1
|
Vadagam N, Haridasyam SB, Lakka NS, Kuppan C, Ravinathan P, Chinnakadoori SR. Principles for Stereoselective Separation of Chiral Drug Compounds Enantiomers and Diastereomers in Pharmaceuticals and Biopharmaceuticals Using Liquid Chromatography. Chirality 2025; 37:e70017. [PMID: 39900358 DOI: 10.1002/chir.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/25/2024] [Accepted: 12/27/2024] [Indexed: 02/05/2025]
Abstract
In the fields of pharmaceuticals and biopharmaceuticals, chiral liquid chromatography techniques including high-performance liquid chromatography and ultra-performance liquid chromatography are frequently used to isolate, identify, separate, and quantify chiral isomers, including enantiomers and diastereomers (stereoisomers), due to the significant differences in biological activity and therapeutic effects of stereoisomers. The authors have provided a comprehensive overview of the fundamental principles necessary for using liquid chromatography to separate and accurately estimate chiral compounds that exhibit stereoisomerism (both enantiomers and diastereomers). The development strategies outlined include the selection of chromatographic conditions, optimization of sample preparation, evaluation of degradation pathways, establishment of system suitability criteria, and execution of method validation studies. Additionally, this article supports the development of robust and stability-indicating methods by applying one factor at a time and design of experiments concepts for chiral drugs and their chiral impurities in pharmaceuticals and biopharmaceuticals. The method validation attributes essential to evaluate the characteristics of the developed method were discussed in this write-up. The validation parameters include specificity, linearity, detection limit, quantitation limit, accuracy, precision, solution stability.
Collapse
Affiliation(s)
- Niroja Vadagam
- Department of Chemistry, GITAM School of Science (Deemed to be University), Hyderabad, India
| | - Sharath Babu Haridasyam
- Department of Chemistry, GITAM School of Science (Deemed to be University), Hyderabad, India
| | - Narasimha S Lakka
- Department of Chemistry, School of Applied Sciences and Humanities (SASH), VIGNAN'S Foundation for Science, Technology & Research (VFSTR), Vadlamudi, Guntur (Dist.), India
- Department of Analytical R&D, AptaPharma Inc., Pennsauken, New Jersey, USA
| | - Chandrasekar Kuppan
- Department of Chemistry, School of Applied Sciences and Humanities (SASH), VIGNAN'S Foundation for Science, Technology & Research (VFSTR), Vadlamudi, Guntur (Dist.), India
| | | | - Sanjeeva R Chinnakadoori
- Department of Analytical Research and Development, Amneal Pharmaceuticals, Piscataway, New Jersey, USA
| |
Collapse
|
2
|
Sanches VL, Cunha TA, Viganó J, de Souza Mesquita LM, Faccioli LH, Breitkreitz MC, Rostagno MA. Comprehensive analysis of phenolics compounds in citrus fruits peels by UPLC-PDA and UPLC-Q/TOF MS using a fused-core column. Food Chem X 2022; 14:100262. [PMID: 35243328 PMCID: PMC8867044 DOI: 10.1016/j.fochx.2022.100262] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 11/27/2022] Open
Abstract
In this work, a method based on ultra-high-performance liquid chromatography with a photodiode array detector (UPLC-PDA) was developed to comprehensively analyze phenolic compounds in peels of lime (Citrus × latifolia), lemon (Citrus limon), and rangpur lime (Citrus × limonia). The reverse-phase separation was achieved with a C18 fused-core column packed with the smallest particles commercially available (1.3 um). The method was successfully coupled with high-resolution mass spectrometry (HRMS), allowing the detection of 24 phenolic compounds and five limonoids in several other citrus peels species: key lime, orange and sweet orange, tangerine, and tangerine ponkan, proving the suitability for comprehensive analysis in citrus peel matrices. Additionally, the developed method was validated according to the Food and drug administration (FDA) and National Institute of Metrology Quality and Technology (INMETRO) criteria, demonstrating specificity, linearity, accuracy, and precision according to these guidelines. System suitability parameters such as resolution, tailoring, plate count were also verified.
