1
|
Guo X, Feng S, Peng Y, Li B, Zhao J, Xu H, Meng X, Zhai W, Pang H. Emerging insights into the application of metal-organic framework (MOF)-based materials for electrochemical heavy metal ion detection. Food Chem 2025; 463:141387. [PMID: 39332375 DOI: 10.1016/j.foodchem.2024.141387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
Heavy metal ions are one of the main sources of water pollution, which has become a major global problem. Given the growing need for heavy metal ion detection, electrochemical sensor stands out for its high sensitivity and efficiency. Metal-organic frameworks (MOFs) have garnered much interest as electrode modifiers for electrochemical detection of heavy metal ions owing to their significant specific surface area, tailored pore size, and catalytic activity. This review summarizes the progress of MOF-based materials, including pristine MOFs and MOF composites, in the electrochemical detection of various heavy metal ions. The synthetic methods of pristine MOFs, the detection mechanisms of heavy metal ions and the modification strategies of MOFs are introduced. Besides, the diverse applications of MOF-based materials in detecting both single and multiple heavy metal ions are presented. Furthermore, we present the current challenges and prospects for MOF-based materials in electrochemical heavy metal ion detection.
Collapse
Affiliation(s)
- Xiaotian Guo
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China; College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Siyi Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yi Peng
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing 211189, PR China
| | - Bing Li
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China; College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Jingwen Zhao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Hengyue Xu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Xiangren Meng
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China.
| | - Weiwei Zhai
- Jiangsu Food and Pharmaceutical Science College, Huai'an, Jiangsu 223003, PR China.
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
2
|
Jadon N, Tomar P, Shrivastava S, Hosseinzadeh B, Kaya SI, Ozkan SA. Monitoring of Specific Phytoestrogens by Dedicated Electrochemical Sensors: A Review. Food Chem 2024; 460:140404. [PMID: 39068721 DOI: 10.1016/j.foodchem.2024.140404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/30/2024]
Abstract
Phytoestrogens are non-steroidal estrogens produced from plants that can bind with the human body's estrogenic receptor site and be used as a substitute for maintaining hormonal balance. They are mainly classified as flavonoids, phenolic acids, lignans, stilbenes, and coumestans; some are resocyclic acids of lactones, which are mycotoxins and not natural phytoestrogen. Phytoestrogens have many beneficial medicinal properties, making them an important part of the daily diet. Electrochemical sensors are widely used analytical tools for analysing various pharmaceuticals, chemicals, pollutants and food items. Electrochemical sensors provide an extensive platform for highly sensitive and rapid analysis. Several reviews have been published on the importance of the biological and medicinal properties of phytoestrogens. However, this review provides an overview of recent work performed through electrochemical measurements with electrochemical sensors and biosensors for all the classes of phytoestrogens done so far since 2019.
Collapse
Affiliation(s)
- Nimisha Jadon
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Türkiye; School of Studies in Environmental Chemistry, Jiwaji University, Gwalior, M.P., 474011, India.
| | - Puja Tomar
- School of Studies in Environmental Chemistry, Jiwaji University, Gwalior, M.P., 474011, India
| | - Swati Shrivastava
- School of Studies in Environmental Chemistry, Jiwaji University, Gwalior, M.P., 474011, India
| | - Batoul Hosseinzadeh
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Türkiye
| | - S Irem Kaya
- University of Health Sciences, Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Türkiye
| | - Sibel A Ozkan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Türkiye.
| |
Collapse
|
3
|
Lu S, Zhang K, Liu Y, Zhan X, Savari R. Polymeric nanocomposite electrode for enhanced electrochemical detection of α-lipoic acid: Application in neuroinflammation prevention and clinical analysis. ENVIRONMENTAL RESEARCH 2024; 245:117369. [PMID: 37827372 DOI: 10.1016/j.envres.2023.117369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Using poly (vanillin-co-chitosan)/functionalized MWCNTs/GCE (PV-CS/f-MWCNTs/GCE) as a polymeric nanocomposite modified electrode, the present investigation has been conducted on the electrochemical detection of α-lipoic acid (α-LA) to prevent the activation of microglia inflammation of the nervous system. The manufacture of modified polymeric nanocomposite electrodes was carried out using the established electropolymerization process. Field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) analyses of structure revealed that the electropolymerization of poly (vanillin-co-chitosan) on the surface of the f-MWCNTs modified electrode was successful. Vanillin-co-chitosan electropolymerization on f-MWCNTs as electroactive sheets can enhance the signal for α-LA electrochemical sensors, according to research on the electrochemical characteristics utilizing cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methodologies. The PV-CS/f-MWCNTs/GCE demonstrated that it had a sensitivity of 0.04664 μA/μM, a detection limit of 0.012 μM, and an excellent response, linear range, and wide linear range to α-LA from 0 to 3000 μM. The results of the application of PV-CS/f-MWCNTs/GCE for determining the concentration of α-LA in a prepared real sample of human serum by DPV and human lipoic acid ELISA Kit analyses via standard addition method illustrated the substantial conformity between the findings of both assays. The results of the DPV analyses resulted in acceptable recovery values (97.60%-99.10%) and appropriate values of the Relative Standard Deviation (RSD) (3.58%-5.07%), which demonstrated the great applicability and accuracy of the results of PV-CS/f-MWCNTs/GCE for determining α-LA concentration in biological fluids and pharmaceutical specimens.
Collapse
Affiliation(s)
- Shenyi Lu
- Department of Rehabilitation Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China.
| | - Ke Zhang
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yu Liu
- Guangxi Medical university, Nanning, 530021, China
| | | | - Rojan Savari
- School of Physics, College of Science, University of Tehran, North-Kargar Street, Tehran, 1439955961, Iran
| |
Collapse
|
4
|
Gibi C, Liu CH, Anandan S, Wu JJ. Recent Advances on Electrochemical Sensors for Detection of Contaminants of Emerging Concern (CECs). Molecules 2023; 28:7916. [PMID: 38067644 PMCID: PMC10707923 DOI: 10.3390/molecules28237916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Contaminants of Emerging Concern (CECs), a new category of contaminants currently in the limelight, are a major issue of global concern. The pervasive nature of CECs and their harmful effects, such as cancer, reproductive disorders, neurotoxicity, etc., make the situation alarming. The perilous nature of CECs lies in the fact that even very small concentrations of CECs can cause great impacts on living beings. They also have a nature of bioaccumulation. Thus, there is a great need to have efficient sensors for the detection of CECs to ensure a safe living environment. Electrochemical sensors are an efficient platform for CEC detection as they are highly selective, sensitive, stable, reproducible, and prompt, and can detect very low concentrations of the analyte. Major classes of CECs are pharmaceuticals, illicit drugs, personal care products, endocrine disruptors, newly registered pesticides, and disinfection by-products. This review focusses on CECs, including their sources and pathways, health effects caused by them, and electrochemical sensors as reported in the literature under each category for the detection of major CECs.
