1
|
Thi Huyen N, Xuan LTQ, Suong TAS, Thi Thanh C, Van Trinh P, Van Tu N, Thu Loan N, Ngan LTQ, Binh PT, Huong CTL, Nguyen Thuan D, Xuan Hoa V, Van Hao N, Van Quynh N, Abe H, Van Chuc N. A novel approach for the fabrication of SERS substrates based on 3D urchin-like TiO 2@Gr-AuNPs architecture. RSC Adv 2025; 15:15806-15818. [PMID: 40365223 PMCID: PMC12070383 DOI: 10.1039/d5ra02160j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Accepted: 05/07/2025] [Indexed: 05/15/2025] Open
Abstract
3D urchin-like titanium dioxide@graphene-gold nanoparticles (UT@Gr-AuNPs) architectures with a core@shell structure of UT@Gr were successfully synthesized on silicon substrates via thermal chemical vapor deposition (CVD) technique using sodium deoxycholate surfactant (SDC) as a carbon source, followed by depositing AuNPs onto the surface of UT@Gr via a cold plasma (CP) process. The as-prepared samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman, X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), and ultraviolet-visible (UV-vis) spectroscopy. Thanks to the hot spots created by the AuNPs onto the surface of UT@Gr, the UT@Gr-AuNPs SERS substrates show significantly enhanced SERS sensitivity to detect hazardous pollutants and pesticide residue substances, e.g., rhodamine 6G (R6G) and malathion with a low detection limit (LOD) of about 5.86 × 10-11 M and 2.87 × 10-8 M, respectively. Moreover, these SERS substrates prepared in this study effectively enable in situ SERS monitoring of the R6G and rhodamine B (RhB) photodegradation reaction and self-cleaning performance under ultraviolet light (UV, 254 nm) irradiation.
Collapse
Affiliation(s)
- Nguyen Thi Huyen
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Le Thi Quynh Xuan
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Tran Ai Suong Suong
- VNU University of Engineering and Technology 144 Xuan Thuy, Cau Giay Hanoi Vietnam
| | - Cao Thi Thanh
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Pham Van Trinh
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Nguyen Van Tu
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Nguyen Thu Loan
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Luong Truc Quynh Ngan
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Pham Thanh Binh
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Cao Thi Linh Huong
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Dao Nguyen Thuan
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Vu Xuan Hoa
- Institute of Science and Technology, TNU-University of Sciences (TNUS) Tan Thinh Ward Thai Nguyen City Vietnam
| | - Nguyen Van Hao
- Institute of Science and Technology, TNU-University of Sciences (TNUS) Tan Thinh Ward Thai Nguyen City Vietnam
| | - Nguyen Van Quynh
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Hiroya Abe
- Joining and Welding Research Institute, Osaka University Osaka 5670047 Japan
| | - Nguyen Van Chuc
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| |
Collapse
|
2
|
Simsek UB, Sakir M, Colak SG, Demir M. MXene as SERS-Active Substrate: Impact of Intrinsic Properties and Performance Analysis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:91-109. [PMID: 39721057 DOI: 10.1021/acsami.4c17341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
A new member is incorporated into the SERS active materials family daily as a consequence of advances in materials science. Furthermore, it has been demonstrated that MXenes, which display remarkable physicochemical characteristics, are also encompassed within this family. This Review offers a comprehensive and systematic assessment of the potential of MXene structures in the context of SERS applications. First, the historical development of SERS-active substrates and the evolution of various substrates over time are analyzed. Subsequently, the formation and structural properties of MXene structures were subjected to a comprehensive and detailed examination. The principal objective of this Review is to elucidate the rationale behind the preference for MXene as a SERS-active substrate, given its distinctive physicochemical properties. In this context, while MXene's abundant surface functional groups represent a significant advantage, its high electrical conductivity, suitable flexibility, extensive two-dimensional surface areas, and antibacterial activity also warrant consideration in terms of potential applications. It is emphasized that, for MXene nanolayers to demonstrate optimal performance in SERS applications, a plan should be devised to consider these features. By increasing readers' awareness of using MXene as a SERS active substrate, potential opportunities for future application areas may be created.
