1
|
Sun Y, Yang X, Hu J, Ji F, Chi H, Liu Y, Hu K, Hao F, Wen X. Portable one-step effervescence tablet-based microextraction combined with smartphone digital image colorimetry: Toward field and rapid detection of trace nickel ion. Talanta 2024; 274:126036. [PMID: 38604041 DOI: 10.1016/j.talanta.2024.126036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
In this study, the one-step switchable hydrophilic solvent (SHS)-based effervescence tablet microextraction (ETME) was coupled with smartphone digital image colorimetry (SDIC) for the field detection of nickel ion (Ni2+) for the first time. Both extractant and CO2 were generated in situ when the novel SHS-based effervescence tablet was placed in the sample solution. The complexant 1-(2-pyridinylazo)-2-naphthaleno (PAN) dissolved from the effervescence tablet to form a stable complex with Ni2+, and the extractant was uniformly dispersed in the sample solution under the action of CO2 and fully in contact with Ni-PAN, which enabled efficient extraction of Ni2+. The color changes of the extraction phase were captured by smartphone, then a quantitative relationship between the concentrations of Ni2+ and color intensity of images captured using a smartphone was established by customized applet WASDIC, which realized quantitative analysis of Ni2+ in different samples. Under optimal conditions, the enhancement factor (EF) of the proposed method was 65.1, the limit of detection (LOD) and limit of quantification (LOQ) were 1.69 and 5.64 μg L-1, respectively. The developed method was successfully applied to the detection of trace Ni2+ in the environmental samples and natural medicines. And the applicability of the method for use in field analysis was validated.
Collapse
Affiliation(s)
- Yiping Sun
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Xiaofang Yang
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Jiayi Hu
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Fuchun Ji
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Huajian Chi
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Ya Liu
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Kan Hu
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Fangfang Hao
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China.
| | - Xiaodong Wen
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China.
| |
Collapse
|
2
|
Khoshmaram L, Bagherian E. Dispersive surfactant micelle-mediated extraction combined with a smartphone-based portable colorimeter: a cost-effective and simple approach for cobalt determination. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:434-441. [PMID: 38165682 DOI: 10.1039/d3ay01698f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
In this research, we present a cost-effective, environmentally friendly methodology for the precise determination of trace levels of cobalt in various environmental matrices, based on a new surfactant micelle-mediated extraction combined with digital image analysis. Specifically, cetyltrimethylammonium bromide (CTAB) serves as the key surfactant. Prior to extraction, the conversion of Co2+ ions into hydrophobic species is achieved through the utilization of 1-nitroso 2-naphthol as a chelating agent. The procedure involves injecting a tetrahydrofuran (THF) solution of CTAB into water samples containing the target analytes and some added KI, resulting in the formation of a turbid solution due to CTAB dispersion within the medium. Following centrifugation, the resulting precipitate is re-dissolved in 1 mL of dimethylformamide and subjected to analysis using a self-constructed colorimeter, which is based on a mobile device. In the colorimeter, digital image analysis is conducted using the RGB color space, with the G channel value serving as the analytical signal. Our investigation encompasses the exploration and optimization of several critical parameters influencing the extraction and complex formation processes. Under optimal conditions, a linear range spanning 10-2.00 × 102 μg L-1 is achieved, exhibiting a correlation coefficient of 0.994. The detection limit (DL) is determined to be 4.1 μg L-1. The relative standard deviations for the determination of Co2+ at concentrations of 40 and 100 μg L-1 are found to be 7.0 and 6.6, respectively, for five replicates. Further assessments include an evaluation of the impact of common cations and anions on the proposed method, which subsequently qualifies it for the efficient preconcentration and quantification of cobalt in diverse environmental matrices.