Collapse
Affiliation(s)
- Chinchu Gibi
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 407, Taiwan; (C.G.); (C.-H.L.)
| | - Cheng-Hua Liu
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 407, Taiwan; (C.G.); (C.-H.L.)
| | - Sambandam Anandan
- Department of Chemistry, National Institute of Technology, Trichy 620015, India;
| | - Jerry J. Wu
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 407, Taiwan; (C.G.); (C.-H.L.)
| |
Collapse
|
5
|
Du H, Duan Y, Ai J, Kong D, Wang D, Hu H, Wang H, Yang Y. Electrochemical determination of ethylvanillin based on LaV@GAC nanocomposite. ANAL SCI 2023; 39:2049-2058. [PMID: 37668882 DOI: 10.1007/s44211-023-00422-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023]
Abstract
Ethyl vanillin (EVA) is widely used as a flavor additive in foods, and sensitive monitoring of EVA is of great significance for food safety. In this paper, the biomass of gum arabic derived carbon (GAC) coated with lanthanum vanadate (LaV) was constructed for the EVA sensor based on the synergistic effects of the electrochemical catalytic ability of LaV, the enhanced electrical conductivity with the GAC coating and the oxygen-containing functional groups in LaV@GAC. The as-developed LaV@GAC sensor showed a remarkable linear range from 0.06 μM to 100 μM and a low detection limit (LOD) of 6.28 nM. The electrochemical oxidation of EVA is limited by a diffusion-controlled process involving 2 electrons and 2 protons. Moreover, the LaV@GAC sensor has good recoveries (94.5-103.05%) for the detection of EVA in real milk powder samples. The proposed LaV@GAC sensor has good repeatability, high stability, and great potential for sensitive detection of flavor additives in food.
Collapse
Affiliation(s)
- Haijun Du
- School of Chemical Engineering, Guizhou Minzu University, Guiyang, 550025, Guizhou, China
- Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashi University, Kashi, Xinjiang, 844000, People's Republic of China
| | - Yu Duan
- School of Chemical Engineering, Guizhou Minzu University, Guiyang, 550025, Guizhou, China
| | - Jixing Ai
- School of Chemical Engineering, Guizhou Minzu University, Guiyang, 550025, Guizhou, China
| | - Dabin Kong
- School of Chemical Engineering, Guizhou Minzu University, Guiyang, 550025, Guizhou, China
| | - Dexiang Wang
- School of Chemical Engineering, Guizhou Minzu University, Guiyang, 550025, Guizhou, China
| | - Huali Hu
- School of Chemical Engineering, Guizhou Minzu University, Guiyang, 550025, Guizhou, China
| | - Hong Wang
- Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashi University, Kashi, Xinjiang, 844000, People's Republic of China
| | - Yang Yang
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, Sichuan, China.
| |
Collapse
|
6
|
Dehdashtian S, Wang S, Murray TA, Chegeni M, Rostamnia S, Fattahi N. Determination of vanillin in different food samples by using SMM/Au@ZIF-67 electrochemical sensor. Sci Rep 2023; 13:17907. [PMID: 37863995 PMCID: PMC10589296 DOI: 10.1038/s41598-023-45342-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/18/2023] [Indexed: 10/22/2023] Open
Abstract
Vanillin is a popular flavoring agent in many food products. Simple, fast, and reliable quantification of this compound is crucial for the food industry. In this work, we have developed a new electrochemical sensor for accurate detection of vanillin in various real samples. The composite electrode was made of sodium montmorillonite nanoclay (SMM) and gold nanoparticles modified ZIF-67 (Au@ZIF-67), in which SMM contributes to the large adsorption capacity of the analyte, ZIF-67 and SMM supply more sensing active sites, and gold nanoparticles provide high electrical conductivity. The sensing electrode was comprehensively characterized using Brunauer-Emmett-Teller, EDS, XRD, SEM, FTIR, and TEM, and its electrochemical behavior for determination of vanillin including the electrooxidation mechanism of vanillin and different parameters such as scan rate and pH value was investigated. The result revealed that a two electron-two proton process was involved in the electrooxidation of vanillin, which takes place more readily due to the lower potential on the surface of SMM/Au@ZIF-67/carbon paste electrode. The new composite electrode was also more sensitive to vanillin detection with an anodic peak current almost 2.6 times more than that of the bare electrode. A linear sensing concentration range was established between 1 and 1200 nM with a detection limit of 0. 3 nM and a limit of quantitation of 1 nM. For real samples, the sensor demonstrated excellent recovery rates and reliability that was comparable to the standard high-performance liquid chromatography method.
Collapse
Affiliation(s)
- Sara Dehdashtian
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, 71270, USA.
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, PO Box 10157, Ruston, LA, 71272, USA.
| | - Shengnian Wang
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, 71270, USA
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, PO Box 10157, Ruston, LA, 71272, USA
| | - Teresa A Murray
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, 71270, USA
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, PO Box 10157, Ruston, LA, 71272, USA
| | - Mahdieh Chegeni
- Department of Chemistry, Faculty of Science, Ayatollah Boroujerdi University, Boroujerd, 69199-69737, Iran
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), PO Box 16846-13114, Tehran, Iran
| | - Nazir Fattahi
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
7
|
Ali I, Mısır M, Demir E, Dinçer İ, Locatelli M, ALOthman ZA. Nano solid phase micro membrane tip and electrochemical methods for vanillin analysis in chocolate samples. Anal Biochem 2023; 677:115268. [PMID: 37524223 DOI: 10.1016/j.ab.2023.115268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
A polymer-based nanosensor and electrochemical methods were developed for the quantitative analysis of vanillin. The sample preparation was done using nano solid phase micro membrane tip extraction (NSPMMTE). A novel poly(phenylalanine)/TiO2/CPE sensor was built as the working electrode for the first time for the analysis of the vanillin substance. The electrochemical behavior and analytical performance of vanillin were examined in detail by cyclic voltammetry (CV) and differential pulse stripping voltammetry (DPSV) techniques via the oxidation process. The optimized modules of the DPSV technique that affected the vanillin peak current and peak potential were pH, pulse amplitude, step potential, and deposition time. The electroactive surface areas of bare CPE, TiO2/CPE, and poly(phenylalanine)/TiO2/CPE electrodes were found to be 0.135 cm2, 0.155 cm2, and 0.221 cm2, respectively. The limit of detection (LOD) was 32.6 μg/L in the 0.25-15.0 mg/L working range at pH 7.0. The selectivity of the proposed DPSV method for the determination of vanillin on the modified electrode was investigated in the presence of various organic and inorganic substances, and the determination of vanillin with high recovery was achieved with less than 5% relative error. The analytical application was applied in chocolate samples and the DPSV method was found highly efficient, reproducible, and selective.
Collapse
Affiliation(s)
- Imran Ali
- Department of Chemistry, Jamia Millia Islamia (Central University), Jamia Nagar, New Delhi, 110025, India.