Collapse
Affiliation(s)
- Utku Bulut Simsek
- Department of Chemical Engineering, Bogazici University, TR-34342 Istanbul, Türkiye
| | - Menekse Sakir
- ERNAM-Erciyes University Nanotechnology Application and Research Center, Kayseri 38039, Türkiye
| | - Suleyman Gokhan Colak
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Iskenderun Technical University, TR31200 Hatay, Türkiye
| | - Muslum Demir
- Department of Chemical Engineering, Bogazici University, TR-34342 Istanbul, Türkiye
- TUBITAK Marmara Research Center, Material Institute, Gebze 41470, Türkiye
| |
Collapse
|
3
|
Yavuz E, Sakir M, Onses MS, Salem S, Yilmaz E. Advancements in reusable SERS substrates for trace analysis applications. Talanta 2024; 279:126640. [PMID: 39128272 DOI: 10.1016/j.talanta.2024.126640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
Surface Enhanced Raman Spectroscopy (SERS) technique is an effective analytical technique in which fingerprint information about analytes can be obtained, can provide detection limit performance at the single molecule level, and analyzes are performed in a single step without any intermediate steps. SERS technique offers additional benefits rather than other analytical techniques including high selectivity, ultrasensitive detection, uncomplicated protocols, in situ sampling, on-set capability and cost-effectiveness. As a result of the combination of developments in materials and nanotechnology science with the SERS analysis technique, this technique strengthens its use advantage day by day. The most important factor that limited the use of this technique was the fact that the solution containing the desired analyte(s) was dropped onto the SERS substrate and the same substrate could not be reused in subsequent analyses. To solve this problem, scientists have focused on developing reusable SERS substrates in recent years. In these studies, scientists basically used three SERS substrate cleaning applications (1) washing the SERS substrate with a suitable solvent that can elute the analyte from SERS surface after analysis, (2) cleaning the SERS substrate with catalytic degradation of analytes after analysis by modifying them with catalytic active materials and (3) Applying plasma cleaning procedure to SERS substrate after analysis and (4) applying adsorption and desorption procedure prior to SERS analysis. Herein, the aim of this review article is to evaluate the reusable SERS substrates-based methods based on their level of development and their potential to recycle. This review offers a coherent discussion on a wide range of sensing schemes employed in fabricating the SERS substrates. We utilized a critical approach in which elaborative examples were selected to highlight key shortcomings of various experimental configurations. In the same vein, there is a discussion of the advantages and limitations concerning the key instrumental advances and the expansion of the recent methods developed in this area.
Collapse
Affiliation(s)
- Emre Yavuz
- Erzincan Binali Yildirim University, Cayirli Vocational School, Department of Medical Services and Technicians, 24503, Erzincan, Turkey
| | - Menekse Sakir
- ERNAM-Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039, Turkey
| | - M Serdar Onses
- ERNAM-Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039, Turkey; Department of Materials Science and Engineering, Faculty of Engineering, Erciyes University, Kayseri, 38039, Turkey
| | - Samaa Salem
- Polymers and Pigment Department, Chemical Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Erkan Yilmaz
- ERNAM-Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039, Turkey; Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey; Technology Research & Application Center (TAUM), Erciyes University, Kayseri, 38039, Turkey; ChemicaMed Chemical Inc., Erciyes Teknopark, Erciyes University Technology Development Zone, 38039, Kayseri, Turkey.
| |
Collapse
|
4
|
Tao G, Li J, Mu Y, Zhang X. A Three-Dimensional Hydrophobic Surface-Enhanced Raman Scattering Sensor via a Silver-Coated Polytetrafluoroethylene Membrane for the Direct Trace Detection of Molecules in Water. BIOSENSORS 2024; 14:88. [PMID: 38392007 PMCID: PMC10886991 DOI: 10.3390/bios14020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024]
Abstract
We report a three-dimensional (3D) SERS substrate consisting of a silver nanoparticle (AgNP) coating on the skeleton-fiber surfaces of a polytetrafluoroethylene (PTFE) membrane. Simple thermal evaporation was employed to deposit Ag onto the PTFE membrane to produce grape-shaped AgNPs. The 3D-distributed AgNPs exhibit not only strong localized surface plasmon resonance (LSPR) but also strong hydrophobic performance. High-density hotspots via silver nano-grape structures and nanogaps, the large 3D interaction volume, and the large total surface area, in combination with the hydrophobic enrichment of the specimen, facilitate high-sensitivity sensing performance of such a SERS substrate for the direct detection of low-concentration molecules in water. An enhancement factor of up to 1.97 × 1010 was achieved in the direct detection of R6G molecules in water with a concentration of 10-13 mol/L. The lowest detection limit of 100 ppt was reached in the detection of melamine in water. Such a SERS sensor may have potential applications in food-safety control, environmental water pollution monitoring, and biomedical analysis.
