADAS-2 and Grading of Recommendations Assessment, Development, and Evaluation (GRADE), respectively. The sensitivity of IgM concerning the studied tests ranged from 13.8 to 90%, while that of NS1 ranged from 14.7 to 100% (95% CI). The antibodies with NS1 presented increased sensitivity; pooled data show that the association of the three analytes bestows the best result, with a combined sensitivity of 90% (CI 95%: 87-92%) and a pooled specificity of 89% (CI 95%: 87-92%). Thus, the present review provides relevant knowledge for decision-making between available rapid diagnostic tests.
Collapse
|
4
|
Ojha RP, Singh P, Azad UP, Prakash R. Impedimetric Immunosensor for the NS1 Dengue Biomarker Based on the Gold Nanorod Decorated Graphitic Carbon Nitride Modified Electrode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
5
|
Lorenzen AL, dos Santos AM, dos Santos LP, da Silva Pinto L, Conceição FR, Wolfart F. PEDOT-AuNPs-based impedimetric immunosensor for the detection of SARS-CoV-2 antibodies. Electrochim Acta 2022; 404:139757. [PMID: 34955549 PMCID: PMC8684030 DOI: 10.1016/j.electacta.2021.139757] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022]
Abstract
Electrochemical sensors and biosensors are useful techniques for fast, inexpensive, sensitive, and easy detection of innumerous specimen. In face of COVID-19 pandemic, it became evident the necessity of a rapid and accurate diagnostic test, so the impedimetric immunosensor approach can be a good alternative to replace the conventional tests due to the specific antibody-antigen binding interaction and the fast response in comparison to traditional methods. In this work, a modified electrode with electrosynthesized PEDOT and gold nanoparticles followed by the immobilization of truncated nucleoprotein (N aa160-406aa) was used for a fast and reliable detection of antibodies against COVID-19 in human serum sample. The method consists in analyzing the charge-transfer resistance (RCT) variation before and after the modified electrode comes into contact with the positive and negative serum sample for COVID-19, using [Fe(CN)6]3-/4- as a probe. The results show a linear and selective response for serum samples diluted in a range of 2.5 × 103 to 20 × 103. Also, the electrode material was fully characterized by Raman spectroscopy, transmission electron microscopy and scanning electron microscopy coupled with EDS, indicating that the gold nanoparticles were well distributed around the polymer matrix and the presence of the biological sample was confirmed by EDS analysis. EIS measurements allowed to differentiate the negative and positive samples by the difference in the RCT magnitude, proving that the material developed here has potential properties to be applied in impedimetric immunosensors for the detection of SARS-CoV-2 antibodies in about 30 min.
Collapse
Affiliation(s)
- Ana Luiza Lorenzen
- Instituto Federal de Educação, Ciência e Tecnologia Farroupilha – Campus São Borja, Rua Otaviano Castilho Mendes, 355, Betim, São Borja, RS CEP 97670-000, Brazil
| | - Ariane Moraes dos Santos
- Instituto Federal de Educação, Ciência e Tecnologia Farroupilha – Campus São Borja, Rua Otaviano Castilho Mendes, 355, Betim, São Borja, RS CEP 97670-000, Brazil
| | - Luâni Poll dos Santos
- Instituto Federal de Educação, Ciência e Tecnologia Farroupilha – Campus São Borja, Rua Otaviano Castilho Mendes, 355, Betim, São Borja, RS CEP 97670-000, Brazil
| | - Luciano da Silva Pinto
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia – Campus Capão do Leão, S/N, Capão do Leão, RS CEP 96160-000, Brazil
| | - Fabricio Rochedo Conceição
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia – Campus Capão do Leão, S/N, Capão do Leão, RS CEP 96160-000, Brazil
| | - Franciele Wolfart
- Instituto Federal de Educação, Ciência e Tecnologia Farroupilha – Campus São Borja, Rua Otaviano Castilho Mendes, 355, Betim, São Borja, RS CEP 97670-000, Brazil,Corresponding author
| |
Collapse
|
6
|
Ozer T, Henry CS. Paper-based analytical devices for virus detection: Recent strategies for current and future pandemics. Trends Analyt Chem 2021; 144:116424. [PMID: 34462612 PMCID: PMC8387141 DOI: 10.1016/j.trac.2021.116424] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The importance of user-friendly, inexpensive, sensitive, and selective detection of viruses has been highlighted again due to the recent Coronavirus disease 2019 (COVID-19) pandemic. Among the analytical tools, paper-based devices (PADs) have become a leading alternative for point-of-care (POC) testing. In this review, we discuss the recent development strategies and applications in nucleic acid-based, antibody/antigen-based and other affinity-based PADs using optical and electrochemical detection methods for sensing viruses. In addition, advantages and drawbacks of presented PADs are identified. Current state and insights towards future perspectives are presented regarding developing POC diagnosis platform for COVID-19. This review considers state-of-the-art technologies for further development and improvement in PADs performance for virus detection.