| | - Murat Mısır
- Kırşehir Ahi Evran University, Faculty of Engineering and Architecture, 40100, Kırşehir, Turkey
| | - Ersin Demir
- Afyonkarahisar Health Sciences University, Faculty of Pharmacy, Department of Analytical Chemistry, 03030, Afyonkarahisar, Turkey
| | - İrem Dinçer
- Afyonkarahisar Health Sciences University, Faculty of Pharmacy, Department of Analytical Chemistry, 03030, Afyonkarahisar, Turkey
| | - Marcello Locatelli
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio ", Via dei Vestini 31, Chieti, 66100, Italy
| | - Zeid A ALOthman
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
8
|
Metal nanocomposites-based electrochemical sensor for the detection of vanillin (food additives): Experimental and theoretical approach. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
9
|
Prinith NS, Manjunatha JG, Albaqami MD, Mohamed Tighezza A, Sillanpää M. Electrochemical Analysis of Food additive Vanillin using Poly (Aspartic Acid) Modified Graphene and Graphite composite Paste Sensor. ChemistrySelect 2022. [DOI: 10.1002/slct.202203572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Nambudumada S. Prinith
- Department of Chemistry, FMKMC College Constituent College of Mangalore University, Madikeri Karnataka India
| | - Jamballi G. Manjunatha
- Department of Chemistry, FMKMC College Constituent College of Mangalore University, Madikeri Karnataka India
| | - Munirah D. Albaqami
- Department of Chemistry, College of Science King Saud University Riyadh 11451 Saudi Arabia
| | - Ammar Mohamed Tighezza
- Department of Chemistry, College of Science King Saud University Riyadh 11451 Saudi Arabia
| | - Mika Sillanpää
- Department of Biological and Chemical Engineering Aarhus University, Norrebrogade 44 8000 Aarhus C Denmark
| |
Collapse
|
10
|
Xiao J, Shi S, Yao L, Feng J, Zuo J, He Q. Fast and Ultrasensitive Electrochemical Detection for Antiviral Drug Tenofovir Disoproxil Fumarate in Biological Matrices. BIOSENSORS 2022; 12:1123. [PMID: 36551090 PMCID: PMC9775179 DOI: 10.3390/bios12121123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Tenofovir disoproxil fumarate (TDF) is an antiretroviral medication with significant curative effects, so its quantitative detection is important for human health. At present, there are few studies on the detection of TDF by electrochemical sensors. This work can be a supplement to the electrochemical detection of TDF. Moreover, bare electrodes are susceptible to pollution, and have high overvoltage and low sensitivity, so it is crucial to find a suitable electrode material. In this work, zirconium oxide (ZrO2) that has a certain selectivity to phosphoric acid groups was synthesized by a hydrothermal method with zirconyl chloride octahydrate as the precursor. A composite modified glassy carbon electrode for zirconium oxide-chitosan-multiwalled carbon nanotubes (ZrO2-CS-MWCNTs/GCE) was used for the first time to detect the TDF, and achieved rapid, sensitive detection of TDF with a detection limit of sub-micron content. The ZrO2-CS-MWCNTs composite was created using sonication of a mixture of ZrO2 and CS-MWCNTs solution. The composite was characterized using scanning electron microscopy (SEM) and cyclic voltammetry (CV). Electrochemical analysis was performed using differential pulse voltammetry (DPV). Compared with single-material electrodes, the ZrO2-CS-MWCNTs/GCE significantly improves the electrochemical sensing of TDF due to the synergistic effect of the composite. Under optimal conditions, the proposed method has achieved good results in linear range (0.3~30 μM; 30~100 μM) and detection limit (0.0625 μM). Moreover, the sensor has the merits of simple preparation, good reproducibility and good repeatability. The ZrO2-CS-MWCNTs/GCE has been applied to the determination of TDF in serum and urine, and it may be helpful for potential applications of other substances with similar structures.
Collapse
Affiliation(s)
- Jingyun Xiao
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
- Hunan Qianjin Xiangjiang Pharmaceutical Joint Stock Co., Ltd., Zhuzhou 412001, China
- Geriatric Rehabilitation Department, Zhuzhou People’s Hospital, Zhuzhou 421007, China
| | - Shuting Shi
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Liangyuan Yao
- Hunan Qianjin Xiangjiang Pharmaceutical Joint Stock Co., Ltd., Zhuzhou 412001, China
| | - Jinxia Feng
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Jinsong Zuo
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Quanguo He
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
- Hunan Qianjin Xiangjiang Pharmaceutical Joint Stock Co., Ltd., Zhuzhou 412001, China
- Geriatric Rehabilitation Department, Zhuzhou People’s Hospital, Zhuzhou 421007, China
| |
Collapse
|
11
|
Hasanpour M, Pardakhty A, Tajik S. The development of disposable electrochemical sensor based on MoSe 2-rGO nanocomposite modified screen printed carbon electrode for amitriptyline determination in the presence of carbamazepine, application in biological and water samples. CHEMOSPHERE 2022; 308:136336. [PMID: 36088965 DOI: 10.1016/j.chemosphere.2022.136336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The present attempt developed a simple sensing system based on the modification of screen-printed carbon electrode (SPCE) with MoSe2/reduced graphene oxide (rGO) nanocomposite (MoSe2-rGO/SPCE) to voltammetrically co-detect amitriptyline and carbamazepine. Different techniques such as field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) were employed to characterize MoSe2-rGO nanocomposite morphology and structure. Moreover, chronoamperometry, differential pulse voltammetry (DPV) and linear sweep voltammetry (LSV) were utilized to explore the electrochemical oxidation of amitriptyline. Data revealed a great current sensitivity for the MoSe2-rGO/SPCE towards amitriptyline. The peak currents of amitriptyline oxidation on the MoSe2-rGO/SPCE had linear dynamic range (0.02-380.0 μM) and a narrow limit of detection (0.007 μM). The MoSe2-rGO/SPCE was successful in sensing carbamazepine and amitriptyline in real specimens, with appreciable recovery rates.
Collapse
Affiliation(s)
- Matineh Hasanpour
- Student Research Committee, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, P.O. Box: 76175-493, 76169-11319, Kerman, Iran.
| | - Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
12
|
Lanthanum doped zirconium oxide-nanocomposite as sensitive electrochemical platforms for Tenofovir detection. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Zhai H, Gao M, Bai Y, Qin J, Song Q, Liu Z, Wang H, Feng F. Development of fluorescence sensors with copper-based nanoclusters via Förster resonance energy transfer and the quenching effect for vanillin detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4245-4251. [PMID: 36250613 DOI: 10.1039/d2ay01170k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two kinds of copper-based metal fluorescent nanoclusters were successfully prepared by the chemical reduction method; one of them (CuNCs) was synthesized by direct reduction of copper sulfate, and the other (CuAuNCs) was synthesized by the stepwise addition of copper salt and chloroauric acid. CuNCs were used to establish the fluorescence resonance energy transfer (FRET) system with neutral red (NR) due to the supramolecular effect of β-cyclodextrin (β-CD) modified on the surface of CuNCs. NR could enter the hydrophobic cavity of β-CD and narrow the distance between CuNCs and NR, which could lead to FRET. Fluorescence was transferred from CuNCs to NR, resulting in amplification of the NR fluorescence signal, which could be used to detect vanillin. In addition, CuAuNCs with strong fluorescence were used as fluorescent probes to detect vanillin through the quenching mechanism. By comparison, the simplicity of CuNC synthesis and the high selectivity of β-CD made the FRET method more practical, which may provide a new strategy for assaying vanillin.
Collapse
Affiliation(s)
- Hong Zhai
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, 037009, China.
| | - Mengmeng Gao
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, 037009, China.
| | - Yunfeng Bai
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, 037009, China.
| | - Jun Qin
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, 037009, China.
| | - Qing Song
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, 037009, China.
| | - Zhixiong Liu
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, 037009, China.
| | - Haiyan Wang
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, 037009, China.
| | - Feng Feng
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, 037009, China.
| |
Collapse
|
14
|
He Q, Wang B, Liu J, Li G, Long Y, Zhang G, Liu H. Nickel/nitrogen-doped carbon nanocomposites: Synthesis and electrochemical sensor for determination of p-nitrophenol in local environment. ENVIRONMENTAL RESEARCH 2022; 214:114007. [PMID: 35934146 DOI: 10.1016/j.envres.2022.114007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/14/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
A novel electrochemical sensor was prepared using N-doped carbon mesoporous materials supported with nickel nanoparticles (Ni-NCs) for environmental p-nitrophenol (p-NP) detection in a specific geographical area. These as-prepared Ni-NCs were dispersed in polyethyleneimine (PEI) solution and modified onto a glassy carbon electrode (GCE) for electrocatalytic reduction of p-NP. The Ni-NCs-PEI/GCE showed a high Faraday current at -0.302 V during p-NP reduction, because of the synergistic effect between Ni-NCs and PEI. Under ideal conditions, the Ni-NCs-PEI/GCE was used in the voltametric determination of p-NP, with high sensitivity. The linear ranges for p-NP are 0.06-10 μM and 10-100 μM with low detection limit (4.0 nM) and high sensitivity (1.465 μA μM-1 cm-2). In the presence of other phenolic compounds, this sensor showed good selectivity for p-NP detection. The Ni-NCs-PEI/GCE was also used to determine p-NP in environmental water samples of a specific geographical area, with recoveries ranging from 95.9% to 109.4%, and an RSD of less than 3.6%. Therefore, this novel Ni-NCs-PEI/GCE provides a good example for the design of other carbon-based nanocomposite materials, for electrochemical detection of trace p-NP in a specific geographical area.