Collapse
Affiliation(s)
- Guanwei Tao
- Institute of Information Photonics Technology, Beijing University of Technology, Beijing 100124, China
| | - Jiajun Li
- Institute of Information Photonics Technology, Beijing University of Technology, Beijing 100124, China
| | - Yunyun Mu
- Institute of Information Photonics Technology, Beijing University of Technology, Beijing 100124, China
| | - Xinping Zhang
- Institute of Information Photonics Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
5
|
Li L, Zhang T, Zhang L, Li W, Xu T, Wang L, Liu C, Li W, Li J, Lu R. One-step fabrication of flexible polyamide@Ag-dodecanethiol membranes for highly sensitive SERS detection of thiram. NANOTECHNOLOGY 2023; 35:105601. [PMID: 38035399 DOI: 10.1088/1361-6528/ad115e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023]
Abstract
The surface-enhanced Raman scattering (SERS) is an effective spectral technology based on Raman scattering, but in practice, the commonly used SERS substrates suffer from low sensitivity and poor stability. In order to overcome these limitations, the SERS substrates were prepared from hydrophobic modification of dodecanethiol (C12) coupled with a flexible substrate, which was then used for pesticides detection in water. A flexible PA@Ag-C12 substrate with surface functionalization has been obtained. This work aims to investigate the self-assembly of Ag NPs modified with C12 onto polyamide (PA) membranes. Initially, transmission electron microscopy and scanning electron microscopy were used to analyze the substrate's morphology. Then with the help of an energy-dispersive spectrometer, sulfur content of C12-modified Ag NPs was analyzed. In order to determine the hydrophobicity of the modified Ag NPs, the contact angle was used. The results indicate that the gap between Ag NPs on PA membrane can be effectively controlled in order to prevent Ag NPs from aggregating. Furthermore, the finite-difference time-domain analysis indicated that the PA@Ag-C12 substrate exhibited a stronger electromagnetic enhancement effect than the PA@Ag substrate. By reducing NPs gaps on the PA membrane, the number of 'hot spots' increased, and the SERS performance of the substrate was improved as a result. According to the results of this study, this method can greatly reduce the manufacturing costs and time costs of the SERS substrate while maintaining the original uniformity. The SERS performance of PA@Ag-C12 was found to be three orders of magnitude better than that of PA@Ag direct self-assembled substrate, and the detection limit for Rhodamine 6G (R6G) was approximately 8.47 × 10-14M. On the basis of the PA@Ag-C12 substrate, thiram is detectable at a detection limit of 5.88 × 10-11M with a high degree of sensitivity and repeatability.
Collapse
Affiliation(s)
- Lujie Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Tingting Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Lan Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Wei Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Tao Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Lingling Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Chang Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, People's Republic of China
| | - Weihua Li
- School of Environment and Energy Engineering, Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, People's Republic of China
| | - Jiansheng Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Rui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| |
Collapse
|
6
|
Sultangaziyev A, Ilyas A, Dyussupova A, Bukasov R. Trends in Application of SERS Substrates beyond Ag and Au, and Their Role in Bioanalysis. BIOSENSORS 2022; 12:bios12110967. [PMID: 36354477 PMCID: PMC9688019 DOI: 10.3390/bios12110967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 05/31/2023]
Abstract
This article compares the applications of traditional gold and silver-based SERS substrates and less conventional (Pd/Pt, Cu, Al, Si-based) SERS substrates, focusing on sensing, biosensing, and clinical analysis. In recent decades plethora of new biosensing and clinical SERS applications have fueled the search for more cost-effective, scalable, and stable substrates since traditional gold and silver-based substrates are quite expensive, prone to corrosion, contamination and non-specific binding, particularly by S-containing compounds. Following that, we briefly described our experimental experience with Si and Al-based SERS substrates and systematically analyzed the literature on SERS on substrate materials such as Pd/Pt, Cu, Al, and Si. We tabulated and discussed figures of merit such as enhancement factor (EF) and limit of detection (LOD) from analytical applications of these substrates. The results of the comparison showed that Pd/Pt substrates are not practical due to their high cost; Cu-based substrates are less stable and produce lower signal enhancement. Si and Al-based substrates showed promising results, particularly in combination with gold and silver nanostructures since they could produce comparable EFs and LODs as conventional substrates. In addition, their stability and relatively low cost make them viable alternatives for gold and silver-based substrates. Finally, this review highlighted and compared the clinical performance of non-traditional SERS substrates and traditional gold and silver SERS substrates. We discovered that if we take the average sensitivity, specificity, and accuracy of clinical SERS assays reported in the literature, those parameters, particularly accuracy (93-94%), are similar for SERS bioassays on AgNP@Al, Si-based, Au-based, and Ag-based substrates. We hope that this review will encourage research into SERS biosensing on aluminum, silicon, and some other substrates. These Al and Si based substrates may respond efficiently to the major challenges to the SERS practical application. For instance, they may be not only less expensive, e.g., Al foil, but also in some cases more selective and sometimes more reproducible, when compared to gold-only or silver-only based SERS substrates. Overall, it may result in a greater diversity of applicable SERS substrates, allowing for better optimization and selection of the SERS substrate for a specific sensing/biosensing or clinical application.