Collapse
Affiliation(s)
- Tugba Ozer
- Yildiz Technical University, Faculty of Chemical-Metallurgical Engineering, Department of Bioengineering, 34220, Istanbul, Turkey
| | - Charles S Henry
- Colorado State University, Department of Chemistry, Fort Collins, CO, 80523, USA
- Colorado State University, School of Biomedical Engineering, Fort Collins, CO, 80523, USA
| |
Collapse
|
7
|
Cordeiro TAR, de Resende MAC, Moraes SCDS, Franco DL, Pereira AC, Ferreira LF. Electrochemical biosensors for neglected tropical diseases: A review. Talanta 2021; 234:122617. [PMID: 34364426 DOI: 10.1016/j.talanta.2021.122617] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 12/26/2022]
Abstract
A group of infectious and parasitic diseases with prevalence in tropical and subtropical regions of the planet, especially in places with difficult access, internal conflicts, poverty, and low visibility from the government and health agencies are classified as neglected tropical diseases. While some well-intentioned isolated groups are making the difference on a global scale, the number of new cases and deaths is still alarming. The development and employment of low-cost, miniaturized, and easy-to-use devices as biosensors could be the key to fast diagnosis in such areas leading to a better treatment to further eradication of such diseases. Therefore, this review contains useful information regarding the development of such devices in the past ten years (2010-2020). Guided by the updated list from the World Health Organization, the work evaluated the new trends in the biosensor field applied to the early detection of neglected tropical diseases, the efficiencies of the devices compared to the traditional techniques, and the applicability on-site for local distribution. So, we focus on Malaria, Chagas, Leishmaniasis, Dengue, Zika, Chikungunya, Schistosomiasis, Leprosy, Human African trypanosomiasis (sleeping sickness), Lymphatic filariasis, and Rabies. Few papers were found concerning such diseases and there is no available commercial device in the market. The works contain information regarding the development of point-of-care devices, but there are only at proof of concepts stage so far. Details of electrode modification and construction of electrochemical biosensors were summarized in Tables. The demand for the eradication of neglected tropical diseases is increasing. The use of biosensors is pivotal for the cause, but appliable devices are scarce. The information present in this review can be useful for further development of biosensors in the hope of helping the world combat these deadly diseases.
Collapse
Affiliation(s)
- Taís Aparecida Reis Cordeiro
- Institute of Science and Technology, Laboratory of Electrochemistry and Applied Nanotechnology, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| | | | - Simone Cristina Dos Santos Moraes
- Group of Electrochemistry Applied to Polymers and Sensors - Multidisciplinary Group of Research, Science and Technology - Laboratory of Electroanalytic Applied to Biotechnology and Food Engineering - Institute of Chemistry, Federal University of Uberlândia, Patos de Minas, Brazil
| | - Diego Leoni Franco
- Group of Electrochemistry Applied to Polymers and Sensors - Multidisciplinary Group of Research, Science and Technology - Laboratory of Electroanalytic Applied to Biotechnology and Food Engineering - Institute of Chemistry, Federal University of Uberlândia, Patos de Minas, Brazil.
| | - Arnaldo César Pereira
- Department of Natural Sciences, Federal University of São João Del-Rei, São João Del-Rei, Brazil.
| | - Lucas Franco Ferreira
- Institute of Science and Technology, Laboratory of Electrochemistry and Applied Nanotechnology, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Brazil.
| |
Collapse
|
8
|
Khuu T, Yang N, Johnson MA. Vibrational spectroscopy of the cryogenically cooled O- and N-protomers of 4-Aminobenzoic acid: Tag effects, isotopic labels, and identification of the E,Z isomer of the O-protomer. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2020; 457:116427. [PMID: 32982573 PMCID: PMC7511085 DOI: 10.1016/j.ijms.2020.116427] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
4-Aminobenzoic acid (4ABA) is a biologically relevant, small organic molecule with two protonation sites: the amino group (N-protomer) and the carboxyl group (O-protomer). The O-protomer is energetically preferred in the gas-phase, while the higher energy N-protomer can be trapped using aprotic solvents such as acetonitrile during electrospray ionization. Here, we focus on the structure of the O-protomer, which can occur in three low-lying isomeric forms that result from different orientations of the OH groups relative to the benzene ring. We report the vibrational spectra of both N- and O-protomers of the cryogenically cooled ions in the gas phase over the spectral range 800-4000 cm-1. The bands arising from the OH stretches are isolated from the nearby NH stretching fundamentals using isotopic labeling as well as by analysis of the shifts in these fundamentals upon attachment of D2 and N2 molecules to the OH groups of the O-protomer. The spectra of isomers derived from the different locations of the adducts were isolated using two-color, IR-IR photofragmentation spectroscopy. The docking motifs by which the O-protomer binds to another 4ABA molecule is also explored and found to feature a bifurcated arrangement involving attachment of both OH groups of the protonated head group to the carbonyl group of the neutral partner.