Collapse
Affiliation(s)
- Quanguo He
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, China; School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Bing Wang
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, China; Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Jun Liu
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, China; School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China.
| | - Guangli Li
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, China; School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Yaohang Long
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, China; Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Gongyou Zhang
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, China; Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Hongmei Liu
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, China; Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
15
|
Wang B, He Q, Li G, Long Y, Zhang G, Liu H, Liu J. Sensitive Determination of Trace 4-Nitrophenol in Ambient Environment Using a Glassy Carbon Electrode Modified with Formamide-Converted Nitrogen-Doped Carbon Materials. Int J Mol Sci 2022; 23:12182. [PMID: 36293039 PMCID: PMC9603515 DOI: 10.3390/ijms232012182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/21/2022] [Accepted: 10/10/2022] [Indexed: 09/28/2023] Open
Abstract
Sensing trace amounts of 4-nitrophenol (4-NP) as a harmful substance to organisms even in small quantities is of great importance. The present study includes a sensitive and selective electrochemical sensor for detecting 4-NP in natural water samples using formamide-converted nitrogen-carbon materials (shortened to f-NC) as a new material for electrode modification. The structure and morphology of the f-NC were set apart by SEM, TEM, XRD, XPS, FTIR, Raman, and the electrochemical performance of the f-NC were set apart by CV, EIS and CC. We studied the electrochemical behaviour of 4-NP on the glassy carbon electrode modified with f-NC before and after pyrolysis treatment (denoted as f-NC1/GCE and f-NC2/GCE). In 0.2 M of H2SO4 solution, the f-NC2/GCE has an apparent electrocatalytic activity to reduce 4-NP. Under the optimal conditions, the reduction peak current of 4-NP varies linearly, with its concentration in the range of 0.2 to 100 mM, and the detection limit obtained as 0.02 mM (S/N = 3). In addition, the electrochemical sensor has high selectivity, and the stability is quite good. The preparation and application of the sensor to detect 4-NP in water samples produced satisfactory results, which provides a new method for the simple, sensitive and quantitative detection of 4-NP.
Collapse
Affiliation(s)
- Bing Wang
- School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, China
| | - Quanguo He
- School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Guangli Li
- School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Yaohang Long
- School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, China
| | - Gongyou Zhang
- School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, China
| | - Hongmei Liu
- School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, China
| | - Jun Liu
- School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
16
|
Zirconium Molybdate Nanocomposites’ Sensing Platform for the Sensitive and Selective Electrochemical Detection of Adefovir. Molecules 2022; 27:molecules27186022. [PMID: 36144756 PMCID: PMC9503393 DOI: 10.3390/molecules27186022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022] Open
Abstract
Adefovir (ADV) is an anti-retroviral drug, which can be used to treat acquired immune deficiency syndrome (AIDS) and chronic hepatitis B (CHB), so its quantitative analysis is of great significance. In this work, zirconium molybdate (ZrMo2O8) was synthesized by a wet chemical method, and a composite with multi-walled carbon nanotubes (MWCNTs) was made. ZrMo2O8-MWCNTs composite was dropped onto the surface of a glassy carbon electrode (GCE) to prepare ZrMo2O8-MWCNTs/GCE, and ZrMo2O8-MWCNTs/GCE was used in the electrochemical detection of ADV for the first time. The preparation method is fast and simple. The materials were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and cyclic voltammetry (CV). It was electrochemically analysed by differential pulse voltammetry (DPV). Compared with single-material modified electrodes, ZrMo2O8-MWCNTs/GCE showed a vastly improved electrochemical response to ADV. Moreover, the sensor complements the study of the electrochemical detection of ADV. Under optimal conditions, the proposed electrochemical method showed a wide linear range (from 1 to 100 μM) and a low detection limit (0.253 μM). It was successfully tested in serum and urine. In addition, the sensor has the advantages of a simple preparation, fast response, good reproducibility and repeatability. It may be helpful in the potential applications of other substances with similar structures.
Collapse
|
17
|
Electrochemical determination of dopamine and uric acid with covalent organic frameworks and Ox-MWCNT co-modified glassy carbon electrode. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
A novel platform based on MnO2 nanoparticles and carboxylated multi-walled carbon nanotubes composite for accurate and rapid determination of curcumin in commercial food products. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Moradi O. A review on nanomaterial-based electrochemical sensors for determination of vanillin in food samples. Food Chem Toxicol 2022; 168:113391. [PMID: 36041662 DOI: 10.1016/j.fct.2022.113391] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/10/2022] [Accepted: 08/21/2022] [Indexed: 12/27/2022]
Abstract
Vanillin is an organic compound that not only acts as a flavoring and fragrance enhancer in some foods, but also can have antioxidant, anti-inflammatory, anti-cancer and anti-depressant effects. Nevertheless, its excessive use can be associated with side effects on human health. Consequently, there is a need to achieve a rapid vanillin determination approach to enhance food safety. The diversity and high sensitivity of analytical approaches has led researchers to use more advanced and efficient methods providing quantitative and qualitative outcomes in complex matrices. Among these, prominent attention has been drawn to electrochemical sensors for reasons such as reliability, simplicity, cost-effectiveness, portability, selectivity, and ease of operation, especially for the determination of vanillin. Nanomaterials are a good candidate for sensor construction due to their commendable physicochemical attributes. Some advanced nanostructures with promising platforms for high-sensitivity, highly selective, and long-lasting electrochemical sensors include graphene (Gr) and its derivatives, graphite carbon nitride (g-C3N4), carbon nanotubes (CNTs), metal nanoparticles, metal organic frameworks, carbon nanofibers (CNFs) and quantum dots. Study about sizes, dimensions, and morphologies of nanomaterials makes strong candidates for improving sensitivity or selectivity according to electrocatalytic abilities. The low LOD and wide linear range of samples demonstrated an excellent catalytic performance towards the vanillin oxidation. Some investigations have reported the synergistic effects like great conductivity of carbon nanomaterials which improved the electrocatalytic performance of nanocomposites which demonstrated the estimable sensitivity of nanomaterial-supported electrochemical sensors for determination of vanillin concentrations. The sensors which have reported have a commendable response to practical potential and evaluated in biscuit, pudding powder, chocolate, custard specimens and etc. sensitivity, stability, reproducibility and repeatability of suggested sensor were investigated. The present review article scrutinizes recent advances in the fabrication of nanomaterial-based electrochemical sensors to detect vanillin in various food matrices.