Collapse
|
7
|
A Novel 3D Hierarchical Plasmonic Functional Cu@Co 3O 4@Ag Array as Intelligent SERS Sensing Platform with Trace Droplet Rapid Detection Ability for Pesticide Residue Detection on Fruits and Vegetables. NANOMATERIALS 2021; 11:nano11123460. [PMID: 34947808 PMCID: PMC8705477 DOI: 10.3390/nano11123460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022]
Abstract
Rapid and effective detection of pesticide residues from complex surfaces of fruits and vegetables has important significance. Herein, we report a novel three-dimensional (3D) hierarchical porous functional surface-enhanced Raman scattering (SERS) substrate, which is fabricated by successive two-step hydrothermal synthesis strategy of silver nanoparticles (Ag NPs) and cobalt oxide nanowires (Co3O4 NWs) on the 3D copper foam framework as Cu@Co3O4@Ag-H. The strategy offers a new avenue for localized plasmonic materials distribution and construction, which exhibits better morphology regulation ability and SERS activity (or hotspots engineering) than physical spurring obtained Cu@Co3O4@Ag-S. The developed Cu@Co3O4@Ag-H possesses large surface area and rich hotspots, which contributes to the excellent SERS performance, including homogeneity (RSD of 7.8%), sensitivity (enhancement factor, EF of 2.24 × 108) and stability. The Cu@Co3O4@Ag-H not only provides plenty of Electromagnetic enhancement (EM) hotspots but also the trace detection capability for droplet rapid sensing within 2 s. Cu@Co3O4@Ag-H substrate is further developed as an effective SERS sensing platform for pesticide residues detection on the surfaces of fruits and vegetables with excellent LOD of 0.1 ppm, which is lower than the most similar reported works. This work offers new potential for bioassay, disease POCT diagnosis, national security, wearable flexible devices, energy storage and other related fields.
Collapse
|
8
|
Gullace S, Montes-García V, Martín V, Larios D, Girelli Consolaro V, Obelleiro F, Calogero G, Casalini S, Samorì P. Universal Fabrication of Highly Efficient Plasmonic Thin-Films for Label-Free SERS Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100755. [PMID: 34288390 DOI: 10.1002/smll.202100755] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/26/2021] [Indexed: 06/13/2023]
Abstract
The development of novel, highly efficient, reliable, and robust surface enhanced Raman scattering (SERS) substrates containing a large number of hot spots with programmed size, geometry, and density is extremely interesting since it allows the sensing of numerous (bio-)chemical species. Herein, an extremely reliable, easy to fabricate, and label-free SERS sensing platform based on metal nanoparticles (NPs) thin-film is developed by the layer-by-layer growth mediated by polyelectrolytes. A systematic study of the effect of NP composition and size, as well as the number of deposition steps on the substrate's performance, is accomplished by monitoring the SERS enhancement of 1-naphtalenethiol (532 nm excitation). Distinct evidence of the key role played by the interlayer (poly(diallyldimethylammonium chloride) (PDDA) or PDDA-functionalized graphene oxide (GO@PDDA)) on the overall SERS efficiency of the plasmonic platforms is provided, revealing in the latter the formation of more uniform hot spots by regulating the interparticle distances to 5 ± 1 nm. The SERS platform efficiency is demonstrated via its high analytical enhancement factor (≈106 ) and the detection of a prototypical substance(tamoxifen), both in Milli-Q water and in a real matrix, viz. tap water, opening perspectives towards the use of plasmonic platforms for future high-performance sensing applications.