Collapse
Affiliation(s)
- Leila Khoshmaram
- Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.
| | - Elahe Bagherian
- Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.
| |
Collapse
|
3
|
Altunay N, Hazer B, Lanjwani MF, Tuzen M. Ultra-Sensitive Determination of Cadmium in Food and Water by Flame-AAS after a New Polyvinyl Benzyl Xanthate as an Adsorbent Based Vortex Assisted Dispersive Solid-Phase Microextraction: Multivariate Optimization. Foods 2023; 12:3620. [PMID: 37835273 PMCID: PMC10572459 DOI: 10.3390/foods12193620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Background: Cadmium (Cd) is a very toxic and carcinogenic heavy metal even at low levels and it is naturally present in water as well as in food. Methods: A new polyvinyl benzyl xanthate (PvbXa) was synthesized and used as a new adsorbent in this work. It contains pendant sulfide groups on the main polystyryl chain. Using this new adsorbent, PvbXa, a vortex-assisted dispersive solid-phase microextraction (VA-dSPµE) procedure was developed for the determination of cadmium from food and water samples via flame atomic absorption spectrophotometry (FAAS). Synthesized PvbXa was characterized by 1H Nuclear magnetic resonance (NMR) Spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Photoelectron Spectroscopy (XPS). The different parameters of pH, sample volume, mixing type and time, sorbent amount, and eluent time were optimized using standard analytical methods. Results: The optimized method for assessment of Cd in food and water samples shows good reliability. The optimum conditions were found to be a 0.20-150 µg L-1 linear range, 0.06 µg L-1 LOD, 0.20 µg L-1 LOQ, 4.3 RSD %, and a preconcentration factor of 160. Conclusions: The statistically experimental variables were utilized using a central composite design (CCD). The present method is a low-cost, simple, sensitive, and very effective tool for the recovery of Cd.
Collapse
Affiliation(s)
- Nail Altunay
- Department of Chemistry, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey;
| | - Baki Hazer
- Department of Aircraft Airframe Engine Maintenance, Kapadokya University, 50420 Nevşehir, Turkey
- Departments of Chemistry/Nano Technology Engineering, Zonguldak Bülent Ecevit University, 67100 Zonguldak, Turkey
| | - Muhammad Farooque Lanjwani
- Chemistry Department, Faculty of Science and Arts, Tokat Gaziosmanpasa University, 60250 Tokat, Turkey; (M.F.L.); (M.T.)
- Dr M. A. Kazi Institute of Chemistry, University of Sindh, Jamshoro 76080, Sindh, Pakistan
| | - Mustafa Tuzen
- Chemistry Department, Faculty of Science and Arts, Tokat Gaziosmanpasa University, 60250 Tokat, Turkey; (M.F.L.); (M.T.)
| |
Collapse
|
4
|
Nguyen V, Linh TTT, Vo T, Nguyen QH, Van T. Analytical techniques for determination of heavy metal migration from different types of locally made plastic food packaging materials using ICP-MS. Food Sci Nutr 2023; 11:4030-4037. [PMID: 37457188 PMCID: PMC10345700 DOI: 10.1002/fsn3.3391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/15/2023] [Accepted: 04/06/2023] [Indexed: 07/18/2023] Open
Abstract
Plastic food packaging is an essential element for customer convenience and the preservation of food quality. Nonetheless, heavy metals in the packaging materials, either intentionally or nonintentionally added, can be transferred to the food. Therefore, determining heavy metal contents in these packaging materials is essential. In this study, heavy metals, including Co, Ge, As, Cd, Sb, Pb, Al, and Zn from different intrinsic plastic food packaging materials were analyzed using the inductively coupled plasma-mass spectrometry (ICP-MS) method. Moreover, the migration of these elements into the environment was also investigated. This method is validated following the new technique's requirements, which include linearity range, accuracy, precision, the limit of detection (LOD), and the limit of quantitation (LOQ). The method has been suitably validated with the regression equation from the standards prepared in HNO3 1% v/v. The linear range was found to be ~1-20 ng mL-1 for Co, Ge, As, Cd, Sb, and Pb and 5-80 ng mL-1 for Al and Zn elements. The LODs are ~0.10, 0.25, 0.12, 0.13, 0.11, 0.12, 0.61, and 0.85 ng mL-1, and the LOQs are 0.33, 0.83, 0.40, 0.43, 0.36, 0.40, 2.01, and 2.81 ng mL-1 obtained for Co, Ge, As, Cd, Sb, Pb, Al, and Zn, respectively. In addition, the recovery percentages received ranged 85.4%-94.1% for Co, 82.6%-95.1% for Ge, 86.3%-97.9% for As, 87.3%-96.3% for Cd, 88.0%-104.4% for Sb, 96.3%-106.0% for Pb, 88.4%-104.0% for Al, and 95.1%-99.7% for Zn. Finally, the migration of these heavy metals from polypropylene (PP) and polystyrene (PS) into foodstuffs was also simulated according to EU legislation, showing that the most leached element was Zn, followed by Al and Pd, with the migration of ~8.38% and ~0.41%, and ~0.19%, respectively.