Collapse
Affiliation(s)
- Omid Moradi
- Department of Chemistry, Faculty of Science, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
20
|
Fort CI, Cobzac SCA, Turdean GL. Second-order derivative of square-wave voltammetry for determination of vanillin at platinum electrode. Food Chem 2022; 385:132711. [PMID: 35313191 DOI: 10.1016/j.foodchem.2022.132711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/27/2022] [Accepted: 03/13/2022] [Indexed: 11/04/2022]
Abstract
A simple and sensitive method of data treatment by second-order derivative square wave voltammetry (SD-SWV) was developed for the determination of vanillin at a platinum electrode. It was shown that the irreversible oxidation reaction is controlled by the adsorption and occurs following a mechanism involving two electrons, similar to other phenolic derivatives. The experimental parameters of SWV which exert influence on vanillin determination, such as frequency, pulse amplitude, or step potential, were optimized. The calibration curve shows a linear range between 50 and 430 nM vanillin with a detection limit of about 19 nM (signal/noise = 3). The mathematical treatment of experimental data leads to enhances the sensitivity of the determination and was successfully used for the estimation of vanillin in commercial food products.
Collapse
Affiliation(s)
- Carmen Ioana Fort
- "Babes-Bolyai" University, Faculty of Chemistry and Chemical Engineering, Department of Chemical Engineering, Research Center of Electrochemistry and Non-Conventional Materials, Arany Janos St.11, RO-400028 Cluj-Napoca, Romania
| | - Simona Codruta Aurora Cobzac
- "Babes-Bolyai" University, Faculty of Chemistry and Chemical Engineering, Department of Chemistry, Arany Janos St.11, RO-400028 Cluj-Napoca, Romania.
| | - Graziella Liana Turdean
- "Babes-Bolyai" University, Faculty of Chemistry and Chemical Engineering, Department of Chemical Engineering, Research Center of Electrochemistry and Non-Conventional Materials, Arany Janos St.11, RO-400028 Cluj-Napoca, Romania.
| |
Collapse
|
21
|
Ji L, Peng L, Chen T, Li X, Zhu X, Hu P. Facile synthesis of Fe-BTC and electrochemical enhancement effect for sunset yellow determination. TALANTA OPEN 2022. [DOI: 10.1016/j.talo.2022.100084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
22
|
Self-assembled Ti3C2TX MXene/graphene composite for the electrochemical reduction and detection of p-nitrophenol. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
23
|
Salahuddin N, Awad S, Elfiky M. Vanillin-crosslinked chitosan/ZnO nanocomposites as a drug delivery system for 5-fluorouracil: study on the release behavior via mesoporous ZrO 2-Co 3O 4 nanoparticles modified sensor and antitumor activity. RSC Adv 2022; 12:21422-21439. [PMID: 35975070 PMCID: PMC9346502 DOI: 10.1039/d2ra02717h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/23/2022] [Indexed: 01/10/2023] Open
Abstract
Herein, a series of vanillin-crosslinked chitosan (Vn-CS) nanocomposites (NCs) containing various contents of ZnO nanoparticles (NPs) was prepared and characterized via FTIR spectroscopy, XRD, TGA, SEM and TEM. Changing the weight% of ZnO NPs in the prepared NCs resulted in an improvement in their antibacterial activity against Gram-negative and Gram-positive bacteria strains compared with the unmodified CS, and the encapsulation efficiency of 5-fluorouracil (5-FU) was found to be in the range of 61.4–69.2%. Subsequently, the release of 5-FU was monitored utilizing the mesoporous ZrO2–Co3O4 NPs modified carbon paste sensor via the square-wave adsorptive anodic stripping voltammetry (SW-AdASV) technique. Also, the release mechanism of 5-FU from each NC was studied by applying the zero-order, first-order, Hixson–Crowell and Higuchi models to the experimental results. The cytotoxicity of prepared NCs and 5-FU-encapsulated NCs was evaluated against the HePG-2, MCF-7 and HCT-116 cancer cell lines, in addition to the WI-38 and WISH normal cell lines using the MTT assay. Notably, 5-FU/CV10 NC exhibited the highest antitumor activity towards all tested cancer cell lines and a moderate activity against WI-38 and WISH normal cell lines with IC50 values of 28.02 ± 2.5 and 31.65 ± 2.7 μg mL−1, respectively. The obtained nanocomposites exhibited suitable selectivity with minimum toxicity against normal cells. Herein, a series of vanillin-crosslinked chitosan (Vn-CS) nanocomposites (NCs) containing various contents of ZnO nanoparticles (NPs) was prepared and characterized via FTIR spectroscopy, XRD, TGA, SEM and TEM.![]()
Collapse
Affiliation(s)
| | - Salem Awad
- Chemistry Department, Faculty of Science Tanta 31527 Egypt
| | - Mona Elfiky
- Chemistry Department, Faculty of Science Tanta 31527 Egypt
| |
Collapse
|
24
|
Rashed MA, Ahmed J, Faisal M, Alsareii S, Jalalah M, Harraz FA. Highly sensitive and selective thiourea electrochemical sensor based on novel silver nanoparticles/chitosan nanocomposite. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Kunpatee K, Kaewdorn K, Duangtong J, Chaiyo S, Chailapakul O, Kalcher K, Kerr M, Samphao A. A new disposable electrochemical sensor for the individual and simultaneous determination of carbamate pesticides using a nanocomposite modified screen-printed electrode. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
26
|
Ye RH, Chen JY, Huang DH, Wang YJ, Chen S. Electrochemical Sensor Based on Glassy-Carbon Electrode Modified with Dual-Ligand EC-MOFs Supported on rGO for BPA. BIOSENSORS 2022; 12:bios12060367. [PMID: 35735515 PMCID: PMC9221176 DOI: 10.3390/bios12060367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/08/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
Abstract
The electronic conductive metal-organic frameworks (EC-MOFs) based on a single ligand are not suitable for the accurate detection of bisphenol A (BPA) due to the limitations of their electron-transfer-based sensing mechanism. To overcome this drawback, we developed EC-MOFs with novel dual-ligands, 2,3,6,7,10,11-hexahydroxy-sanya-phenyl (HHTP) and tetrahydroxy 1,4-quinone (THQ), and metal ions. A new class of 2D π-conjugation-based EC-MOFs (M-(HHTP)(THQ)) was synthesized by a self-assemble technique. Its best member (Cu-(HHTP)(THQ)) was selected and combined with reduced graphene (rGO) to form a Cu-(HHTP)(THQ)@rGO composite, which was thoroughly characterized by X-ray diffraction, field scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Cu-(HHTP)(THQ)@rGO was drop-cast onto a glassy carbon electrode (GCE) to obtain a sensor for BPA detection. Cyclic voltammetry and electrochemical impedance tests were used to evaluate the electrode performance. The oxidation current of BPA on the Cu-(HHTP)(THQ)@rGO/GCE was substantially higher than on unmodified GCE, which could be explained by a synergy between Cu-(HHTP)(THQ) (which provided sensing and adsorption) and rGO (which provided fast electron conductivity and high surface area). Cu-(HHTP)(THQ)@rGO/GCE exhibited a linear detection range for 0.05–100 μmol·L−1 of BPA with 3.6 nmol·L−1 (S/N = 3) detection limit. We believe that our novel electrode and BPA sensing method extends the application perspectives of EC-MOFs in the electrocatalysis and sensing fields.