Collapse
Affiliation(s)
- Thien Khuu
- Sterling Chemistry Laboratory, Yale University, New Haven, CT, 06520
| | - Nan Yang
- Sterling Chemistry Laboratory, Yale University, New Haven, CT, 06520
| | - Mark A Johnson
- Sterling Chemistry Laboratory, Yale University, New Haven, CT, 06520
| |
Collapse
|
9
|
Khristunova E, Dorozhko E, Korotkova E, Kratochvil B, Vyskocil V, Barek J. Label-Free Electrochemical Biosensors for the Determination of Flaviviruses: Dengue, Zika, and Japanese Encephalitis. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4600. [PMID: 32824351 PMCID: PMC7472106 DOI: 10.3390/s20164600] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023]
Abstract
A highly effective way to improve prognosis of viral infectious diseases and to determine the outcome of infection is early, fast, simple, and efficient diagnosis of viral pathogens in biological fluids. Among a wide range of viral pathogens, Flaviviruses attract a special attention. Flavivirus genus includes more than 70 viruses, the most familiar being dengue virus (DENV), Zika virus (ZIKV), and Japanese encephalitis virus (JEV). Haemorrhagic and encephalitis diseases are the most common severe consequences of flaviviral infection. Currently, increasing attention is being paid to the development of electrochemical immunological methods for the determination of Flaviviruses. This review critically compares and evaluates recent research progress in electrochemical biosensing of DENV, ZIKV, and JEV without labelling. Specific attention is paid to comparison of detection strategies, electrode materials, and analytical characteristics. The potential of so far developed biosensors is discussed together with an outlook for further development in this field.
Collapse
Affiliation(s)
- Ekaterina Khristunova
- School of Earth Sciences and Engineering, Department of Chemical Engineering, National Research Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk, Russia; (E.K.); (E.D.); (E.K.); (B.K.)
- UNESCO Laboratory of Environmental Electrochemistry, Department of Analytical Chemistry, Faculty of Science, Charles University, Albertov 6, 12843 Prague 2, Czech Republic;
- Department of Solid State Chemistry, University of Chemistry and Technology, Prague, Technicka 5, 16628 Prague 6, Czech Republic
| | - Elena Dorozhko
- School of Earth Sciences and Engineering, Department of Chemical Engineering, National Research Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk, Russia; (E.K.); (E.D.); (E.K.); (B.K.)
| | - Elena Korotkova
- School of Earth Sciences and Engineering, Department of Chemical Engineering, National Research Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk, Russia; (E.K.); (E.D.); (E.K.); (B.K.)
| | - Bohumil Kratochvil
- School of Earth Sciences and Engineering, Department of Chemical Engineering, National Research Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk, Russia; (E.K.); (E.D.); (E.K.); (B.K.)
- Department of Solid State Chemistry, University of Chemistry and Technology, Prague, Technicka 5, 16628 Prague 6, Czech Republic
| | - Vlastimil Vyskocil
- UNESCO Laboratory of Environmental Electrochemistry, Department of Analytical Chemistry, Faculty of Science, Charles University, Albertov 6, 12843 Prague 2, Czech Republic;
| | - Jiri Barek
- School of Earth Sciences and Engineering, Department of Chemical Engineering, National Research Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk, Russia; (E.K.); (E.D.); (E.K.); (B.K.)
- UNESCO Laboratory of Environmental Electrochemistry, Department of Analytical Chemistry, Faculty of Science, Charles University, Albertov 6, 12843 Prague 2, Czech Republic;
| |
Collapse
|
10
|
Dhal A, Kalyani T, Ghorai S, Sahu NK, Jana SK. Recent development of electrochemical immunosensor for the diagnosis of dengue virus NSI protein: A review. SENSORS INTERNATIONAL 2020. [DOI: 10.1016/j.sintl.2020.100030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|