Collapse
Affiliation(s)
- Vitor L. Sanches
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria, 1300, 12383-250 Limeira, SP, Brazil
| | - Tanize A. Cunha
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, SP 14040-903, Brazil
| | - Juliane Viganó
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria, 1300, 12383-250 Limeira, SP, Brazil
| | - Leonardo M. de Souza Mesquita
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria, 1300, 12383-250 Limeira, SP, Brazil
| | - Lúcia Helena Faccioli
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, SP 14040-903, Brazil
| | - Marcia Cristina Breitkreitz
- Laboratory of Pharmaceutial Research and Chemometrics (LabFarQui), Institute of Chemistry, University of Campinas (UNICAMP), Rua Josué de Castro s/n, 13083-970, Campinas, São Paulo, Brazil
| | - Maurício A. Rostagno
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria, 1300, 12383-250 Limeira, SP, Brazil
| |
Collapse
|
3
|
Si-Hung L, Bamba T. Current state and future perspectives of supercritical fluid chromatography. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Jambo H, Hubert P, Dispas A. Supercritical fluid chromatography for pharmaceutical quality control: Current challenges and perspectives. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Grybinik S, Bosakova Z. An overview of chiral separations of pharmaceutically active substances by HPLC (2018-2020). MONATSHEFTE FUR CHEMIE 2021; 152:1033-1043. [PMID: 34456367 PMCID: PMC8382579 DOI: 10.1007/s00706-021-02832-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/01/2021] [Indexed: 02/07/2023]
Abstract
This review provides a brief survey of chiral separation of pharmaceutically active substances published over the last 3 years (2018-2020). Chiral separation of drugs is an important area of research. The control of enantiomeric purity and determination of individual enantiomeric drug molecules is a necessity especially for clinical, analytical, and regulatory purposes. Among chromatographic resolution methods, high-performance liquid chromatography based on chiral stationary phases remains the most popular and effective method used for chiral separation of various drugs. In this review, attention is paid to several classes of chiral stationary phases that have been the most frequently used for drug enantioseparation during this period. GRAPHIC ABSTRACT
Collapse
Affiliation(s)
- Sofiya Grybinik
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Zuzana Bosakova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
6
|
Prabhu RC, Maruthapillai A, Senadi GC. Use of Stage-Wise AQbD and an Orthogonality Approach to Develop a Short-Runtime Method for the Simultaneous Quantification of Bosentan and Impurities using UPLC Equipped with PDA and ESI-MS. Anal Chem 2021; 93:4175-4182. [PMID: 33616379 DOI: 10.1021/acs.analchem.0c04504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Analytical quality by design (AQbD) and method orthogonality are comprehensive tools used to develop an analytical method based on statistical and graphical evaluation. These tools provide complete knowledge of the method and help to develop precise, accurate, and specific methods. The present work elaborates the development of a selective and precise method for the quantification of bosentan and its nine impurities with a short runtime of 10 min using a statistically driven stage-wise AQbD approach with proven orthogonality. The optimum method was developed using 10 mM ammonium acetate pH 2.5 and acetonitrile in a gradient mode on an Agilent Zorbax Bonus RP RRHD 100 × 2.1 mm and 1.8 μm column with a flow rate of 0.45 mL/min at a column temperature of 40 °C. The robustness of the method was proven for the normal operating range (NOR) using Monte Carlo stimulations. The method was challenged using an orthogonal method that was developed based on the trellis graphs and surface response outcome of the design of experiment (DoE). The orthogonality factor between methods was calculated by measuring the correlation coefficient (r) of the retention factor (k') calculated for each peak on both methods. A forced degradation study was performed to challenge the method, and stressed samples were analyzed using both orthogonal methods. The outcome of the experiment proved that the approach of developing methods using the AQbD approach and then challenging them with orthogonality helps to develop a robust method. The method was further validated as per ICH guidelines.
Collapse
Affiliation(s)
| | | | - Gopal Chandru Senadi
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, India
| |
Collapse
|