Collapse
Affiliation(s)
- Rui-Hong Ye
- Fujian Province-Indonesia Marine Food Joint Research and Development Center, Fujian Polytechnic Normal University, Fuqing 350300, China; (R.-H.Y.); (Y.-J.W.); (S.C.)
| | - Jin-Yang Chen
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China;
| | - Di-Hui Huang
- Fujian Province-Indonesia Marine Food Joint Research and Development Center, Fujian Polytechnic Normal University, Fuqing 350300, China; (R.-H.Y.); (Y.-J.W.); (S.C.)
- Correspondence:
| | - Yan-Jun Wang
- Fujian Province-Indonesia Marine Food Joint Research and Development Center, Fujian Polytechnic Normal University, Fuqing 350300, China; (R.-H.Y.); (Y.-J.W.); (S.C.)
| | - Sheng Chen
- Fujian Province-Indonesia Marine Food Joint Research and Development Center, Fujian Polytechnic Normal University, Fuqing 350300, China; (R.-H.Y.); (Y.-J.W.); (S.C.)
| |
Collapse
|
27
|
Manikandan VS, Boateng E, Durairaj S, Chen A. Electrochemical Sensing of Vanillin Based on Fluorine-Doped Reduced Graphene Oxide Decorated with Gold Nanoparticles. Foods 2022; 11:foods11101448. [PMID: 35627019 PMCID: PMC9140755 DOI: 10.3390/foods11101448] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 01/27/2023] Open
Abstract
4-hydroxy-3-methoxybenzaldehyde (vanillin) is a biophenol compound that is relatively abundant in the world’s most popular flavoring ingredient, natural vanilla. As a powerful antioxidant chemical with beneficial antimicrobial properties, vanillin is not only used as a flavoring agent in food, beverages, perfumery, and pharmaceutical products, it may also be employed as a food-preserving agent, and to fight against yeast and molds. The widespread use of vanilla in major industries warrants the need to develop simple and cost-effective strategies for the quantitative determination of its major component, vanillin. Herein, we explore the applications of a selective and sensitive electrochemical sensor (Au electrodeposited on a fluorine-doped reduced-graphene-oxide-modified glassy-carbon electrode (Au/F-rGO/GCE)) for the detection of vanillin. The electrochemical performance and analytical capabilities of this novel electrochemical sensor were investigated using electrochemical techniques including cyclic voltammetry and differential pulse voltammetry. The excellent sensitivity, selectivity, and reproducibility of the proposed electrochemical sensor may be attributed to the high conductivity and surface area of the formed nanocomposite. The high performance of the sensor developed in the present study was further demonstrated with real-sample analysis.
Collapse
Affiliation(s)
- Venkatesh S. Manikandan
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada; (V.S.M.); (E.B.); (S.D.)
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Emmanuel Boateng
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada; (V.S.M.); (E.B.); (S.D.)
| | - Sharmila Durairaj
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada; (V.S.M.); (E.B.); (S.D.)
| | - Aicheng Chen
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada; (V.S.M.); (E.B.); (S.D.)
- Correspondence: ; Tel.: +1-519-8244120 (ext. 54764)
| |
Collapse
|
28
|
Trung ND, Huy DTN, Jade Catalan Opulencia M, Lafta HA, Abed AM, Bokov DO, Shomurodov K, Van Thuc Master H, Thaeer Hammid A, Kianfar E. Conductive Gels: Properties and Applications of Nanoelectronics. NANOSCALE RESEARCH LETTERS 2022; 17:50. [PMID: 35499625 PMCID: PMC9061932 DOI: 10.1186/s11671-022-03687-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Conductive gels are a special class of soft materials. They harness the 3D micro/nanostructures of gels with the electrical and optical properties of semiconductors, producing excellent novel attributes, like the formation of an intricate network of conducting micro/nanostructures that facilitates the easy movement of charge carriers. Conductive gels encompass interesting properties, like adhesion, porosity, swelling, and good mechanical properties compared to those of bulk conducting polymers. The porous structure of the gels allows the easy diffusion of ions and molecules and the swelling nature provides an effective interface between molecular chains and solution phases, whereas good mechanical properties enable their practical applications. Due to these excellent assets, conductive gels are promising candidates for applications like energy conversion and storage, sensors, medical and biodevices, actuators, superhydrophobic coatings, etc. Conductive gels offer promising applications, e.g., as soft sensors, energy storage, and wearable electronics. Hydrogels with ionic species have some potential in this area. However, they suffer from dehydration due to evaporation when exposed to the air which limits their applications and lifespan. In addition to conductive polymers and organic charge transfer complexes, there is another class of organic matter called "conductive gels" that are used in the organic nanoelectronics industry. The main features of this family of organic materials include controllable photoluminescence, use in photon upconversion technology, and storage of optical energy and its conversion into electricity. Various parameters change the electronic and optical behaviors of these materials, which can be changed by controlling some of the structural and chemical parameters of conductive gels, their electronic and optical behaviors depending on the applications. If the conjugated molecules with π bonds come together spontaneously, in a relative order, to form non-covalent bonds, they form a gel-like structure that has photoluminescence properties. The reason for this is the possibility of excitation of highest occupied molecular orbital level electrons of these molecules due to the collision of landing photons and their transfer to the lowest unoccupied molecular orbital level. This property can be used in various nanoelectronic applications such as field-effect organic transistors, organic solar cells, and sensors to detect explosives. In this paper, the general introduction of conductive or conjugated gels with π bonds is discussed and some of the physical issues surrounding electron excitation due to incident radiation and the mobility of charge carriers, the position, and role of conductive gels in each of these applications are discussed.
Collapse
Affiliation(s)
| | - Dinh Tran Ngoc Huy
- Banking University HCMC, Ho Chi Minh city, Vietnam
- International University of Japan, Niigata, Japan
| | | | | | - Azher M Abed
- Department of Air Conditioning and Refrigeration, Al-Mustaqbal University College, Babylon, Iraq
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, Russian Federation, 119991
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, Russian Federation, 109240
| | - Kahramon Shomurodov
- Department of Maxillo-Facial Surgery, Tashkent State Dental Institute, Makhtumkuli 103, Tashkent, Uzbekistan, 100147
| | - Hoang Van Thuc Master
- Thai Nguyen University, University of Information and Communication Technology, Thái Nguyên, Vietnam
| | - Ali Thaeer Hammid
- Computer Engineering Department, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq
| | - Ehsan Kianfar
- Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran.
- Young Researchers and Elite Club, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran.