Collapse
Affiliation(s)
- Van‐Trong Nguyen
- Faculty of Chemical EngineeringIndustrial University of Ho Chi Minh CityHo Chi Minh CityVietnam
| | - Truong Thi Truc Linh
- Faculty of Chemical EngineeringIndustrial University of Ho Chi Minh CityHo Chi Minh CityVietnam
- Center of Analytical Services and Experimentation HCMCHo Chi Minh CityVietnam
| | - The‐Ky Vo
- Faculty of Chemical EngineeringIndustrial University of Ho Chi Minh CityHo Chi Minh CityVietnam
| | - Quoc Hung Nguyen
- Center of Analytical Services and Experimentation HCMCHo Chi Minh CityVietnam
| | - Thanh‐Khue Van
- Faculty of Chemical EngineeringIndustrial University of Ho Chi Minh CityHo Chi Minh CityVietnam
| |
Collapse
|
5
|
Caleb J, Alshana U, Ertaş N, Bakırdere S. Smartphone digital image colorimetry combined with dispersive solid-phase microextraction for the determination of boron in food samples. Food Chem 2023; 426:136528. [PMID: 37302306 DOI: 10.1016/j.foodchem.2023.136528] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 05/15/2023] [Accepted: 06/01/2023] [Indexed: 06/13/2023]
Abstract
Simple, inexpensive and accurate analytical methods are in high demand. Dispersive solid-phase microextraction (DSPME) was used in combination with smartphone digital image colorimetry (SDIC) to determine boron in nuts as an approach replacing existing costly alternatives. A colorimetric box was designed to capture images of standards and sample solutions. ImageJ software was used to link pixel intensity to the analyte concentration. Under optimum extraction and detection conditions, linear calibration graphs were obtained with coefficients of determination (R2) above 0.9955. Percentage relative standard deviations (%RSD) were below 6.8 %. The limits of detection (LOD) ranged between 0.07 and 0.11 μg mL-1 (1.8 to 2.8 μg g-1), which were sufficient for detection of boron in nut samples (i.e., almond, ivory, peanut and walnut), with percentage relative recoveries (%RR) between 92.0 and 106.0 %.
Collapse
Affiliation(s)
- Jude Caleb
- Department of Analytical Chemistry, Faculty of Pharmacy, Near East University, 99138 Nicosia, TRNC, Mersin 10, Turkey.
| | - Usama Alshana
- Department of Chemistry, College of Science, Sultan Qaboos University, 123 Al Khod, Muscat, Oman.
| | - Nusret Ertaş
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey.
| | - Sezgin Bakırdere
- Department of Chemistry, Faculty of Arts and Science, Yıldız Technical University, 34349 Istanbul, Turkey; Turkish Academy of Sciences (TÜBA), Vedat Dalokay St., No: 112, 06670 Çankaya, Ankara, Turkey.