Collapse
Affiliation(s)
- Sara Gullace
- Université de Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, Strasbourg, 67000, France
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, Messina, 98166, Italy
| | - Verónica Montes-García
- Université de Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, Strasbourg, 67000, France
| | - Victor Martín
- Departamento Tecnología de los Computadores y de las Comunicaciones, Universidad de Extremadura, Cáceres, 10003, Spain
| | - David Larios
- Departamento Tecnología de los Computadores y de las Comunicaciones, Universidad de Extremadura, Cáceres, 10003, Spain
| | | | - Fernando Obelleiro
- Departamento de Teoría de la Señal y Comunicaciones, Universidade de Vigo, Vigo, 36310, Spain
| | - Giuseppe Calogero
- IPCF-CNR, Istituto per i Processi Chimico-Fisici, V.le F. Stagno d'Alcontres 37, Messina, 98158, Italy
| | - Stefano Casalini
- Université de Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, Strasbourg, 67000, France
- Università degli Studi di Padova, Dipartimento di Scienze Chimiche, via Marzolo 1, Padova, 35131, Italy
| | - Paolo Samorì
- Université de Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, Strasbourg, 67000, France
| |
Collapse
|
9
|
Zhu C, Zhao Q, Wang X, Li Z, Hu X. Ag-nanocubes/graphene-oxide/Au-nanoparticles composite film with highly dense plasmonic hotspots for surface-enhanced Raman scattering detection of pesticide. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Korkmaz I, Sakir M, Sarp G, Salem S, Torun I, Volodkin D, Yavuz E, Onses MS, Yilmaz E. Fabrication of superhydrophobic Ag@ZnO@Bi2WO6 membrane disc as flexible and photocatalytic active reusable SERS substrate. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129258] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Xu D, Jiang H, Zhang S, Yang W, Zhang Y, Wang Z, Chen J. High roughness gold nanoparticles/silver nanowires composites: Fabrication, characterization and ultrasensitive SERS detection towards Rhodamine B. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Pekdemir S, Torun I, Sakir M, Ruzi M, Rogers JA, Onses MS. Chemical Funneling of Colloidal Gold Nanoparticles on Printed Arrays of End-Grafted Polymers for Plasmonic Applications. ACS NANO 2020; 14:8276-8286. [PMID: 32569462 DOI: 10.1021/acsnano.0c01987] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Spatially defined assembly of colloidal metallic nanoparticles is necessary for fabrication of plasmonic devices. In this study, we demonstrate high-resolution additive jet printing of end-functional polymers to serve as templates for directed self-assembly of nanoparticles into architectures with substantial plasmonic activity. The intriguing aspect of this work is the ability to form patterns of end-grafted poly(ethylene glycol) through printing on a hydrophobic layer that consists of fluoroalkylsilanes. The simultaneous dewetting of the underlying hydrophobic layer together with grafting of the printed polymer during thermal annealing enables fabrication of spatially defined binding sites for assembly of nanoparticles. The employment of electrohydrodynamic jet printing and aqueous inks together with reduction of the feature size during thermal annealing are critically important in achieving high chemical contrast patterns as small as ∼250 nm. Gold nanospheres of varying diameters selectively bind and assemble into nanostructures with reduced interparticle distances on the hydrophilic patterns of poly(ethylene glycol) surrounded with a hydrophobic background. The resulting plasmonic arrays exhibit intense and pattern-specific signals in surface-enhanced Raman scattering (SERS) spectroscopy. The localized seed-mediated growth of metallic nanostructures over the patterned gold nanospheres presents further routes for expanding the composition of the plasmonic arrays. A representative application in SERS-based surface encoding is demonstrated through large-area patterning of plasmonic structures and multiplex deposition of taggant molecules, all enabled by printing.
Collapse
Affiliation(s)
- Sami Pekdemir
- Department of Materials Science and Engineering, Erciyes University, Kayseri, 38039, Turkey
- ERNAM, Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039, Turkey
| | - Ilker Torun
- Department of Materials Science and Engineering, Erciyes University, Kayseri, 38039, Turkey
- ERNAM, Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039, Turkey
| | - Menekse Sakir
- Department of Materials Science and Engineering, Erciyes University, Kayseri, 38039, Turkey
- ERNAM, Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039, Turkey
| | - Mahmut Ruzi
- ERNAM, Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039, Turkey
| | - John A Rogers
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Departments of Materials Science and Engineering, Biomedical Engineering, Chemistry, Mechanical Engineering, Electrical Engineering and Computer Science, Simpson Querrey Institute for Nano/Biotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - M Serdar Onses
- Department of Materials Science and Engineering, Erciyes University, Kayseri, 38039, Turkey
- ERNAM, Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039, Turkey
- UNAM-National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| |
Collapse
|