| |
Collapse
|
29
|
Wei Y, Yao L, Wu Y, Liu X, Feng J, Ding J, Li K, He Q. Ultrasensitive electrochemical detection for nanomolarity Acyclovir at ferrous molybdate nanorods and graphene oxide composited glassy carbon electrode. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
Cao M, Liu S, Liu S, Tong Z, Wang X, Xu X. Preparation of ZnO/Ti3C2Tx/Nafion/Au electrode. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Deng P, Xiao J, Chen J, Feng J, Wei Y, Zuo J, Liu J, Li J, He Q. Polyethylenimine-carbon nanotubes composite as an electrochemical sensing platform for sensitive and selective detection of toxic rhodamine B in soft drinks and chilli-containing products. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
32
|
Pan Z, Guo H, Sun L, Liu B, Chen Y, Zhang T, Wang M, Peng L, Yang W. A novel electrochemical platform based on COF/La2O3/MWCNTS for simultaneous detection of dopamine and uric acid. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
33
|
Kouhi I, Parvizi Fard G, Alipour E, Saadatirad A. Development of an electrochemical sensor for determination of vanillin in some food stuffs. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Iraj Kouhi
- Department of Analytical Chemistry Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Golnaz Parvizi Fard
- Department of Analytical Chemistry Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Esmaeel Alipour
- Department of Analytical Chemistry Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Afsaneh Saadatirad
- Department of Analytical Chemistry Faculty of Chemistry University of Tabriz Tabriz Iran
| |
Collapse
|
34
|
Zhan M, Yu X, Zhao W, Peng Y, Peng S, Li J, Lu L. Extracellular matrix-degrading STING nanoagonists for mild NIR-II photothermal-augmented chemodynamic-immunotherapy. J Nanobiotechnology 2022; 20:23. [PMID: 34991618 PMCID: PMC8740364 DOI: 10.1186/s12951-021-01226-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/26/2021] [Indexed: 12/14/2022] Open
Abstract
Regulation of stimulator of interferon genes (STING) pathway using agonists can boost antitumor immunity for cancer treatment, while the rapid plasma clearance, limited membrane permeability, and inefficient cytosolic transport of STING agonists greatly compromise their therapeutic efficacy. In this study, we describe an extracellular matrix (ECM)-degrading nanoagonist (dNAc) with second near-infrared (NIR-II) light controlled activation of intracellular STING pathway for mild photothermal-augmented chemodynamic-immunotherapy of breast cancer. The dNAc consists of a thermal-responsive liposome inside loading with ferrous sulfide (FeS2) nanoparticles as both NIR-II photothermal converters and Fenton catalysts, 2′3′-cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) as the STING agonist, and an ECM-degrading enzyme (bromelain) on the liposome surface. Mild heat generated by dNAc upon NIR-II photoirradiation improves Fenton reaction efficacy to kill tumor cells and cause immunogenic cell death (ICD). Meanwhile, the generated heat triggers a controlled release of cGAMP from thermal-responsive liposomes to active STING pathway. The mild photothermal activation of STING pathway combined with ICD promotes anti-tumor immune responses, which leads to improved infiltration of effector T cells into tumor tissues after bromelain-mediated ECM degradation. As a result, after treatment with dNAc upon NIR-II photoactivation, both primary and distant tumors in a murine mouse model are inhibited and the liver and lung metastasis are effectively suppressed. This work presents a photoactivatable system for STING pathway and combinational immunotherapy with improved therapeutic outcome. ![]()
Collapse
Affiliation(s)
- Meixiao Zhan
- Zhuhai Institute of Translational Medicine, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519000, Guangdong, China
| | - Xiangrong Yu
- Zhuhai Institute of Translational Medicine, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519000, Guangdong, China
| | - Wei Zhao
- Zhuhai Institute of Translational Medicine, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519000, Guangdong, China
| | - Yongjun Peng
- Zhuhai Institute of Translational Medicine, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519000, Guangdong, China
| | - Shaojun Peng
- Zhuhai Institute of Translational Medicine, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519000, Guangdong, China.
| | - Jingchao Li
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.
| | - Ligong Lu
- Zhuhai Institute of Translational Medicine, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
35
|
An Electrochemical Sensor Based on a Nitrogen-Doped Carbon Material and PEI Composites for Sensitive Detection of 4-Nitrophenol. NANOMATERIALS 2021; 12:nano12010086. [PMID: 35010037 PMCID: PMC8746740 DOI: 10.3390/nano12010086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/25/2022]
Abstract
A glassy carbon electrode (GCE) was modified with nitrogen-doped carbon materials (NC) and polyethyleneimine (PEI) composites to design an electrochemical sensor for detecting 4-nitrophenol (4-NP). The NC materials were prepared by a simple and economical method through the condensation and carbonization of formamide. The NC materials were dispersed in a polyethyleneimine (PEI) solution easily. Due to the excellent properties of NC and PEI as well as their synergistic effect, the electrochemical reduction of the 4-NP on the surface of the NC-PEI composite modified electrode was effectively enhanced. Under the optimized conditions, at 0.06-10 μM and 10-100 μM concentration ranges, the NC-PEI/GCE sensor shows a linear response to 4-NP, and the detection limit is 0.01 μM (the signal-to-noise ratio is three). The reliability of the sensor for the detection of 4-NP in environmental water samples was successfully evaluated. In addition, the sensor has many advantages, including simple preparation, fast response, high sensitivity and good repeatability. It may be helpful for potential applications in detecting other targets.
Collapse
|
36
|
Ternary NiO/Ag/reduced graphene oxide nanocomposites as, a sensitive electrochemical sensor for nanomolarity detection of sunset yellow in soft drinks. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Selvi SV, Rajaji U, Chen SM, Jebaranjitham JN. Floret-like manganese doped tin oxide anchored reduced graphene oxide for electrochemical detection of dimetridazole in milk and egg samples. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127733] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
38
|
Pan X, Qi Y, Du Z, He J, Yao S, Lu W, Ding K, Zhou M. Zinc oxide nanosphere for hydrogen sulfide scavenging and ferroptosis of colorectal cancer. J Nanobiotechnology 2021; 19:392. [PMID: 34838036 PMCID: PMC8626909 DOI: 10.1186/s12951-021-01069-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/30/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Colorectal cancer is a common malignancy occurring in the digestive system and ranks second in cancer mortality worldwide. In colorectal cancer, hydrogen sulfide (H2S) is selectively upregulated, resulting in the further exacerbation of the disease. Therefore, the clearance of H2S and the regulation of the enzymes on the H2S pathways are of great significance for colorectal cancer therapy. METHODS Here, we investigated the H2S content in various clinical tumor tissues from patients and confirmed that overproduced concentration of H2S in colorectal cancer. Accordingly, we developed an H2S-responsive nanoplatform based on zinc oxide coated virus-like silica nanoparticles (VZnO) for the therapy of colorectal cancer. RESULTS Owing to its excellent H2S scavenging ability, VZnO could effectively reduce H2S content in colorectal cancer to prohibit the growth of CT26 and HCT116 colorectal cancer cells. Moreover, the removal of H2S in colorectal cancer also leads to tumor inhibition through activating ferroptosis, a non-apoptotic form of cell death. The biosafety-related toxicological and pathological analysis confirmed the low toxicity and high safety of VZnO in colorectal cancer treatment. Furthermore, as an H2S-responsible nanosystem, VZnO appears to have no therapeutic effect on other non H2S rich cancers, such as the 4T1 breast cancer model. CONCLUSIONS We anticipate that the H2S-depletion-induced ferroptosis strategy using zinc oxide-based nanomaterials would provide insights in designing nanomedicines for colorectal cancer-target theranostics and may offer clinical promise.
Collapse
Affiliation(s)
- Xiang Pan
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Yuchen Qi
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Zhen Du
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China.
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.
| | - Jian He
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Sheng Yao
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
- Laboratory of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Wei Lu
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Kefeng Ding
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| | - Min Zhou
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China.