| |
Collapse
|
6
|
Abdullahi AB, Ismail S, Alshana U, Ertaş N. Smartphone digital image colorimetry combined with deep eutectic solvent-liquid–liquid microextraction for the determination of cobalt in milk and dairy products. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
7
|
A new ultrasound-assisted liquid-liquid microextraction method utilizing a switchable hydrophilicity solvent for spectrophotometric determination of nitrite in food samples. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
8
|
Zhao L, Wang M, Wang J, Wu J, Zhang Z, Jing X, Wang X. Deep eutectic solvent-based dispersive liquid-liquid microextraction followed by smartphone digital image colorimetry for the determination of carbofuran in water samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:648-654. [PMID: 36651811 DOI: 10.1039/d2ay01861f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A detection method of carbofuran (CBF) in water samples was reported using deep eutectic solvent (DES)-based dispersive liquid-liquid microextraction (DLLME) combined with digital image colorimetry (DIC), which was environmentally friendly, solvent-saving, rapid, and convenient. Under alkaline conditions, the green and multifunctional extractant DESs dissociated into linalool and heptanoic acid, and CBF was hydrolyzed to 2,3-dihydro-2,2-dimethyl-7-benzofuranol and further coupled with fast blue BB salt to form an azo derivative. Heptanoic acid led to the dispersion of linalool to extract the orange-red azo derivative; DIC was used for quantitative analysis using a smartphone with its associated ease of data-acquisition. This experiment optimized the types, molar ratios, and volumes of DESs and the amounts of sodium carbonate and sodium chloride. Under optimal conditions, the limits of detection (LOD) and quantitation (LOQ) were 0.024-0.032 mg L-1 and 0.081-0.108 mg L-1, respectively. The extraction recoveries in real samples (tap, pond, and river water) were 92.4-101.0% with a relative standard deviation below 4.6%. This method has successfully analyzed CBF in different water samples and shows prospects for the monitoring and control of CBF residues in other environmental samples.
Collapse
Affiliation(s)
- Luyao Zhao
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Min Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| | - Jiadong Wang
- School of Pharmaceutical Engineering, Xinyang Agriculture and Forestry University, Xinyang 46400, China
| | - Jing Wu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Zhuoting Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| | - Xu Jing
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiaowen Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| |
Collapse
|
9
|
Ismail S, Abdullahi AB, Alshana U, Ertaş N. Switchable-hydrophilicity solvent liquid-liquid microextraction combined with smartphone digital image colorimetry for the determination of palladium in catalytic converters. ANAL SCI 2023; 39:97-108. [PMID: 36264450 DOI: 10.1007/s44211-022-00204-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/10/2022] [Indexed: 01/06/2023]
Abstract
Switchable-hydrophilicity solvent liquid-liquid microextraction was coupled with smartphone digital image colorimetry for the determination of palladium as its metal chelate with N,N-diethyl-N'-benzoylthiourea. Images of the colored extract were captured in a homemade colorimetric box, which were split into their red-green-blue channels. The blue channel was used to determine the concentration of palladium. Optimum extraction conditions were achieved using 600 μL of triethylamine as the extraction solvent and 4.0 mL of 10 M sodium hydroxide as the hydrophilicity-switching trigger within 1.0 min extraction time. Optimum complexation conditions were obtained at a sample pH of 4.50, and metal/ligand mole ratio of 1:2 within 3.0 min. Optimum detection conditions were achieved at a distance of 7.0 cm between the sample solution and the detection camera, a region of interest of 175.0 px2 at a detection wavelength of 480.0 nm and 30.0% brightness of the monochromatic light source. Limits of detection and quantitation were found to be less than 0.7 and 1.8 µg g-1, respectively. A good linearity with coefficients of determination above 0.9974 was obtained. Accuracy was checked via a single-factor analysis of variance (ANOVA) test by comparing the results with the ones obtained using flame-atomic absorption spectrometry and the results were statistically in a good agreement (P > 0.05). The proposed method was applied for the determination of palladium in catalytic converters with percentage relative recoveries ranging between 95.7 and 103.7% and percentage relative standard deviations below 4.0%.
Collapse
Affiliation(s)
- Salihu Ismail
- Department of Analytical Chemistry, Faculty of Pharmacy, Near East University, 99138, Nicosia, TRNC, Mersin 10, Turkey.,Department of Chemistry, Faculty of Science, Yusuf Maitama Sule University, PMB 3220, Kano, Nigeria
| | - Aliyu B Abdullahi
- Department of Analytical Chemistry, Faculty of Pharmacy, Near East University, 99138, Nicosia, TRNC, Mersin 10, Turkey.,Department of Chemistry, Kano State College of Education and Preliminary Studies, PMB 3145, Kano, Nigeria
| | - Usama Alshana
- Department of Analytical Chemistry, Faculty of Pharmacy, Near East University, 99138, Nicosia, TRNC, Mersin 10, Turkey. .,Department of Chemistry, College of Science, Sultan Qaboos University, 123 Al Khod, Muscat, Oman.
| | - Nusret Ertaş
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey
| |
Collapse
|
10
|
Azevedo Lemos V, Bastos Santos L, Santos Assis R. Deep eutectic solvent in ultrasound-assisted liquid-phase microextraction for determination of vanadium in food and environmental waters. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Honorato Santos Neto J, Dos Santos LO, Dos Santos AMP, Galvão Novaes C, Luis Costa Ferreira S. A new and accessible instrumentation to determine urea in UHT milk using digital image analysis. Food Chem 2022; 381:132221. [PMID: 35121324 DOI: 10.1016/j.foodchem.2022.132221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/26/2022]
Abstract
This research demonstrates the development, optimization and application of a new low-cost detection system, based on digital image analysis, for the detection of urea in ultra-high-temperature (UHT) milk samples. The apparatus built in the laboratory, allows the capture of images through a simple system built by polyvinyl chloride (PVC) tubes, a digital microscope and a peristaltic mini-pump, after the colorimetric reaction between urea and diacetylmonoxime (butane-2,3-dionammonoxime). The red, green and blue (RGB) and hue, saturation and value (HSV) color systems were studied, with the saturation channel of the HSV color system selected as the analytical signal. Subsequently, the experimental chemical conditions were evaluated through multivariate experimental designs and the optimal conditions were defined. The proposed method was validated, and the detection and quantification limits presented by the method were 0.35 mg L-1 and 0.52 mg L-1, respectively; precision, ranged between 1.6 and 2.8 %. The results were compared with those obtained using the mid-infrared technique and no statistically significant differences were observed at a 95 % confidence level. The proposed method was applied to eight UHT milk samples that presented urea content ranging from 187 to 386 mg L-1. The mean values obtained are in agreement with values presented in other studies for the determination of urea in milk. The results indicated that the system described and validated here is promising and can be applied to assess the authenticity and quality of milk.
Collapse
Affiliation(s)
- João Honorato Santos Neto
- Universidade Federal da Bahia, Instituto de Química, Grupo de Pesquisa em Química e Quimiometria, Campus Ondina, 40170-115 Salvador, Bahia, Brazil; Instituto Nacional de Ciência e Tecnologia, INCT, de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, Bahia, Brazil.
| | - Liz Oliveira Dos Santos
- Universidade Federal da Bahia, Instituto de Química, Grupo de Pesquisa em Química e Quimiometria, Campus Ondina, 40170-115 Salvador, Bahia, Brazil; Universidade Federal do Recôncavo da Bahia, Centro de Ciência e Tecnologia em Energia e Sustentabilidade, 44085-132 Feira de Santana, Bahia, Brazil.
| | - Ana Maria Pinto Dos Santos
- Universidade Federal da Bahia, Instituto de Química, Grupo de Pesquisa em Química e Quimiometria, Campus Ondina, 40170-115 Salvador, Bahia, Brazil; Instituto Nacional de Ciência e Tecnologia, INCT, de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, Bahia, Brazil.