- State Key Laboratory of Modern Optical Instrumentations, Zhejiang University, Hangzhou, 310058, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
39
|
Zhang Y, Feng YS, Ren XH, He XW, Li WY, Zhang YK. Bimetallic molecularly imprinted nanozyme: Dual-mode detection platform. Biosens Bioelectron 2021; 196:113718. [PMID: 34673481 DOI: 10.1016/j.bios.2021.113718] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/27/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023]
Abstract
Molecularly imprinted polymer nanozyme (MIL-101(Co,Fe)@MIP) with bimetallic active sites and high-efficiency peroxidase-like (POD-like) activity were synthesized for the ratiometric fluorescence and colorimetric dual-mode detection of vanillin with high selectivity and sensitivity. Compared with the monometallic nanozyme, the POD-like activity of bimetallic nanozyme was greatly enhanced by changing the electronic structure and surface structure. Ratiometric fluorescence and colorimetric dual-mode detection of vanillin in aqueous solution was realized by vanillin entering specific imprinted cavities and blocking the molecular channels on the surface of MIL-101(Co,Fe)@MIP and the dual-mode visual detection was also realized. The limits of detection were as low as 104 nM and 198 nM, respectively. The method proposed in this paper was applied to the real samples of ice cream and candy. And the recoveries were between 93.3% and 105.5%, which also reached a satisfactory degree. The further detection of dexamethasone and prednisone, two drugs belonging to glucocorticoid, proved that the nanozyme analysis method based on MIL-101(Co,Fe)@MIP could be developed into a sensing platform.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu-Sheng Feng
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xing-Hui Ren
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xi-Wen He
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wen-You Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Yu-Kui Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, China; National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
40
|
Dong M, Zhao S, Lv Y, Chen F, Wang A, Fu L, Lin CT. Electroanalytical determination of vanillin using PdZn particles decorated ZnS fibers. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Fast and ultrasensitive trace malachite green detection in aquaculture and fisheries by using hexadecylpyridinium bromide modified electrochemical sensor. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
42
|
Thomas J, Anitha P, Thomas T, Thomas N. Electrocatalytic sensing of dopamine: How the Co content in porous LaNixCoxO3 perovskite influences sensitivity? Microchem J 2021. [DOI: 10.1016/j.microc.2021.106443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Neoteric hollow tubular MnS/Co3S4 hybrids as high-performance electrode materials for supercapacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
44
|
Riahifar V, Haghnazari N, Keshavarzi F, Nasri F. Design a high sensitive electrochemical sensor based on immobilized cysteine on Fe3O4@Au core-shell nanoparticles and reduced graphene oxide nanocomposite for nitrite monitoring. Microchem J 2021; 166:106217. [DOI: 10.1016/j.microc.2021.106217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
Karakaya S, Kaya İ. A Novel Sensitive and Selective Amperometric Detection Platform for the Vanillin Content in Real Samples. ELECTROANAL 2021. [DOI: 10.1002/elan.202100004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Serkan Karakaya
- Polymer Synthesis and Analysis Laboratory Department of Chemistry Faculty of Science and Arts Çanakkale Onsekiz Mart University 17100 Çanakkale Turkey
| | - İsmet Kaya
- Polymer Synthesis and Analysis Laboratory Department of Chemistry Faculty of Science and Arts Çanakkale Onsekiz Mart University 17100 Çanakkale Turkey
| |
Collapse
|
46
|
Ultrasensitive electrochemical determination of trace ceftizoxime using a thin film of Preyssler nanocapsules on pencil graphite electrode surface modified with reduced graphene oxide. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
47
|
Trace level electrochemical detection of mesalazine in human urine sample using poly (N-Vinyl)-2-Pyrrolidone capped Bi-EDTA complex sheets incorporated with ultrasonically exfoliated graphene oxide. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.04.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
48
|
Feng J, Deng P, Xiao J, Li J, Tian Y, Wu Y, Liu J, Li G, He Q. New voltammetric method for determination of tyrosine in foodstuffs using an oxygen-functionalized multi-walled carbon nanotubes modified acetylene black paste electrode. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103708] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
49
|
Zhu S, Bai X, Wang T, Shi Q, Zhu J, Wang B. One-step synthesis of fluorescent graphene quantum dots as an effective fluorescence probe for vanillin detection. RSC Adv 2021; 11:9121-9129. [PMID: 35423426 PMCID: PMC8695316 DOI: 10.1039/d0ra10825a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 02/19/2021] [Indexed: 11/23/2022] Open
Abstract
This study proposes an easy bottom-up method for the synthesis of photoluminescent (PL) graphene quantum dots (GQDs) using citric acid as the carbon source. The obtained GQDs were characterized by high-resolution transmission electron microscopy (HRTEM), UV-vis absorption spectroscopy, fluorescence spectroscopy, and Fourier transform infrared spectroscopy (FT-IR). The synthesised GQDs have an average diameter of 4.76 ± 0.96 nm, with a lattice spacing of 0.24 nm. The GQDs exhibit excitation-independent PL emission. The surface of the GQDs has a variety of functional groups (hydroxyl, carboxyl, and ether groups etc.) to enhance its stability and water solubility. In this study, a fluorescent "on-off" sensor is developed for the selective detection of vanillin in chocolates using GQDs as a fluorescent probe. Under optimal conditions, fluorescence intensity of the GQDs has a good linear relationship with the vanillin concentration (0.0-2.1 × 10-5 mol L-1), with a limit of detection of 2.5 × 10-8 mol L-1. For detection in real samples, the percent recovery of vanillin and the relative standard deviation were 88.0-108.9% and 0.90-5.4%, respectively. Thus, this GQDs-based method has good accuracy and precision and can be used for vanillin detection in practical applications.
Collapse
Affiliation(s)
- Sujuan Zhu
- College of Bioscience and Biotechnology, Yangzhou University Yangzhou Jiangsu 225009 P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University Yangzhou Jiangsu 225009 China
| | - Xuexue Bai
- College of Bioscience and Biotechnology, Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| | - Ting Wang
- College of Bioscience and Biotechnology, Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| | - Qiang Shi
- College of Bioscience and Biotechnology, Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| | - Jing Zhu
- College of Bioscience and Biotechnology, Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| | - Bing Wang
- Center for Disease Control and Prevention Yangzhou Jiangsu 225009 P. R. China
| |
Collapse
|
50
|
Guo S, Liang Y, Liu L, Yin M, Wang A, Sun K, Li Y, Shi Y. Research on the fate of polymeric nanoparticles in the process of the intestinal absorption based on model nanoparticles with various characteristics: size, surface charge and pro-hydrophobics. J Nanobiotechnology 2021; 19:32. [PMID: 33499885 PMCID: PMC7839302 DOI: 10.1186/s12951-021-00770-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The use of drug nanocarriers to encapsulate drugs for oral administration may become an important strategy in addressing the challenging oral absorption of some drugs. In this study-with the premise of controlling single variables-we prepared model nanoparticles with different particle sizes, surface charges, and surface hydrophobicity/hydrophilicity. The two key stages of intestinal nanoparticles (NPs) absorption-the intestinal mucus layer penetration stage and the trans-intestinal epithelial cell stage-were decoupled and analyzed. The intestinal absorption of each group of model NPs was then investigated. RESULTS Differences in the behavioral trends of NPs in each stage of intestinal absorption were found to result from differences in particle properties. Small size, low-magnitude negative charge, and moderate hydrophilicity helped NPs pass through the small intestinal mucus layer more easily. Once through the mucus layer, an appropriate size, positive surface charge, and hydrophobic properties helped NPs complete the process of transintestinal epithelial cell transport. CONCLUSIONS To achieve high drug bioavailability, the basic properties of the delivery system must be suitable for overcoming the physiological barrier of the gastrointestinal tract.
Collapse
Affiliation(s)
- Shiqi Guo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Yanzi Liang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Lanze Liu
- College of Life Science, Yantai University, Yantai, 264005, People's Republic of China
| | - Miaomiao Yin
- China Resources Double-crane Pharmaceutical Co., Ltd., Beijing, China
| | - Aiping Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharmaceutical Co., Ltd., Yantai, China
| | - Youxin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China.
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharmaceutical Co., Ltd., Yantai, China.
| | - Yanan Shi
- College of Life Science, Yantai University, Yantai, 264005, People's Republic of China.
| |
Collapse
|