| | - Cleber Galvão Novaes
- Universidade Estadual do Sudoeste da Bahia, Laboratório de Química Analítica III, 45208-091 Jequié, Bahia, Brazil
| | - Sergio Luis Costa Ferreira
- Universidade Federal da Bahia, Instituto de Química, Grupo de Pesquisa em Química e Quimiometria, Campus Ondina, 40170-115 Salvador, Bahia, Brazil; Instituto Nacional de Ciência e Tecnologia, INCT, de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, Bahia, Brazil
| |
Collapse
|
12
|
Determination of Ultra-Trace Cobalt in Water Samples Using Dispersive Liquid-Liquid Microextraction Followed by Graphite Furnace Atomic Absorption Spectrometry. Molecules 2022; 27:molecules27092694. [PMID: 35566045 PMCID: PMC9102969 DOI: 10.3390/molecules27092694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/09/2022] [Accepted: 04/10/2022] [Indexed: 11/17/2022] Open
Abstract
A novel method for the determination of ultra-trace cobalt by dispersive liquid–liquid microextraction (DLLME) coupled with graphite furnace atomic absorption spectrometry has been developed. It is based on the color reaction of Co2+ with 2-(5-bromo-2-pyridylazo)-5-dimethylaminoaniline (5-Br-PADMA) in a Britton–Robinson buffer solution at pH 6.0 to form stable hydrophobic chelates, which were separated and enriched by DLLME with 1,2-dichloroethane (CH2ClCH2Cl) as extraction and acetonitrile (CH3CN) as a dispersive solvent. The sedimented phase containing the chelates is then determined with GFAAS. Parameters that affect extraction efficiency, such as types and volumes of extraction and disperser solvents, pH of sample solution, extraction time, concentration of the chelating agent 5-Br-PADMA, and salt effect, were investigated. Under optimal conditions, the calibration graph was linear over the range 0.05–1.0 ng/mL, with a correlation coefficient of 0.9922 and a detection limit of 0.03 ng/mL. Preconcentration factor (PF) is calculated as the ratio of the aqueous solution volume (5 mL) to that of the organic phase volume (40 μL), and enrichment factor (EF) is calculated as the ratio of the slopes of the calibration graphs obtained with and without DLLME for 5.0 mL of sample solution, which were 120 and 112.5, respectively. The extraction efficiency, calculated by EF/PF·100, was 93.8%. The relative standard deviation (RSD) at the 0.5 ng/mL Co2+ level was 3.8% (n = 6). The method has been applied to the determination of trace cobalt in water samples with satisfactory results.
Collapse
|
13
|
Lemos VA, Barreto JA, Santos LB, de Assis RDS, Novaes CG, Cassella RJ. In-syringe dispersive liquid-liquid microextraction. Talanta 2022; 238:123002. [PMID: 34857335 DOI: 10.1016/j.talanta.2021.123002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/23/2021] [Accepted: 10/26/2021] [Indexed: 10/20/2022]
Abstract
Dispersive liquid-liquid microextraction (DLLME) has recently been widely used in the separation and preconcentration of various chemical species. Among the various approaches using DLLME are systems that use a syringe as an extraction environment. In this review, details of some methods that use this approach are presented. The ways to promote dispersion, analytical characteristics, and the advantages and disadvantages of the methods, among other aspects, are discussed critically. Finally, some trends in the use of in-syringe microextraction systems are described.
Collapse
Affiliation(s)
- Valfredo Azevedo Lemos
- Universidade Estadual do Sudoeste da Bahia, Laboratório de Química Analítica, Campus de Jequié, 45208-091, Jequié, Bahia, Brazil; Universidade Federal da Bahia, Programa de Pós-Graduação em Química, Campus Universitário de Ondina, 40170-280, Salvador, Bahia, Brazil.
| | - Jeferson Alves Barreto
- Universidade Estadual do Sudoeste da Bahia, Laboratório de Química Analítica, Campus de Jequié, 45208-091, Jequié, Bahia, Brazil; Universidade Federal Fluminense, Departamento de Química Analítica, Outeiro de São João Batista s/n, 24020-141, Niterói, Rio de Janeiro, Brazil
| | - Luana Bastos Santos
- Universidade Estadual do Sudoeste da Bahia, Laboratório de Química Analítica, Campus de Jequié, 45208-091, Jequié, Bahia, Brazil; Universidade Federal da Bahia, Programa de Pós-Graduação em Química, Campus Universitário de Ondina, 40170-280, Salvador, Bahia, Brazil
| | - Rosivan Dos Santos de Assis
- Universidade Federal da Bahia, Programa de Pós-Graduação em Química, Campus Universitário de Ondina, 40170-280, Salvador, Bahia, Brazil
| | - Cleber Galvão Novaes
- Universidade Estadual do Sudoeste da Bahia, Laboratório de Química Analítica, Campus de Jequié, 45208-091, Jequié, Bahia, Brazil
| | - Ricardo J Cassella
- Universidade Federal Fluminense, Departamento de Química Analítica, Outeiro de São João Batista s/n, 24020-141, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Bi X, Jiang H, Guo X, Wang M, Niu Y, Jia L, Jing X. Density-adjusted liquid-phase microextraction with smartphone digital image colorimetry to determine parathion-methyl in water, fruit juice, vinegar, and fermented liquor. RSC Adv 2022; 12:18127-18133. [PMID: 35800312 PMCID: PMC9210864 DOI: 10.1039/d2ra02760g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022] Open
Abstract
Schematic representation of the density-adjusted LPME-SDIC.
Collapse
Affiliation(s)
- Xinyuan Bi
- Agricultural Economics and Management College, Shanxi Agricultural University, Taiyuan, Shanxi 030006, China
| | - Haijuan Jiang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
- Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Taigu, Shanxi 030801, China
| | - Xingle Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
- Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Taigu, Shanxi 030801, China
| | - Min Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
- Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Taigu, Shanxi 030801, China
| | - Yu Niu
- Agricultural Economics and Management College, Shanxi Agricultural University, Taiyuan, Shanxi 030006, China
| | - Liyan Jia
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
- Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Taigu, Shanxi 030801, China
| | - Xu Jing
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
- Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Taigu, Shanxi 030801, China
| |
Collapse
|
15
|
A simple and low-cost sample preparation for the effective extraction, purification and enrichment of aflatoxins in wheat by combining with ionic liquid-based dispersive liquid–liquid microextraction. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Jain R, Jha RR, Kumari A, Khatri I. Dispersive liquid-liquid microextraction combined with digital image colorimetry for paracetamol analysis. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105870] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Jagirani MS, Soylak M. Review: Microextraction Technique Based New Trends in Food Analysis. Crit Rev Anal Chem 2020; 52:968-999. [PMID: 33253048 DOI: 10.1080/10408347.2020.1846491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Food chemistry is the study and classification of the quality and origin of foods. The identification of definite biomarkers and the determination of residue contaminants such as toxins, pesticides, metals, human and veterinary drugs, which are a very common source of food-borne diseases. The food analysis is continuously demanding the improvement of more robust, sensitive, highly efficient, and economically beneficial analytical approaches to promise the traceability, safety, and quality of foods in the acquiescence with the consumers and legislation demands. The traditional methods have been used at the starting of the 20th century based on wet chemical methods. Now it existing the powerful analytical techniques used in food analysis and safety. This development has led to substantial enhancements in the analytical accuracy, precision, sensitivity, selectivity, thereby mounting the applied range of food applications. In the present decade, microextraction (micro-scale extraction) pays more attention due to its futures such as low consumption of solvent and sample, throughput analysis easy to operate, greener, robotics, and miniaturization, different adsorbents have been used in the microextraction process with unique nature recognized with wide range applications.
Collapse
Affiliation(s)
- Muhammed Saqaf Jagirani
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,National Center of Excellence in Analytical Chemistry, University of Sindh, Sindh, Pakistan
| | - Mustafa Soylak
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey
| |
Collapse
|